File: entries.tex

package info (click to toggle)
hol88 2.02.19940316-35
  • links: PTS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 65,988 kB
  • ctags: 21,623
  • sloc: ml: 199,939; ansic: 9,666; sh: 7,118; makefile: 6,095; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (1351 lines) | stat: -rw-r--r-- 44,121 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
\chapter{ML Functions in the unwind Library}\input{entries-intro}\DOC{CONJ\_FORALL\_CONV}

\TYPE {\small\verb%CONJ_FORALL_CONV : conv%}\egroup

\SYNOPSIS
Moves universal quantifiers up through a tree of conjunctions.

\DESCRIBE
{\small\verb%CONJ_FORALL_CONV "(!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)"%} returns the
following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn) =
      !x1 ... xm. t1 /\ ... /\ tn
\end{verbatim}
}
\noindent where the original term can be an arbitrary tree of conjunctions. The
structure of the tree is retained in both sides of the equation.

\FAILURE
Never fails.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#CONJ_FORALL_CONV "((!(x:*) (y:*) (z:*). a) /\ (!(x:*) (y:*) (z:*). b)) /\
#                  (!(x:*) (y:*) (z:*). c)";;
|- ((!x y z. a) /\ (!x y z. b)) /\ (!x y z. c) = (!x y z. (a /\ b) /\ c)

#CONJ_FORALL_CONV "T";;
|- T = T

#CONJ_FORALL_CONV "((!(x:*) (y:*) (z:*). a) /\ (!(x:*) (w:*) (z:*). b)) /\
#                  (!(x:*) (y:*) (z:*). c)";;
|- ((!x y z. a) /\ (!x w z. b)) /\ (!x y z. c) =
   (!x. ((!y z. a) /\ (!w z. b)) /\ (!y z. c))
\end{verbatim}
}
\SEEALSO
FORALL_CONJ_CONV, CONJ_FORALL_ONCE_CONV, FORALL_CONJ_ONCE_CONV,
CONJ_FORALL_RIGHT_RULE, FORALL_CONJ_RIGHT_RULE.

\ENDDOC
\DOC{CONJ\_FORALL\_ONCE\_CONV}

\TYPE {\small\verb%CONJ_FORALL_ONCE_CONV : conv%}\egroup

\SYNOPSIS
Moves a single universal quantifier up through a tree of conjunctions.

\DESCRIBE
{\small\verb%CONJ_FORALL_ONCE_CONV "(!x. t1) /\ ... /\ (!x. tn)"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (!x. t1) /\ ... /\ (!x. tn) = !x. t1 /\ ... /\ tn
\end{verbatim}
}
\noindent where the original term can be an arbitrary tree of conjunctions. The
structure of the tree is retained in both sides of the equation.

\FAILURE
Fails if the argument term is not of the required form. The term need not be a
conjunction, but if it is every conjunct must be universally quantified with
the same variable.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#CONJ_FORALL_ONCE_CONV "((!x. x \/ a) /\ (!x. x \/ b)) /\ (!x. x \/ c)";;
|- ((!x. x \/ a) /\ (!x. x \/ b)) /\ (!x. x \/ c) =
   (!x. ((x \/ a) /\ (x \/ b)) /\ (x \/ c))

#CONJ_FORALL_ONCE_CONV "!x. x \/ a";;
|- (!x. x \/ a) = (!x. x \/ a)

#CONJ_FORALL_ONCE_CONV "((!x. x \/ a) /\ (!y. y \/ b)) /\ (!x. x \/ c)";;
evaluation failed     CONJ_FORALL_ONCE_CONV
\end{verbatim}
}
\SEEALSO
FORALL_CONJ_ONCE_CONV, CONJ_FORALL_CONV, FORALL_CONJ_CONV,
CONJ_FORALL_RIGHT_RULE, FORALL_CONJ_RIGHT_RULE.

\ENDDOC
\DOC{CONJ\_FORALL\_RIGHT\_RULE}

\TYPE {\small\verb%CONJ_FORALL_RIGHT_RULE : (thm -> thm)%}\egroup

\SYNOPSIS
Moves universal quantifiers up through a tree of conjunctions.

\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
    A |- !z1 ... zr.
          t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)
   -------------------------------------------------------------------
      A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn
\end{verbatim}
}

\FAILURE
Fails if the argument theorem is not of the required form, though either or
both of {\small\verb%r%} and {\small\verb%p%} may be zero.

\SEEALSO
FORALL_CONJ_RIGHT_RULE, CONJ_FORALL_CONV, FORALL_CONJ_CONV,
CONJ_FORALL_ONCE_CONV, FORALL_CONJ_ONCE_CONV.

\ENDDOC
\DOC{DEPTH\_EXISTS\_CONV}

\TYPE {\small\verb%DEPTH_EXISTS_CONV : (conv -> conv)%}\egroup

\SYNOPSIS
Applies a conversion to the body of nested existential quantifications.

\DESCRIBE
{\small\verb%DEPTH_EXISTS_CONV conv "?x1 ... xn. body"%} applies {\small\verb%conv%} to {\small\verb%"body"%} and
returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?x1 ... xn. body) = (?x1 ... xn. body')
\end{verbatim}
}

\FAILURE
Fails if the application of {\small\verb%conv%} fails.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#DEPTH_EXISTS_CONV BETA_CONV "?x y z. (\w. x /\ y /\ z /\ w) T";;
|- (?x y z. (\w. x /\ y /\ z /\ w)T) = (?x y z. x /\ y /\ z /\ T)
\end{verbatim}
}
\SEEALSO
DEPTH_FORALL_CONV.

\ENDDOC
\DOC{DEPTH\_FORALL\_CONV}

\TYPE {\small\verb%DEPTH_FORALL_CONV : (conv -> conv)%}\egroup

\SYNOPSIS
Applies a conversion to the body of nested universal quantifications.

\DESCRIBE
{\small\verb%DEPTH_FORALL_CONV conv "!x1 ... xn. body"%} applies {\small\verb%conv%} to {\small\verb%"body"%} and
returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (!x1 ... xn. body) = (!x1 ... xn. body')
\end{verbatim}
}

\FAILURE
Fails if the application of {\small\verb%conv%} fails.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#DEPTH_FORALL_CONV BETA_CONV "!x y z. (\w. x /\ y /\ z /\ w) T";;
|- (!x y z. (\w. x /\ y /\ z /\ w)T) = (!x y z. x /\ y /\ z /\ T)
\end{verbatim}
}
\SEEALSO
DEPTH_EXISTS_CONV.

\ENDDOC
\DOC{EXISTS\_DEL1\_CONV}

\TYPE {\small\verb%EXISTS_DEL1_CONV : conv%}\egroup

\SYNOPSIS
Deletes one existential quantifier.

