File: mk_tree.ml

package info (click to toggle)
hol88 2.02.19940316-35
  • links: PTS
  • area: main
  • in suites: buster
  • size: 65,988 kB
  • ctags: 21,623
  • sloc: ml: 199,939; ansic: 9,666; sh: 7,118; makefile: 6,095; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (1051 lines) | stat: -rw-r--r-- 40,343 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
%=============================================================================%
%                               HOL 88 Version 2.0                            %
%                                                                             %
%     FILE NAME:        mk_tree.ml                                            %
%                                                                             %
%     DESCRIPTION:      Creates the theory "tree.th" containing the           %
%                       definition of a type of (bare) trees.                 %
%                                                                             %
%     AUTHOR:           T. F. Melham (87.07.27)                               %
%                                                                             %
%     PARENTS:          list.th                                               %
%     WRITES FILES:     tree.th                                               %
%                                                                             %
%                       University of Cambridge                               %
%                       Hardware Verification Group                           %
%                       Computer Laboratory                                   %
%                       New Museums Site                                      %
%                       Pembroke Street                                       %
%                       Cambridge  CB2 3QG                                    %
%                       England                                               %
%                                                                             %
%     COPYRIGHT:        T. F. Melham 1988                                     %
%                                                                             %
%     REVISION HISTORY: Mike Gordon and John Carroll (26 August 1989)         %
%=============================================================================%


% Create the new theory "tree.th".					%
new_theory `tree`;;

% The theory of lists is a parent theory.				%
new_parent `list`;;

% fetch theorems from list.th						%
let list_Axiom		 = theorem `list` `list_Axiom` 
and list_INDUCT		 = theorem `list` `list_INDUCT` 
and CONS_11      	 = theorem `list` `CONS_11` 
and NULL		 = theorem `list` `NULL`
and NOT_CONS_NIL	 = theorem `list` `NOT_CONS_NIL` 
and NOT_NIL_CONS	 = theorem `list` `NOT_NIL_CONS` 
and ALL_EL_CONJ 	 = theorem `list` `ALL_EL_CONJ`;;

% theorem changed to definition for HOL88				%
let ALL_EL  		 = definition `list` `ALL_EL`
and MAP 		 = definition `list` `MAP`
and HD 			 = definition `list` `HD` 
and TL			 = definition `list` `TL`;;


% Need arithmetic definitions.						%
let LESS_OR_EQ		= definition `arithmetic` `LESS_OR_EQ`;;

% theorem changed to definition for HOL88				%
let EXP   	        = definition `arithmetic` `EXP`;;

% Need various arithmetic theorems.					%
let LESS_ADD_1 		= theorem `arithmetic` `LESS_ADD_1` and
    ADD_SYM		= theorem `arithmetic` `ADD_SYM` and
    EXP_ADD		= theorem `arithmetic` `EXP_ADD` and
    MULT_ASSOC		= theorem `arithmetic` `MULT_ASSOC` and
    MULT_EXP_MONO	= theorem `arithmetic` `MULT_EXP_MONO` and
    MULT_CLAUSES	= theorem `arithmetic` `MULT_CLAUSES` and
    ADD_CLAUSES		= theorem `arithmetic` `ADD_CLAUSES` and
    NOT_ODD_EQ_EVEN	= theorem `arithmetic` `NOT_ODD_EQ_EVEN` and
    LESS_CASES		= theorem `arithmetic` `LESS_CASES` and
    WOP			= theorem `arithmetic` `WOP` and
    num_CASES		= theorem `arithmetic` `num_CASES` and
    NOT_LESS		= theorem `arithmetic` `NOT_LESS` and
    LESS_IMP_LESS_OR_EQ	= theorem `arithmetic` `LESS_IMP_LESS_OR_EQ` and
    LESS_EQ_TRANS	= theorem `arithmetic` `LESS_EQ_TRANS` and
    LESS_EQ_ADD		= theorem `arithmetic` `LESS_EQ_ADD` and
    LESS_TRANS		= theorem `arithmetic` `LESS_TRANS` and
    LESS_EQ_ANTISYM	= theorem `arithmetic` `LESS_EQ_ANTISYM` and
    LESS_EQ 		= theorem `arithmetic` `LESS_EQ`;;


% Need theorems from prim_rec.th					%
let INV_SUC_EQ		= theorem `prim_rec` `INV_SUC_EQ` and
    PRIM_REC_THM	= theorem `prim_rec` `PRIM_REC_THM` and
    LESS_0		= theorem `prim_rec` `LESS_0` and
    LESS_SUC_REFL 	= theorem `prim_rec` `LESS_SUC_REFL` and
    LESS_THM		= theorem `prim_rec` `LESS_THM` and
    LESS_SUC		= theorem `prim_rec` `LESS_SUC` and
    NOT_LESS_0 		= theorem `prim_rec` `NOT_LESS_0` and
    LESS_REFL 		= theorem `prim_rec` `LESS_REFL`;;

% Need theorems from num.th						%
let NOT_SUC		= theorem `num` `NOT_SUC` and 
    INDUCTION 		= theorem `num` `INDUCTION`;;

% ---------------------------------------------------------------------	%
% Load code needed							%
% ---------------------------------------------------------------------	%

% Load the axiom scheme for numerals (NB: uncompiled!).			%
loadt (concat ml_dir_pathname `numconv.ml`);;

% We need to load in the induction tactic.  It's in ml/ind.ml		%
% but it is part of hol rather than basic hol, so it's loaded   	%
% in uncompiled.							%
%									%
% TFM 88.04.02								%
loadt (concat ml_dir_pathname `ind.ml`);;

% Note that prim_rec_ml.o must be recompiled if basic-hol has been.	%
% So we just load prim_rec.ml uncompiled.				%
%									%
% TFM 88.04.02								%

loadt (concat ml_dir_pathname `prim_rec.ml`);;

% Create an induction tactic for :num					%
let INDUCT_TAC = INDUCT_THEN (theorem `num` `INDUCTION`) ASSUME_TAC;;

% Create a tactic for list induction.					%
let LIST_INDUCT_TAC = INDUCT_THEN list_INDUCT ASSUME_TAC;;

% --------------------------------------------------------------------- %
% Define a one-to-one coding function from (num)list -> num:		%
%									%
% The coding function used will be iteration of (2n + 1) (2 ^ p)...	%
% --------------------------------------------------------------------- %

% First a few arithmetic lemmas:					%
let arith_lemma = 
    TAC_PROOF(
    ([], "!p q n m.
           p < q ==>
 	   ~(((SUC(n + n)) * (2 EXP p)) = ((SUC(m + m)) * (2 EXP q)))"),
    REPEAT GEN_TAC THEN
    DISCH_THEN (STRIP_THM_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1) THEN
    CONV_TAC (REDEPTH_CONV num_CONV) THEN
    MAP_EVERY ONCE_REWRITE_TAC [[ADD_SYM];[EXP_ADD]] THEN
    REWRITE_TAC [MULT_ASSOC;MULT_EXP_MONO] THEN
    REWRITE_TAC [EXP_ADD;MULT_ASSOC;EXP] THEN 
    REWRITE_TAC [MULT_CLAUSES;ADD_CLAUSES] THEN
    MATCH_ACCEPT_TAC NOT_ODD_EQ_EVEN);;

% The next two theorems state that the function (2n + 1)(2 ^ p) is 1-1	%
let fun_11_1 = 
    TAC_PROOF(
     ([], "!p q n m. 
           ((SUC(n + n)) * (2 EXP p) = (SUC(m + m)) * (2 EXP q)) ==>
     	   (p = q)"),
     REPEAT STRIP_TAC THEN FIRST_ASSUM (ASSUME_TAC o SYM) THEN
     IMP_RES_TAC (REWRITE_RULE [] 
		  ((CONV_RULE CONTRAPOS_CONV) (SPEC_ALL arith_lemma))) THEN
     STRIP_ASSUME_TAC 
       (REWRITE_RULE [LESS_OR_EQ] (SPECL ["q:num";"p:num"] LESS_CASES)) THEN
     RES_TAC);;