\DESCRIBE
{\small\verb%EXISTS_DEL1_CONV "?x. t"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?x. t) = t
\end{verbatim}
}
\noindent provided {\small\verb%x%} is not free in {\small\verb%t%}.

\FAILURE
Fails if the argument term is not an existential quantification or if {\small\verb%x%} is
free in {\small\verb%t%}.

\SEEALSO
EXISTS_DEL_CONV, PRUNE_ONCE_CONV.

\ENDDOC
\DOC{EXISTS\_DEL\_CONV}

\TYPE {\small\verb%EXISTS_DEL_CONV : conv%}\egroup

\SYNOPSIS
Deletes existential quantifiers.

\DESCRIBE
{\small\verb%EXISTS_DEL_CONV "?x1 ... xn. t"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?x1 ... xn. t) = t
\end{verbatim}
}
\noindent provided {\small\verb%x1,...,xn%} are not free in {\small\verb%t%}.

\FAILURE
Fails if any of the {\small\verb%x%}'s appear free in {\small\verb%t%}. The function does not perform a
partial deletion; for example, if {\small\verb%x1%} and {\small\verb%x2%} do not appear free in {\small\verb%t%} but
{\small\verb%x3%} does, the function will fail; it will not return:
{\par\samepage\setseps\small
\begin{verbatim}
   |- ?x1 ... xn. t = ?x3 ... xn. t
\end{verbatim}
}
\SEEALSO
EXISTS_DEL1_CONV, PRUNE_CONV.

\ENDDOC
\DOC{EXISTS\_EQN\_CONV}

\TYPE {\small\verb%EXISTS_EQN_CONV : conv%}\egroup

\SYNOPSIS
Proves the existence of a line that has a non-recursive equation.

\DESCRIBE
{\small\verb%EXISTS_EQN_CONV "?l. !y1 ... ym. l x1 ... xn = t"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?l. !y1 ... ym. l x1 ... xn = t) = T
\end{verbatim}
}
\noindent provided {\small\verb%l%} is not free in {\small\verb%t%}. Both {\small\verb%m%} and {\small\verb%n%} may be zero.

\FAILURE
Fails if the argument term is not of the specified form or if {\small\verb%l%} appears free
in {\small\verb%t%}.

\SEEALSO
PRUNE_ONCE_CONV.

\ENDDOC
\DOC{EXPAND\_ALL\_BUT\_CONV}

\TYPE {\small\verb%EXPAND_ALL_BUT_CONV : (string list -> thm list -> conv)%}\egroup

\SYNOPSIS
Unfolds, then unwinds all lines (except those specified) as much as possible,
then prunes the unwound lines.

\DESCRIBE
{\small\verb%EXPAND_ALL_BUT_CONV [`li(k+1)`;...;`lim`] thl%} when applied to the following
term:
{\par\samepage\setseps\small
\begin{verbatim}
   "?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn"
\end{verbatim}
}
\noindent returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) =
        (?li(k+1) ... lim. t1' /\ ... /\ tn')
\end{verbatim}
}
\noindent where each {\small\verb%ti'%} is the result of rewriting {\small\verb%ti%} with the theorems in
{\small\verb%thl%}. The set of assumptions {\small\verb%B%} is the union of the instantiated assumptions
of the theorems used for rewriting. If none of the rewrites are applicable to a
conjunct, it is unchanged. Those conjuncts that after rewriting are equations
for the lines {\small\verb%li1,...,lik%} (they are denoted by {\small\verb%ui1,...,uik%}) are used to
unwind and the lines {\small\verb%li1,...,lik%} are then pruned.

The {\small\verb%li%}'s are related by the equation:
{\par\samepage\setseps\small
\begin{verbatim}
   {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}
\end{verbatim}
}

\FAILURE
The function may fail if the argument term is not of the specified form. It
will also fail if the unwound lines cannot be pruned. It is possible for the
function to attempt unwinding indefinitely (to loop).

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#EXPAND_ALL_BUT_CONV [`l1`]
# [ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]
# "?l1 l2.
#   INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = l2 (t-1) \/ out (t-1))";;
. |- (?l1 l2.
       INV(l1,l2) /\ INV(l2,out) /\ (!t. l1 t = l2(t - 1) \/ out(t - 1))) =
     (?l1.
       (!t. out t = ~~l1 t) /\ (!t. l1 t = ~l1(t - 1) \/ ~~l1(t - 1)))
\end{verbatim}
}
\SEEALSO
EXPAND_AUTO_CONV, EXPAND_ALL_BUT_RIGHT_RULE, EXPAND_AUTO_RIGHT_RULE,
UNFOLD_CONV, UNWIND_ALL_BUT_CONV, PRUNE_SOME_CONV.

\ENDDOC
\DOC{EXPAND\_ALL\_BUT\_RIGHT\_RULE}

\TYPE {\small\verb%EXPAND_ALL_BUT_RIGHT_RULE : (string list -> thm list -> thm -> thm)%}\egroup

\SYNOPSIS
Unfolds, then unwinds all lines (except those specified) as much as possible,
then prunes the unwound lines.

\DESCRIBE
{\small\verb%EXPAND_ALL_BUT_RIGHT_RULE [`li(k+1)`;...;`lim`] thl%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
    A |- !z1 ... zr.
          t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn
   -------------------------------------------------------------------
       B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1' /\ ... /\ tn'
\end{verbatim}
}
\noindent where each {\small\verb%ti'%} is the result of rewriting {\small\verb%ti%} with the theorems in
{\small\verb%thl%}. The set of assumptions {\small\verb%B%} is the union of the instantiated assumptions
of the theorems used for rewriting. If none of the rewrites are applicable to a
conjunct, it is unchanged. Those conjuncts that after rewriting are equations
for the lines {\small\verb%li1,...,lik%} (they are denoted by {\small\verb%ui1,...,uik%}) are used to
unwind and the lines {\small\verb%li1,...,lik%} are then pruned.

The {\small\verb%li%}'s are related by the equation:
{\par\samepage\setseps\small
\begin{verbatim}
   {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}
\end{verbatim}
}

\FAILURE
The function may fail if the argument theorem is not of the specified form. It
will also fail if the unwound lines cannot be pruned. It is possible for the
function to attempt unwinding indefinitely (to loop).

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#EXPAND_ALL_BUT_RIGHT_RULE [`l1`]
# [ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]
# (ASSUME
#   "!(in:num->bool) out.
#     DEV(in,out) =
#      ?l1 l2.
#       INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = in t \/ out (t-1))");;
.. |- !in out.
       DEV(in,out) =
       (?l1. (!t. out t = ~~l1 t) /\ (!t. l1 t = in t \/ ~~l1(t - 1)))
\end{verbatim}
}
\SEEALSO
EXPAND_AUTO_RIGHT_RULE, EXPAND_ALL_BUT_CONV, EXPAND_AUTO_CONV,
UNFOLD_RIGHT_RULE, UNWIND_ALL_BUT_RIGHT_RULE, PRUNE_SOME_RIGHT_RULE.

\ENDDOC
\DOC{EXPAND\_AUTO\_CONV}

\TYPE {\small\verb%EXPAND_AUTO_CONV : (thm list -> conv)%}\egroup

\SYNOPSIS
Unfolds, then unwinds as much as possible, then prunes the unwound lines.

\DESCRIBE
{\small\verb%EXPAND_AUTO_CONV thl%} when applied to the following term:
{\par\samepage\setseps\small
\begin{verbatim}
   "?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn"
\end{verbatim}
}
\noindent returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   B |- (?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn) =
        (?li(k+1) ... lim. t1' /\ ... /\ tn')
\end{verbatim}
}
\noindent where each {\small\verb%ti'%} is the result of rewriting {\small\verb%ti%} with the theorems in
{\small\verb%thl%}. The set of assumptions {\small\verb%B%} is the union of the instantiated assumptions
of the theorems used for rewriting. If none of the rewrites are applicable to a
conjunct, it is unchanged. After rewriting, the function decides which of the
resulting terms to use for unwinding, by performing a loop analysis on the
graph representing the dependencies of the lines.

Suppose the function decides to unwind {\small\verb%li1,...,lik%} using the terms
{\small\verb%ui1',...,uik'%} respectively. Then, after unwinding, the lines {\small\verb%li1,...,lik%}
are pruned (provided they have been eliminated from the right-hand sides of the
conjuncts that are equations, and from the whole of any other conjuncts)
resulting in the elimination of {\small\verb%ui1',...,uik'%}.

The {\small\verb%li%}'s are related by the equation:
{\par\samepage\setseps\small
\begin{verbatim}
   {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}
\end{verbatim}
}
\noindent The loop analysis allows the term to be unwound as much as possible
without the risk of looping. The user is left to deal with the recursive
equations.

\FAILURE
The function may fail if the argument term is not of the specified form. It
also fails if there is more than one equation for any line variable.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#EXPAND_AUTO_CONV
# [ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]
# "?l1 l2.
#   INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = l2 (t-1) \/ out (t-1))";;
. |- (?l1 l2.
       INV(l1,l2) /\ INV(l2,out) /\ (!t. l1 t = l2(t - 1) \/ out(t - 1))) =
     (?l1.
       (!t. out t = ~~l1 t) /\ (!t. l1 t = ~l1(t - 1) \/ ~~l1(t - 1)))
\end{verbatim}
}
\SEEALSO
EXPAND_ALL_BUT_CONV, EXPAND_AUTO_RIGHT_RULE, EXPAND_ALL_BUT_RIGHT_RULE,
UNFOLD_CONV, UNWIND_AUTO_CONV, PRUNE_SOME_CONV.

\ENDDOC
\DOC{EXPAND\_AUTO\_RIGHT\_RULE}

\TYPE {\small\verb%EXPAND_AUTO_RIGHT_RULE : (thm list -> thm -> thm)%}\egroup

\SYNOPSIS
Unfolds, then unwinds as much as possible, then prunes the unwound lines.

\DESCRIBE
{\small\verb%EXPAND_AUTO_RIGHT_RULE thl%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
    A |- !z1 ... zr.
          t = ?l1 ... lm. t1 /\ ... /\ ui1 /\ ... /\ uik /\ ... /\ tn
   -------------------------------------------------------------------
      B u A |- !z1 ... zr. t = ?li(k+1) ... lim. t1' /\ ... /\ tn'
\end{verbatim}
}
\noindent where each {\small\verb%ti'%} is the result of rewriting {\small\verb%ti%} with the theorems in
{\small\verb%thl%}. The set of assumptions {\small\verb%B%} is the union of the instantiated assumptions
of the theorems used for rewriting. If none of the rewrites are applicable to a
conjunct, it is unchanged. After rewriting, the function decides which of the
resulting terms to use for unwinding, by performing a loop analysis on the
graph representing the dependencies of the lines.

Suppose the function decides to unwind {\small\verb%li1,...,lik%} using the terms
{\small\verb%ui1',...,uik'%} respectively. Then, after unwinding, the lines {\small\verb%li1,...,lik%}
are pruned (provided they have been eliminated from the right-hand sides of
the conjuncts that are equations, and from the whole of any other conjuncts)
resulting in the elimination of {\small\verb%ui1',...,uik'%}.

The {\small\verb%li%}'s are related by the equation:
{\par\samepage\setseps\small
\begin{verbatim}
   {li1,...,lik} u {li(k+1),...,lim} = {l1,...,lm}
\end{verbatim}
}
\noindent The loop analysis allows the term to be unwound as much as possible
without the risk of looping. The user is left to deal with the recursive
equations.

\FAILURE
The function may fail if the argument theorem is not of the specified form. It
also fails if there is more than one equation for any line variable.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#EXPAND_AUTO_RIGHT_RULE
# [ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]
# (ASSUME
#   "!(in:num->bool) out.
#     DEV(in,out) =
#      ?l1 l2.
#       INV (l1,l2) /\ INV (l2,out) /\ (!(t:num). l1 t = in t \/ out (t-1))");;
.. |- !in out. DEV(in,out) = (!t. out t = ~~(in t \/ out(t - 1)))
\end{verbatim}
}
\SEEALSO
EXPAND_ALL_BUT_RIGHT_RULE, EXPAND_AUTO_CONV, EXPAND_ALL_BUT_CONV,
UNFOLD_RIGHT_RULE, UNWIND_AUTO_RIGHT_RULE, PRUNE_SOME_RIGHT_RULE.

\ENDDOC
\DOC{FLATTEN\_CONJ\_CONV}

\TYPE {\small\verb%FLATTEN_CONJ_CONV : conv%}\egroup

\SYNOPSIS
Flattens a `tree' of conjunctions.

\DESCRIBE
{\small\verb%FLATTEN_CONJ_CONV "t1 /\ ... /\ tn"%} returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- t1 /\ ... /\ tn = u1 /\ ... /\ un
\end{verbatim}
}
\noindent where the right-hand side of the equation is a flattened version of
the left-hand side.

\FAILURE
Never fails.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#FLATTEN_CONJ_CONV "(a /\ (b /\ c)) /\ ((d /\ e) /\ f)";;
|- (a /\ b /\ c) /\ (d /\ e) /\ f = a /\ b /\ c /\ d /\ e /\ f
\end{verbatim}
}
\SEEALSO
CONJUNCTS_CONV.

\ENDDOC
\DOC{FORALL\_CONJ\_CONV}

\TYPE {\small\verb%FORALL_CONJ_CONV : conv%}\egroup

\SYNOPSIS
Moves universal quantifiers down through a tree of conjunctions.