let fun_11_2 = 
    TAC_PROOF(
     ([], "!p q n m. ((SUC(n + n)) * (2 EXP p) = (SUC(m + m)) * (2 EXP q)) ==>
     		     (n = m)"),
     REPEAT STRIP_TAC THEN
     IMP_RES_THEN SUBST_ALL_TAC fun_11_1 THEN
     POP_ASSUM (MP_TAC o (CONV_RULE (DEPTH_CONV num_CONV))) THEN
     REWRITE_TAC [MULT_EXP_MONO;INV_SUC_EQ] THEN
     MAP_EVERY SPEC_TAC ["m:num","m:num";"n:num","n:num"] THEN
     REPEAT (INDUCT_TAC THEN REWRITE_TAC [ADD_CLAUSES]) THENL
     [REWRITE_TAC [NOT_EQ_SYM(SPEC_ALL NOT_SUC)];
      REWRITE_TAC [NOT_SUC];
      ASM_REWRITE_TAC [INV_SUC_EQ]]);;

% --------------------------------------------------------------------- %
% Representation of trees  ---- :num.					%
% ---------------------------------------------------------------------	%

% The representation type for trees is:  ":num".			%
let ty = ":num";;

% node_REP: makes a tree representation from a tree representation list.%
% The idea is that the term "node [t1;t2;t3;t4...]" represents the tree %
% with branches represented by t1, t2, ... etc.				%
% node_REP is defined using the coding function above...		%
let node_REP = 
    new_recursive_definition false list_Axiom `node_REP`
      "(node_REP NIL = 0) /\
       (node_REP (CONS h t) = ((SUC(h+h)) * (2 EXP (node_REP t))))";;

% Prove that node_REP is one-to-one:					%
let node_REP_one_one = 
    TAC_PROOF(([], "!l1 l2. (node_REP l1 = node_REP l2) = (l1 = l2)"),
    	      LIST_INDUCT_TAC THENL
	      [LIST_INDUCT_TAC THEN
	       REWRITE_TAC [node_REP;NOT_NIL_CONS] THEN
	       CONV_TAC (DEPTH_CONV num_CONV) THEN
	       REWRITE_TAC [REWRITE_RULE [MULT_CLAUSES] 
			 (SPECL ["p:num";"q:num";"0"] MULT_EXP_MONO)] THEN
	       REWRITE_TAC [NOT_EQ_SYM (SPEC_ALL NOT_SUC)];
	       GEN_TAC THEN LIST_INDUCT_TAC THENL
	       [REWRITE_TAC [node_REP;NOT_CONS_NIL] THEN
 	        CONV_TAC (DEPTH_CONV num_CONV) THEN
	        REWRITE_TAC [REWRITE_RULE [MULT_CLAUSES] 
	 	  (SPECL ["p:num";"q:num";"n:num";"0"] MULT_EXP_MONO)] THEN
 	        REWRITE_TAC [NOT_SUC];
		REWRITE_TAC [node_REP;CONS_11] THEN
		MAP_EVERY POP_ASSUM [K ALL_TAC;
				     SUBST1_TAC o SYM o SPEC_ALL] THEN
		REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
		[IMP_RES_TAC fun_11_2;
		 IMP_RES_TAC fun_11_1;
		 ASM_REWRITE_TAC []]]]);;

% ---------------------------------------------------------------------	%
% DEFINITION of the subset of ":num" that will represent trees...	%
% .... and related theorems.						%
% ---------------------------------------------------------------------	%

% Definition of valid tree representations.  Is_tree_REP is true of 	%
% anything constructed by "node_REP".					%
let Is_tree_REP = 
    new_definition
    (`Is_tree_REP`,
     "Is_tree_REP = 
	\t:^ty. !P. (!tl. ALL_EL P tl ==> P(node_REP tl)) ==> P t");;

% A little lemma about ALL_EL and Is_tree_REP.				%
let ALL_EL_Is_tree_REP = 
    TAC_PROOF(
    ([], "!trl.
	  ALL_EL Is_tree_REP trl = 
	  !P. ALL_EL (\t.(!tl. ALL_EL P tl ==> P(node_REP tl)) ==> P t) trl"),
    REWRITE_TAC [Is_tree_REP] THEN
    LIST_INDUCT_TAC THEN
    ASM_REWRITE_TAC [ALL_EL] THEN
    CONV_TAC (REDEPTH_CONV BETA_CONV) THEN
    REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
    RES_TAC THEN ASM_REWRITE_TAC[]);;

% Show that if ALL_EL Is_tree_REP trl then Is_tree_REP (node_REP v trl).	%
let Is_tree_lemma1 = 
    TAC_PROOF
    (([], "!trl. ALL_EL Is_tree_REP trl ==>  Is_tree_REP (node_REP trl)"),
     REWRITE_TAC [Is_tree_REP;ALL_EL_Is_tree_REP] THEN
     CONV_TAC (REDEPTH_CONV BETA_CONV) THEN
     GEN_TAC THEN 
     DISCH_THEN (\thm. REPEAT STRIP_TAC THEN MP_TAC (SPEC_ALL thm)) THEN
     ASM_REWRITE_TAC [ETA_AX]);;

% A little propositional tautology:					%
let taut1 = 
    TAC_PROOF(([], "!a b. ~(a ==> b) = (a /\ ~b)"),
    	      REWRITE_TAC [IMP_DISJ_THM;DE_MORGAN_THM]);;

% Show that if t is a tree then it must be of the form "node_REP tl" for%
% some v:* and tl (where each object in tl staifies Is_tree_REP).	%
let Is_tree_lemma2 = 
    TAC_PROOF(
    ([], "!t. Is_tree_REP t ==> 
          ?trl. ALL_EL Is_tree_REP trl /\ (t = node_REP trl)"),
     GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
     SUBST1_TAC (RIGHT_BETA (AP_THM Is_tree_REP "t:^ty")) THEN
     CONV_TAC (REDEPTH_CONV NOT_EXISTS_CONV) THEN
     CONV_TAC (DEPTH_CONV NOT_FORALL_CONV) THEN
     DISCH_TAC THEN
     EXISTS_TAC "\x:^ty. ?tl. ALL_EL Is_tree_REP tl /\ (x = node_REP tl)" THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     REWRITE_TAC [taut1] THEN
     REPEAT STRIP_TAC THENL
     [EXISTS_TAC "tl:^ty list" THEN
      POP_ASSUM MP_TAC THEN POP_ASSUM (K ALL_TAC) THEN
      SPEC_TAC ("tl:^ty list","tl:^ty list") THEN
      LIST_INDUCT_TAC THEN
      ASM_REWRITE_TAC [ALL_EL] THEN
      CONV_TAC (REDEPTH_CONV BETA_CONV) THEN
      REPEAT STRIP_TAC THENL
      [IMP_RES_TAC Is_tree_lemma1 THEN
       RES_TAC THEN ASM_REWRITE_TAC[];
       RES_TAC THEN FIRST_ASSUM ACCEPT_TAC];
      RES_TAC]);;

% Show that Is_tree_REP(node_REP tl) ==> ALL_EL Is_tree_REP tl		%
let Is_tree_lemma3 = 
    let spec = SPEC "node_REP tl" Is_tree_lemma2 in
    let rew1 = REWRITE_RULE [node_REP_one_one] spec in
    let [t1;t2] = CONJUNCTS (SELECT_RULE (UNDISCH rew1)) in
    GEN_ALL(DISCH_ALL (SUBS [SYM t2] t1));;

% Main result... of the past few lemmas.				%
% Show that !v tl. Is_tree_REP (node_REP v tl) = ALL_EL Is_tree_REP tl	%
let Is_tree_lemma4 = 
    TAC_PROOF(([], "!tl. Is_tree_REP (node_REP tl) = ALL_EL Is_tree_REP tl"), 
              REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL
	      [IMP_RES_TAC Is_tree_lemma3;
	       IMP_RES_TAC Is_tree_lemma1 THEN
	       POP_ASSUM MATCH_ACCEPT_TAC]);;