\DESCRIBE
{\small\verb%FORALL_CONJ_CONV "!x1 ... xm. t1 /\ ... /\ tn"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
   |- !x1 ... xm. t1 /\ ... /\ tn =
      (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)
\end{verbatim}
}
\noindent where the original term can be an arbitrary tree of conjunctions. The
structure of the tree is retained in both sides of the equation.

\FAILURE
Never fails.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#FORALL_CONJ_CONV "!(x:*) (y:*) (z:*). (a /\ b) /\ c";;
|- (!x y z. (a /\ b) /\ c) = ((!x y z. a) /\ (!x y z. b)) /\ (!x y z. c)

#FORALL_CONJ_CONV "T";;
|- T = T

#FORALL_CONJ_CONV "!(x:*) (y:*) (z:*). T";;
|- (!x y z. T) = (!x y z. T)
\end{verbatim}
}
\SEEALSO
CONJ_FORALL_CONV, FORALL_CONJ_ONCE_CONV, CONJ_FORALL_ONCE_CONV,
FORALL_CONJ_RIGHT_RULE, CONJ_FORALL_RIGHT_RULE.

\ENDDOC
\DOC{FORALL\_CONJ\_ONCE\_CONV}

\TYPE {\small\verb%FORALL_CONJ_ONCE_CONV : conv%}\egroup

\SYNOPSIS
Moves a single universal quantifier down through a tree of conjunctions.

\DESCRIBE
{\small\verb%FORALL_CONJ_ONCE_CONV "!x. t1 /\ ... /\ tn"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
   |- !x. t1 /\ ... /\ tn = (!x. t1) /\ ... /\ (!x. tn)
\end{verbatim}
}
\noindent where the original term can be an arbitrary tree of conjunctions. The
structure of the tree is retained in both sides of the equation.

\FAILURE
Fails if the argument term is not of the required form. The body of the term
need not be a conjunction.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#FORALL_CONJ_ONCE_CONV "!x. ((x \/ a) /\ (x \/ b)) /\ (x \/ c)";;
|- (!x. ((x \/ a) /\ (x \/ b)) /\ (x \/ c)) =
   ((!x. x \/ a) /\ (!x. x \/ b)) /\ (!x. x \/ c)

#FORALL_CONJ_ONCE_CONV "!x. x \/ a";;
|- (!x. x \/ a) = (!x. x \/ a)

#FORALL_CONJ_ONCE_CONV "!x. ((x \/ a) /\ (y \/ b)) /\ (x \/ c)";;
|- (!x. ((x \/ a) /\ (y \/ b)) /\ (x \/ c)) =
   ((!x. x \/ a) /\ (!x. y \/ b)) /\ (!x. x \/ c)
\end{verbatim}
}
\SEEALSO
CONJ_FORALL_ONCE_CONV, FORALL_CONJ_CONV, CONJ_FORALL_CONV,
FORALL_CONJ_RIGHT_RULE, CONJ_FORALL_RIGHT_RULE.

\ENDDOC
\DOC{FORALL\_CONJ\_RIGHT\_RULE}

\TYPE {\small\verb%FORALL_CONJ_RIGHT_RULE : (thm -> thm)%}\egroup

\SYNOPSIS
Moves universal quantifiers down through a tree of conjunctions.

\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
      A |- !z1 ... zr. t = ?y1 ... yp. !x1 ... xm. t1 /\ ... /\ tn
   -------------------------------------------------------------------
    A |- !z1 ... zr.
          t = ?y1 ... yp. (!x1 ... xm. t1) /\ ... /\ (!x1 ... xm. tn)
\end{verbatim}
}

\FAILURE
Fails if the argument theorem is not of the required form, though either or
both of {\small\verb%r%} and {\small\verb%p%} may be zero.

\SEEALSO
CONJ_FORALL_RIGHT_RULE, FORALL_CONJ_CONV, CONJ_FORALL_CONV,
FORALL_CONJ_ONCE_CONV, CONJ_FORALL_ONCE_CONV.

\ENDDOC
\DOC{line\_name}

\TYPE {\small\verb%line_name : (term -> string)%}\egroup

\SYNOPSIS
Computes the line name of an equation.

\DESCRIBE
{\small\verb%line_name "!y1 ... ym. f x1 ... xn = t"%} returns the string {\small\verb%`f`%}.

\FAILURE
Fails if the argument term is not of the specified form.

\SEEALSO
line_var.

\ENDDOC
\DOC{line\_var}

\TYPE {\small\verb%line_var : (term -> term)%}\egroup

\SYNOPSIS
Computes the line variable of an equation.

\DESCRIBE
{\small\verb%line_var "!y1 ... ym. f x1 ... xn = t"%} returns the variable {\small\verb%"f"%}.

\FAILURE
Fails if the argument term is not of the specified form.

\SEEALSO
line_name.

\ENDDOC
\DOC{PRUNE\_CONV}

\TYPE {\small\verb%PRUNE_CONV : conv%}\egroup

\SYNOPSIS
Prunes all hidden variables.

\DESCRIBE
{\small\verb%PRUNE_CONV "?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp"%}
returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp) =
      (t1 /\ ... /\ tp)
\end{verbatim}
}
\noindent where each {\small\verb%eqni%} has the form {\small\verb%"!y1 ... ym. li x1 ... xn = b"%} and
{\small\verb%li%} does not appear free in any of the other conjuncts or in {\small\verb%b%}. The
conversion works if one or more of the {\small\verb%eqni%}'s are not present, that is if
{\small\verb%li%} is not free in any of the conjuncts, but does not work if {\small\verb%li%} appears
free in more than one of the conjuncts. {\small\verb%p%} may be zero, that is, all the
conjuncts may be {\small\verb%eqni%}'s. In this case the result will be simply {\small\verb%T%} (true).
Also, for each {\small\verb%eqni%}, {\small\verb%m%} and {\small\verb%n%} may be zero.

\FAILURE
Fails if the argument term is not of the specified form or if any of the
{\small\verb%li%}'s are free in more than one of the conjuncts or if the equation for any
{\small\verb%li%} is recursive.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#PRUNE_CONV
# "?l2 l1.
#   (!(x:num). l1 x = F) /\ (!x. l2 x = ~(out x)) /\ (!(x:num). out x = T)";;
|- (?l2 l1. (!x. l1 x = F) /\ (!x. l2 x = ~out x) /\ (!x. out x = T)) =
   (!x. out x = T)
\end{verbatim}
}
\SEEALSO
PRUNE_ONCE_CONV, PRUNE_ONE_CONV, PRUNE_SOME_CONV, PRUNE_SOME_RIGHT_RULE,
PRUNE_RIGHT_RULE.

\ENDDOC
\DOC{PRUNE\_ONCE\_CONV}

\TYPE {\small\verb%PRUNE_ONCE_CONV : conv%}\egroup

\SYNOPSIS
Prunes one hidden variable.