% Show that a tree representation exists.				%
let Exists_tree_REP = 
    TAC_PROOF(([], "?t:^ty. Is_tree_REP t"),
              EXISTS_TAC "node_REP NIL" THEN
	      REWRITE_TAC [Is_tree_REP] THEN
	      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
	      GEN_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
	      REWRITE_TAC [ALL_EL]);;

% ---------------------------------------------------------------------	%
% Introduction of the new type of trees.				%
% ---------------------------------------------------------------------	%

% Define the new type.							%

let tree_TY_DEF = 
   new_type_definition 
     (`tree`, 
      rator(snd(dest_exists(concl Exists_tree_REP))),
      Exists_tree_REP);;

% --------------------------------------------------------------------- %
% Define a representation function, REP_tree, from the type tree to 	%
% the representing type, and the inverse abstraction 			%
% function ABS_tree, and prove some trivial lemmas about them.		%
% --------------------------------------------------------------------- %

let tree_ISO_DEF = 
    define_new_type_bijections
        `tree_ISO_DEF` `ABS_tree` `REP_tree` tree_TY_DEF;;

let R_11   = prove_rep_fn_one_one tree_ISO_DEF  and
    R_ONTO = prove_rep_fn_onto tree_ISO_DEF     and
    A_11   = prove_abs_fn_one_one tree_ISO_DEF  and
    A_ONTO = prove_abs_fn_onto tree_ISO_DEF     and
    A_R = CONJUNCT1 tree_ISO_DEF                and
    R_A = CONJUNCT2 tree_ISO_DEF;;

% Definition of node -- the constructor for trees.			%
let node = 
    new_definition
     (`node`,
      "node tl = (ABS_tree (node_REP (MAP REP_tree tl)))");;

% Definition of dest_node: inverse of node.				%
let dest_node = 
    new_definition
      (`dest_node`, "!t. dest_node t = @p. t = node p");;

% ---------------------------------------------------------------------	%
% Several lemmas about ABS and REP follow...				%
% ---------------------------------------------------------------------	%

let IS_REP_lemma = 
    TAC_PROOF(([], "!tl.ALL_EL Is_tree_REP (MAP REP_tree (tl:(tree)list))"),
	      LIST_INDUCT_TAC THEN
	      ASM_REWRITE_TAC [MAP;ALL_EL;R_ONTO] THEN
	      STRIP_TAC THEN EXISTS_TAC "h:tree" THEN REFL_TAC);;

% Prove that REP(ABS x) = x.						%
let REP_ABS_lemma = 
    TAC_PROOF(
    ([], "!tl. REP_tree(node tl) = (node_REP (MAP REP_tree tl))"),
    REWRITE_TAC [node;SYM(SPEC_ALL R_A)] THEN
    REPEAT GEN_TAC THEN
    REWRITE_TAC [Is_tree_lemma4] THEN
    SPEC_TAC ("tl:(tree)list","tl:(tree)list") THEN
    LIST_INDUCT_TAC THEN
    ASM_REWRITE_TAC [MAP;ALL_EL;R_ONTO] THEN
    GEN_TAC THEN EXISTS_TAC "h:tree" THEN REFL_TAC);;

let ABS_REP = 
    TAC_PROOF(
    ([], "!tl. Is_tree_REP (node_REP (MAP REP_tree tl))"),
    REWRITE_TAC [Is_tree_lemma4] THEN
    MATCH_ACCEPT_TAC IS_REP_lemma);;
    
let ABS_11_lemma = 
    let a11 = SPECL ["node_REP (MAP REP_tree tl1)";
		     "node_REP (MAP REP_tree tl2)"] A_11 in
    REWRITE_RULE [ABS_REP] a11;;

% Prove that node is one-to-one... save this theorem.			%
let node_11 = 
    prove_thm
    (`node_11`,
     "!tl1 tl2. (node tl1 = node tl2) = (tl1 = tl2)",
    REWRITE_TAC [node;ABS_11_lemma;node_REP_one_one] THEN
    REPEAT (STRIP_TAC ORELSE EQ_TAC) THEN
    ASM_REWRITE_TAC [] THEN
    POP_ASSUM MP_TAC THEN 
    MAP_EVERY SPEC_TAC [("tl1:(tree)list","tl1:(tree)list");
                        ("tl2:(tree)list","tl2:(tree)list")] THEN
    LIST_INDUCT_TAC THENL
    [LIST_INDUCT_TAC THEN REWRITE_TAC [MAP;NOT_CONS_NIL];
     GEN_TAC THEN LIST_INDUCT_TAC THENL
     [REWRITE_TAC [MAP;NOT_EQ_SYM(SPEC_ALL NOT_CONS_NIL)];
      ASM_REWRITE_TAC [MAP;CONS_11;R_11] THEN
      REPEAT STRIP_TAC THEN RES_TAC THEN
      FIRST_ASSUM ACCEPT_TAC]]);;

% Some more lemmas about ABS and REP....				%

let A_R_list = 
    TAC_PROOF(([], "!tl:(tree)list. tl = MAP ABS_tree (MAP REP_tree tl)"),
    LIST_INDUCT_TAC THEN
    REWRITE_TAC [MAP;A_R;CONS_11] THEN
    POP_ASSUM ACCEPT_TAC);;

let R_A_R = 
    TAC_PROOF(([], "REP_tree(ABS_tree(REP_tree (t:tree))) = (REP_tree t)"),
              REWRITE_TAC [SYM(SPEC_ALL R_A)] THEN
	      REWRITE_TAC [R_ONTO] THEN
	      EXISTS_TAC "t:tree" THEN REFL_TAC);;

let Is_R = 
    TAC_PROOF(([], "Is_tree_REP (REP_tree (t:tree))"),
    	      REWRITE_TAC [R_ONTO] THEN
	      EXISTS_TAC "t:tree" THEN REFL_TAC);;

let R_A_R_list = 
    TAC_PROOF(
    ([], "!tl:(tree)list.
          MAP REP_tree (MAP ABS_tree (MAP REP_tree tl)) = (MAP REP_tree tl)"),
    LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [MAP;R_A_R]);;

let A_ONTO_list = 
    TAC_PROOF(([], "!tl:(tree)list. ?trl.
	            ((tl = MAP ABS_tree trl) /\ (ALL_EL Is_tree_REP trl))"),
    LIST_INDUCT_TAC THENL
    [EXISTS_TAC "NIL:(^ty)list" THEN REWRITE_TAC [MAP;ALL_EL];
     POP_ASSUM STRIP_ASSUME_TAC THEN
     STRIP_TAC THEN
     STRIP_ASSUME_TAC (SPEC "h:tree" A_ONTO) THEN
     EXISTS_TAC "CONS (r:^ty) trl" THEN
     ASM_REWRITE_TAC [CONS_11;MAP;ALL_EL]]);;

let R_ONTO_list = 
    TAC_PROOF(
    ([], "!trl:(^ty)list.
	  ALL_EL Is_tree_REP trl ==> ?tl. trl = MAP REP_tree tl"),
    LIST_INDUCT_TAC THENL
    [DISCH_TAC THEN EXISTS_TAC "NIL:(tree)list" THEN REWRITE_TAC [MAP];
     REWRITE_TAC [ALL_EL;R_ONTO] THEN
     REPEAT STRIP_TAC THEN
     RES_THEN STRIP_ASSUME_TAC THEN
     EXISTS_TAC "CONS (a:tree) tl" THEN
     ASM_REWRITE_TAC [MAP]]);;
    
let R_A_list = 
    TAC_PROOF(
    ([], "!trl. ALL_EL Is_tree_REP (trl:(^ty)list) ==>
                (MAP REP_tree (MAP ABS_tree trl) = trl)"),
    LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [ALL_EL;MAP;R_A] THEN
    REPEAT STRIP_TAC THEN
    RES_TAC THEN ASM_REWRITE_TAC[]);;