\DESCRIBE
{\small\verb%PRUNE_ONCE_CONV "?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp"%} returns a
theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?l. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) =
      (t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp)
\end{verbatim}
}
\noindent where {\small\verb%eq%} has the form {\small\verb%"!y1 ... ym. l x1 ... xn = b"%} and {\small\verb%l%} does
not appear free in the {\small\verb%ti%}'s or in {\small\verb%b%}. The conversion works if {\small\verb%eq%} is not
present, that is if {\small\verb%l%} is not free in any of the conjuncts, but does not work
if {\small\verb%l%} appears free in more than one of the conjuncts. Each of {\small\verb%m%}, {\small\verb%n%} and {\small\verb%p%}
may be zero.

\FAILURE
Fails if the argument term is not of the specified form or if {\small\verb%l%} is free in
more than one of the conjuncts or if the equation for {\small\verb%l%} is recursive.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#PRUNE_ONCE_CONV "?l2. (!(x:num). l1 x = F) /\ (!x. l2 x = ~(l1 x))";; 
|- (?l2. (!x. l1 x = F) /\ (!x. l2 x = ~l1 x)) = (!x. l1 x = F)
\end{verbatim}
}
\SEEALSO
PRUNE_ONE_CONV, PRUNE_SOME_CONV, PRUNE_CONV, PRUNE_SOME_RIGHT_RULE,
PRUNE_RIGHT_RULE.

\ENDDOC
\DOC{PRUNE\_ONE\_CONV}

\TYPE {\small\verb%PRUNE_ONE_CONV : (string -> conv)%}\egroup

\SYNOPSIS
Prunes a specified hidden variable.

\DESCRIBE
{\small\verb%PRUNE_ONE_CONV `lj`%} when applied to the term:
{\par\samepage\setseps\small
\begin{verbatim}
   "?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp"
\end{verbatim}
}
\noindent returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?l1 ... lj ... lr. t1 /\ ... /\ ti /\ eq /\ t(i+1) /\ ... /\ tp) =
      (?l1 ... l(j-1) l(j+1) ... lr. t1 /\ ... /\ ti /\ t(i+1) /\ ... /\ tp)
\end{verbatim}
}
\noindent where {\small\verb%eq%} has the form {\small\verb%"!y1 ... ym. lj x1 ... xn = b"%} and {\small\verb%lj%}
does not appear free in the {\small\verb%ti%}'s or in {\small\verb%b%}. The conversion works if {\small\verb%eq%} is
not present, that is if {\small\verb%lj%} is not free in any of the conjuncts, but does not
work if {\small\verb%lj%} appears free in more than one of the conjuncts. Each of {\small\verb%m%}, {\small\verb%n%}
and {\small\verb%p%} may be zero.

If there is more than one line with the specified name (but with different
types), the one that appears outermost in the existential quantifications is
pruned.

\FAILURE
Fails if the argument term is not of the specified form or if {\small\verb%lj%} is free in
more than one of the conjuncts or if the equation for {\small\verb%lj%} is recursive. The
function also fails if the specified line is not one of the existentially
quantified lines.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#PRUNE_ONE_CONV `l2` "?l2 l1. (!(x:num). l1 x = F) /\ (!x. l2 x = ~(l1 x))";;
|- (?l2 l1. (!x. l1 x = F) /\ (!x. l2 x = ~l1 x)) = (?l1. !x. l1 x = F)

#PRUNE_ONE_CONV `l1` "?l2 l1. (!(x:num). l1 x = F) /\ (!x. l2 x = ~(l1 x))";; 
evaluation failed     PRUNE_ONE_CONV
\end{verbatim}
}
\SEEALSO
PRUNE_ONCE_CONV, PRUNE_SOME_CONV, PRUNE_CONV, PRUNE_SOME_RIGHT_RULE,
PRUNE_RIGHT_RULE.

\ENDDOC
\DOC{PRUNE\_RIGHT\_RULE}

\TYPE {\small\verb%PRUNE_RIGHT_RULE : (thm -> thm)%}\egroup

\SYNOPSIS
Prunes all hidden variables.

\DESCRIBE
{\small\verb%PRUNE_RIGHT_RULE%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
    A |- !z1 ... zr.
          t = ?l1 ... lr. t1 /\ ... /\ eqn1 /\ ... /\ eqnr /\ ... /\ tp
   ---------------------------------------------------------------------
                   A |- !z1 ... zr. t = t1 /\ ... /\ tp
\end{verbatim}
}
\noindent where each {\small\verb%eqni%} has the form {\small\verb%"!y1 ... ym. li x1 ... xn = b"%} and
{\small\verb%li%} does not appear free in any of the other conjuncts or in {\small\verb%b%}. The rule
works if one or more of the {\small\verb%eqni%}'s are not present, that is if {\small\verb%li%} is not
free in any of the conjuncts, but does not work if {\small\verb%li%} appears free in more
than one of the conjuncts. {\small\verb%p%} may be zero, that is, all the conjuncts may be
{\small\verb%eqni%}'s. In this case the result will be simply {\small\verb%T%} (true). Also, for each
{\small\verb%eqni%}, {\small\verb%m%} and {\small\verb%n%} may be zero.

\FAILURE
Fails if the argument theorem is not of the specified form or if any of the
{\small\verb%li%}'s are free in more than one of the conjuncts or if the equation for any
{\small\verb%li%} is recursive.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#PRUNE_RIGHT_RULE
# (ASSUME
#   "!(in:num->bool) (out:num->bool).
#     DEV (in,out) =
#      ?(l1:num->bool) l2.
#       (!x. l1 x = F) /\ (!x. l2 x = ~(in x)) /\ (!x. out x = ~(in x))");;
. |- !in out. DEV(in,out) = (!x. out x = ~in x)
\end{verbatim}
}
\SEEALSO
PRUNE_SOME_RIGHT_RULE, PRUNE_ONCE_CONV, PRUNE_ONE_CONV, PRUNE_SOME_CONV,
PRUNE_CONV.

\ENDDOC
\DOC{PRUNE\_SOME\_CONV}

\TYPE {\small\verb%PRUNE_SOME_CONV : (string list -> conv)%}\egroup

\SYNOPSIS
Prunes several hidden variables.

\DESCRIBE
{\small\verb%PRUNE_SOME_CONV [`li1`;...;`lik`]%} when applied to the term:
{\par\samepage\setseps\small
\begin{verbatim}
   "?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp"
\end{verbatim}
}
\noindent returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp) =
      (?li(k+1) ... lir. t1 /\ ... /\ tp)
\end{verbatim}
}
\noindent where for {\small\verb%1 <= j <= k%}, each {\small\verb%eqnij%} has the form:
{\par\samepage\setseps\small
\begin{verbatim}
   "!y1 ... ym. lij x1 ... xn = b"
\end{verbatim}
}
\noindent and {\small\verb%lij%} does not appear free in any of the other conjuncts or in
{\small\verb%b%}. The {\small\verb%li%}'s are related by the equation:
{\par\samepage\setseps\small
\begin{verbatim}
   {li1,...,lik} u {li(k+1),...,lir} = {l1,...,lr}
\end{verbatim}
}
\noindent The conversion works if one or more of the {\small\verb%eqnij%}'s are not present,
that is if {\small\verb%lij%} is not free in any of the conjuncts, but does not work if
{\small\verb%lij%} appears free in more than one of the conjuncts. {\small\verb%p%} may be zero, that is,
all the conjuncts may be {\small\verb%eqnij%}'s. In this case the body of the result will be
{\small\verb%T%} (true). Also, for each {\small\verb%eqnij%}, {\small\verb%m%} and {\small\verb%n%} may be zero.

If there is more than one line with a specified name (but with different
types), the one that appears outermost in the existential quantifications is
pruned. If such a line name is mentioned twice in the list, the two outermost
occurrences of lines with that name will be pruned, and so on.

\FAILURE
Fails if the argument term is not of the specified form or if any of the
{\small\verb%lij%}'s are free in more than one of the conjuncts or if the equation for any
{\small\verb%lij%} is recursive. The function also fails if any of the specified lines are
not one of the existentially quantified lines.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#PRUNE_SOME_CONV [`l1`;`l2`]
# "?l3 l2 l1.
#   (!(x:num). l1 x = F) /\ (!x. l2 x = ~(l3 x)) /\ (!(x:num). l3 x = T)";;
|- (?l3 l2 l1. (!x. l1 x = F) /\ (!x. l2 x = ~l3 x) /\ (!x. l3 x = T)) =
   (?l3. !x. l3 x = T)
\end{verbatim}
}
\SEEALSO
PRUNE_ONCE_CONV, PRUNE_ONE_CONV, PRUNE_CONV, PRUNE_SOME_RIGHT_RULE,
PRUNE_RIGHT_RULE.

\ENDDOC
\DOC{PRUNE\_SOME\_RIGHT\_RULE}

\TYPE {\small\verb%PRUNE_SOME_RIGHT_RULE : (string list -> thm -> thm)%}\egroup

\SYNOPSIS
Prunes several hidden variables.

\DESCRIBE
{\small\verb%PRUNE_SOME_RIGHT_RULE [`li1`;...;`lik`]%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
    A |- !z1 ... zr.
          t = ?l1 ... lr. t1 /\ ... /\ eqni1 /\ ... /\ eqnik /\ ... /\ tp
   -----------------------------------------------------------------------
           A |- !z1 ... zr. t = ?li(k+1) ... lir. t1 /\ ... /\ tp
\end{verbatim}
}
\noindent where for {\small\verb%1 <= j <= k%}, each {\small\verb%eqnij%} has the form:
{\par\samepage\setseps\small
\begin{verbatim}
   "!y1 ... ym. lij x1 ... xn = b"
\end{verbatim}
}
\noindent and {\small\verb%lij%} does not appear free in any of the other conjuncts or in
{\small\verb%b%}. The {\small\verb%li%}'s are related by the equation:
{\par\samepage\setseps\small
\begin{verbatim}
   {li1,...,lik} u {li(k+1),...,lir} = {l1,...,lr}
\end{verbatim}
}
\noindent The rule works if one or more of the {\small\verb%eqnij%}'s are not present, that
is if {\small\verb%lij%} is not free in any of the conjuncts, but does not work if {\small\verb%lij%}
appears free in more than one of the conjuncts. {\small\verb%p%} may be zero, that is, all
the conjuncts may be {\small\verb%eqnij%}'s. In this case the conjunction will be
transformed to {\small\verb%T%} (true). Also, for each {\small\verb%eqnij%}, {\small\verb%m%} and {\small\verb%n%} may be zero.

If there is more than one line with a specified name (but with different
types), the one that appears outermost in the existential quantifications is
pruned. If such a line name is mentioned twice in the list, the two outermost
occurrences of lines with that name will be pruned, and so on.

\FAILURE
Fails if the argument theorem is not of the specified form or if any of the
{\small\verb%lij%}'s are free in more than one of the conjuncts or if the equation for any
{\small\verb%lij%} is recursive. The function also fails if any of the specified lines are
not one of the existentially quantified lines.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#PRUNE_SOME_RIGHT_RULE [`l1`;`l2`]
# (ASSUME
#   "!(in:num->bool) (out:num->bool).
#     DEV (in,out) =
#      ?(l1:num->bool) l2.
#       (!x. l1 x = F) /\ (!x. l2 x = ~(in x)) /\ (!x. out x = ~(in x))");;
. |- !in out. DEV(in,out) = (!x. out x = ~in x)
\end{verbatim}
}
\SEEALSO
PRUNE_RIGHT_RULE, PRUNE_ONCE_CONV, PRUNE_ONE_CONV, PRUNE_SOME_CONV, PRUNE_CONV.

\ENDDOC
\DOC{UNFOLD\_CONV}

\TYPE {\small\verb%UNFOLD_CONV : (thm list -> conv)%}\egroup

\SYNOPSIS
Expands sub-components of a hardware description using their definitions.

\DESCRIBE
{\small\verb%UNFOLD_CONV thl "t1 /\ ... /\ tn"%} returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   B |- t1 /\ ... /\ tn = t1' /\ ... /\ tn'
\end{verbatim}
}
\noindent where each {\small\verb%ti'%} is the result of rewriting {\small\verb%ti%} with the theorems in
{\small\verb%thl%}. The set of assumptions {\small\verb%B%} is the union of the instantiated assumptions
of the theorems used for rewriting. If none of the rewrites are applicable to
a {\small\verb%ti%}, it is unchanged.

\FAILURE
Never fails.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNFOLD_CONV [ASSUME "!in out. INV (in,out) = !(t:num). out t = ~(in t)"]
# "INV (l1,l2) /\ INV (l2,l3) /\ (!(t:num). l1 t = l2 (t-1) \/ l3 (t-1))";;
. |- INV(l1,l2) /\ INV(l2,l3) /\ (!t. l1 t = l2(t - 1) \/ l3(t - 1)) =
     (!t. l2 t = ~l1 t) /\
     (!t. l3 t = ~l2 t) /\
     (!t. l1 t = l2(t - 1) \/ l3(t - 1))
\end{verbatim}
}
\SEEALSO
UNFOLD_RIGHT_RULE.

\ENDDOC
\DOC{UNFOLD\_RIGHT\_RULE}

\TYPE {\small\verb%UNFOLD_RIGHT_RULE : (thm list -> thm -> thm)%}\egroup

\SYNOPSIS
Expands sub-components of a hardware description using their definitions.

\DESCRIBE
{\small\verb%UNFOLD_RIGHT_RULE thl%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
       A |- !z1 ... zr. t = ?y1 ... yp. t1 /\ ... /\ tn
   --------------------------------------------------------
    B u A |- !z1 ... zr. t = ?y1 ... yp. t1' /\ ... /\ tn'
\end{verbatim}
}
\noindent where each {\small\verb%ti'%} is the result of rewriting {\small\verb%ti%} with the theorems in
{\small\verb%thl%}. The set of assumptions {\small\verb%B%} is the union of the instantiated assumptions
of the theorems used for rewriting. If none of the rewrites are applicable to
a {\small\verb%ti%}, it is unchanged.

\FAILURE
Fails if the second argument is not of the required form, though either or
both of {\small\verb%r%} and {\small\verb%p%} may be zero.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNFOLD_RIGHT_RULE [ASSUME "!in out. INV(in,out) = !(t:num). out t = ~(in t)"]
# (ASSUME "!(in:num->bool) out. BUF(in,out) = ?l. INV(in,l) /\ INV(l,out)");;
.. |- !in out.
       BUF(in,out) = (?l. (!t. l t = ~in t) /\ (!t. out t = ~l t))
\end{verbatim}
}
\SEEALSO
UNFOLD_CONV.

\ENDDOC
\DOC{UNWIND\_ALL\_BUT\_CONV}

\TYPE {\small\verb%UNWIND_ALL_BUT_CONV : (string list -> conv)%}\egroup

\SYNOPSIS
Unwinds all lines of a device (except those in the argument list) as much as
possible.

\DESCRIBE
{\small\verb%UNWIND_ALL_BUT_CONV l%} when applied to the following term:
{\par\samepage\setseps\small
\begin{verbatim}
   "t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn"
\end{verbatim}
}
\noindent returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- t1  /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn =
      t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn'
\end{verbatim}
}
\noindent where {\small\verb%ti'%} (for {\small\verb%1 <= i <= n%}) is {\small\verb%ti%} rewritten with the equations
{\small\verb%eqni%} ({\small\verb%1 <= i <= m%}). These equations are those conjuncts with line name not
in {\small\verb%l%} (and which are equations).

\FAILURE
Never fails but may loop indefinitely.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNWIND_ALL_BUT_CONV [`l2`]
# "(!(x:num). l1 x = (l2 x) - 1) /\
#  (!x. f x = (l2 (x+1)) + (l1 (x+2))) /\
#  (!x. l2 x = 7)";;
|- (!x. l1 x = (l2 x) - 1) /\
   (!x. f x = (l2(x + 1)) + (l1(x + 2))) /\
   (!x. l2 x = 7) =
   (!x. l1 x = (l2 x) - 1) /\
   (!x. f x = (l2(x + 1)) + ((l2(x + 2)) - 1)) /\
   (!x. l2 x = 7)
\end{verbatim}
}
\SEEALSO
UNWIND_ONCE_CONV, UNWIND_CONV, UNWIND_AUTO_CONV, UNWIND_ALL_BUT_RIGHT_RULE,
UNWIND_AUTO_RIGHT_RULE.

\ENDDOC
\DOC{UNWIND\_ALL\_BUT\_RIGHT\_RULE}

\TYPE {\small\verb%UNWIND_ALL_BUT_RIGHT_RULE : (string list -> thm -> thm)%}\egroup

\SYNOPSIS
Unwinds all lines of a device (except those in the argument list) as much as
possible.

\DESCRIBE
{\small\verb%UNWIND_ALL_BUT_RIGHT_RULE l%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
    A |- !z1 ... zr.
          t =
          (?l1 ... lp. t1  /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn)
   ---------------------------------------------------------------------
    A |- !z1 ... zr.
          t =
          (?l1 ... lp. t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn')
\end{verbatim}
}
\noindent where {\small\verb%ti'%} (for {\small\verb%1 <= i <= n%}) is {\small\verb%ti%} rewritten with the equations
{\small\verb%eqni%} ({\small\verb%1 <= i <= m%}). These equations are those conjuncts with line name not
in {\small\verb%l%} (and which are equations).

\FAILURE
Fails if the argument theorem is not of the required form, though either or
both of {\small\verb%p%} and {\small\verb%r%} may be zero. May loop indefinitely.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNWIND_ALL_BUT_RIGHT_RULE [`l2`]
# (ASSUME
#   "!f. IMP(f) =
#     ?l2 l1.
#      (!(x:num). l1 x = (l2 x) - 1) /\
#      (!x. f x = (l2 (x+1)) + (l1 (x+2))) /\
#      (!x. l2 x = 7)");;
. |- !f.
      IMP f =
      (?l2 l1.
        (!x. l1 x = (l2 x) - 1) /\
        (!x. f x = (l2(x + 1)) + ((l2(x + 2)) - 1)) /\
        (!x. l2 x = 7))
\end{verbatim}
}
\SEEALSO
UNWIND_AUTO_RIGHT_RULE, UNWIND_ALL_BUT_CONV, UNWIND_AUTO_CONV,
UNWIND_ONCE_CONV, UNWIND_CONV.

\ENDDOC
\DOC{UNWIND\_AUTO\_CONV}

\TYPE {\small\verb%UNWIND_AUTO_CONV : conv%}\egroup

\SYNOPSIS
Automatic unwinding of equations defining wire values in a standard device
specification.

\DESCRIBE
{\small\verb%UNWIND_AUTO_CONV "?l1 ... lm. t1 /\ ... /\ tn"%} returns a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- (?l1 ... lm. t1 /\ ... /\ tn) = (?l1 ... lm. t1' /\ ... /\ tn')
\end{verbatim}
}
\noindent where {\small\verb%tj'%} is {\small\verb%tj%} rewritten with equations selected from the
{\small\verb%ti%}'s.

The function decides which equations to use for rewriting by performing a loop
analysis on the graph representing the dependencies of the lines. By this means
the term can be unwound as much as possible without the risk of looping. The
user is left to deal with the recursive equations.

\FAILURE
Fails if there is more than one equation for any line variable.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNWIND_AUTO_CONV
# "(!(x:num). l1 x = (l2 x) - 1) /\
#  (!x. f x = (l2 (x+1)) + (l1 (x+2))) /\
#  (!x. l2 x = 7)";;
|- (!x. l1 x = (l2 x) - 1) /\
   (!x. f x = (l2(x + 1)) + (l1(x + 2))) /\
   (!x. l2 x = 7) =
   (!x. l1 x = 7 - 1) /\ (!x. f x = 7 + (7 - 1)) /\ (!x. l2 x = 7)
\end{verbatim}
}
\SEEALSO
UNWIND_ONCE_CONV, UNWIND_CONV, UNWIND_ALL_BUT_CONV, UNWIND_ALL_BUT_RIGHT_RULE,
UNWIND_AUTO_RIGHT_RULE.

\ENDDOC
\DOC{UNWIND\_AUTO\_RIGHT\_RULE}

\TYPE {\small\verb%UNWIND_AUTO_RIGHT_RULE : (thm -> thm)%}\egroup

\SYNOPSIS
Automatic unwinding of equations defining wire values in a standard device
specification.

\DESCRIBE
{\small\verb%UNWIND_AUTO_RIGHT_RULE%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
    A |- !z1 ... zr. t = ?l1 ... lm. t1  /\ ... /\ tn
   ----------------------------------------------------
    A |- !z1 ... zr. t = ?l1 ... lm. t1' /\ ... /\ tn'
\end{verbatim}
}
\noindent where {\small\verb%tj'%} is {\small\verb%tj%} rewritten with equations selected from the
{\small\verb%ti%}'s.

The function decides which equations to use for rewriting by performing a loop
analysis on the graph representing the dependencies of the lines. By this means
the term can be unwound as much as possible without the risk of looping. The
user is left to deal with the recursive equations.

\FAILURE
Fails if there is more than one equation for any line variable, or if the
argument theorem is not of the required form, though either or both of {\small\verb%m%} and
{\small\verb%r%} may be zero.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNWIND_AUTO_RIGHT_RULE
# (ASSUME
#   "!f. IMP(f) =
#     ?l2 l1.
#      (!(x:num). l1 x = (l2 x) - 1) /\
#      (!x. f x = (l2 (x+1)) + (l1 (x+2))) /\
#      (!x. l2 x = 7)");;
. |- !f.
      IMP f =
      (?l2 l1.
        (!x. l1 x = 7 - 1) /\ (!x. f x = 7 + (7 - 1)) /\ (!x. l2 x = 7))
\end{verbatim}
}
\SEEALSO
UNWIND_ALL_BUT_RIGHT_RULE, UNWIND_AUTO_CONV, UNWIND_ALL_BUT_CONV,
UNWIND_ONCE_CONV, UNWIND_CONV.

\ENDDOC
\DOC{UNWIND\_CONV}

\TYPE {\small\verb%UNWIND_CONV : ((term -> bool) -> conv)%}\egroup

\SYNOPSIS
Unwinds device behaviour using selected line equations until no change.

\DESCRIBE
{\small\verb%UNWIND_CONV p "t1 /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn"%} returns a
theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
   |- t1  /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn =
      t1' /\ ... /\ eqn1 /\ ... /\ eqnm /\ ... /\ tn'
\end{verbatim}
}
\noindent where {\small\verb%ti'%} (for {\small\verb%1 <= i <= n%}) is {\small\verb%ti%} rewritten with the equations
{\small\verb%eqni%} ({\small\verb%1 <= i <= m%}). These equations are the conjuncts for which the
predicate {\small\verb%p%} is true. The {\small\verb%ti%} terms are the conjuncts for which {\small\verb%p%} is false.
The rewriting is repeated until no changes take place.

\FAILURE
Never fails but may loop indefinitely.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNWIND_CONV (\tm. mem (line_name tm) [`l1`;`l2`])
# "(!(x:num). l1 x = (l2 x) - 1) /\
#  (!x. f x = (l2 (x+1)) + (l1 (x+2))) /\
#  (!x. l2 x = 7)";;
|- (!x. l1 x = (l2 x) - 1) /\
   (!x. f x = (l2(x + 1)) + (l1(x + 2))) /\
   (!x. l2 x = 7) =
   (!x. l1 x = (l2 x) - 1) /\ (!x. f x = 7 + (7 - 1)) /\ (!x. l2 x = 7)
\end{verbatim}
}
\SEEALSO
UNWIND_ONCE_CONV, UNWIND_ALL_BUT_CONV, UNWIND_AUTO_CONV,
UNWIND_ALL_BUT_RIGHT_RULE, UNWIND_AUTO_RIGHT_RULE.

\ENDDOC
\DOC{UNWIND\_ONCE\_CONV}

\TYPE {\small\verb%UNWIND_ONCE_CONV : ((term -> bool) -> conv)%}\egroup

\SYNOPSIS
Basic conversion for parallel unwinding of equations defining wire values in a
standard device specification.

\DESCRIBE
{\small\verb%UNWIND_ONCE_CONV p tm%} unwinds the conjunction {\small\verb%tm%} using the equations
selected by the predicate {\small\verb%p%}. {\small\verb%tm%} should be a conjunction, equivalent under
associative-commutative reordering to:
{\par\samepage\setseps\small
\begin{verbatim}
   t1 /\ t2 /\ ... /\ tn
\end{verbatim}
}
\noindent {\small\verb%p%} is used to partition the terms {\small\verb%ti%} for {\small\verb%1 <= i <= n%} into two
disjoint sets:
{\par\samepage\setseps\small
\begin{verbatim}
   REW = {ti | p ti}
   OBJ = {ti | ~p ti}
\end{verbatim}
}
\noindent The terms {\small\verb%ti%} for which {\small\verb%p%} is true are then used as a set of
rewrite rules (thus they should be equations) to do a single top-down parallel
rewrite of the remaining terms. The rewritten terms take the place of the
original terms in the input conjunction. For example, if {\small\verb%tm%} is:
{\par\samepage\setseps\small
\begin{verbatim}
   t1 /\ t2 /\ t3 /\ t4
\end{verbatim}
}
\noindent and {\small\verb%REW = {t1,t3}%} then the result is:
{\par\samepage\setseps\small
\begin{verbatim}
   |- t1 /\ t2 /\ t3 /\ t4 = t1 /\ t2' /\ t3 /\ t4'
\end{verbatim}
}
\noindent where {\small\verb%ti'%} is {\small\verb%ti%} rewritten with the equations {\small\verb%REW%}.

\FAILURE
Never fails.

\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#UNWIND_ONCE_CONV (\tm. mem (line_name tm) [`l1`;`l2`])
# "(!(x:num). l1 x = (l2 x) - 1) /\
#  (!x. f x = (l2 (x+1)) + (l1 (x+2))) /\
#  (!x. l2 x = 7)";;
|- (!x. l1 x = (l2 x) - 1) /\
   (!x. f x = (l2(x + 1)) + (l1(x + 2))) /\
   (!x. l2 x = 7) =
   (!x. l1 x = (l2 x) - 1) /\
   (!x. f x = 7 + ((l2(x + 2)) - 1)) /\
   (!x. l2 x = 7)
\end{verbatim}
}
\SEEALSO
UNWIND_CONV, UNWIND_ALL_BUT_CONV, UNWIND_AUTO_CONV, UNWIND_ALL_BUT_RIGHT_RULE,
UNWIND_AUTO_RIGHT_RULE.

\ENDDOC