% Two lemmas showing how induction on trees relates to induction on	%
% tree representations....						%
let induct_lemma1 = 
    TAC_PROOF(
    ([], "(!tl. ALL_EL P tl ==> (P(node tl))) =
    	  (!trl. ALL_EL Is_tree_REP trl ==>
	  	 ALL_EL (\x.P(ABS_tree x)) trl ==>
		 ((\x.P(ABS_tree x)) (node_REP trl)))"),
    let ALL_EL_MAP = TAC_PROOF(([],
    	 "!l P f.ALL_EL P (MAP (f:*->**) (l:(*)list)) = ALL_EL (\x.P(f x)) l"),
        LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [MAP;ALL_EL] THEN
    	CONV_TAC (DEPTH_CONV BETA_CONV) THEN REPEAT GEN_TAC THEN REFL_TAC) in
    EQ_TAC THENL
    [DISCH_TAC THEN GEN_TAC THEN
     DISCH_THEN ((STRIP_THM_THEN SUBST1_TAC) o (MATCH_MP R_ONTO_list)) THEN
     CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
     REWRITE_TAC [SYM(SPEC_ALL ALL_EL_MAP);SYM(SPEC_ALL A_R_list)] THEN
     ASM_REWRITE_TAC [SYM(SPEC_ALL node)];
     DISCH_TAC THEN GEN_TAC THEN
     STRIP_ASSUME_TAC (SPEC_ALL A_ONTO_list) THEN
     FIRST_ASSUM SUBST_ALL_TAC THEN
     REWRITE_TAC [node;ALL_EL_MAP] THEN
     IMP_RES_TAC R_A_list THEN 
     REPEAT STRIP_TAC THEN RES_TAC THEN
     POP_ASSUM (MP_TAC o CONV_RULE BETA_CONV) THEN
     ASM_REWRITE_TAC []]);;

let induct_lemma2 = 
    TAC_PROOF(
     ([], "(!t:tree. P t:bool) = 
	   (!rep. Is_tree_REP rep ==> 
	         (\r. Is_tree_REP r /\ ((\x.P(ABS_tree x)) r)) rep)"),
      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
      EQ_TAC THENL
      [CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
       REWRITE_TAC [R_ONTO] THEN
       REPEAT STRIP_TAC THENL
       [EXISTS_TAC "a:tree" THEN FIRST_ASSUM ACCEPT_TAC;
        ASM_REWRITE_TAC [A_R]];
       CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
       REPEAT STRIP_TAC THEN
       STRIP_ASSUME_TAC (SPEC "t:tree" A_ONTO) THEN
       RES_TAC THEN ASM_REWRITE_TAC[]]);;

% Induction on trees.							%
let tree_Induct = 
    prove_thm
    (`tree_Induct`,
     "!P. (!tl. ALL_EL P tl ==> P (node tl)) ==> !t. P t",
    REWRITE_TAC [induct_lemma1;induct_lemma2] THEN
    GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
    let is_thm = RIGHT_BETA (AP_THM Is_tree_REP "trep:^ty") in
    DISCH_THEN (MATCH_MP_TAC o (REWRITE_RULE [is_thm])) THEN
    REWRITE_TAC [ALL_EL_CONJ] THEN
    REPEAT STRIP_TAC THEN CONV_TAC BETA_CONV THEN
    RES_TAC THEN ASM_REWRITE_TAC [Is_tree_lemma4]);;

% ---------------------------------------------------------------------	%
%   tree_INDUCT: thm  -> thm						%
%									%
%     A |- !tl. ALL_EL \t.P[t] tl ==> P[node tl]				%
% =======================================================		%
%               A |- !t. P[t]						%
%									%
% ---------------------------------------------------------------------	%

let tree_INDUCT th =
 (let (tl,body) = dest_forall(concl th) in
  let (asm,con) = (dest_imp body) in
  let ALL_EL,[P;tll] = strip_comb asm in
  let b = genvar bool_ty in
  let concth = SYM(RIGHT_BETA(REFL "^P(node ^tl)")) and
      IND    = SPEC P tree_Induct and
      th'    = (SPEC tl th) in
  let th1 = SUBST [concth,b]
                  "^(concl th') = (ALL_EL ^P ^tl ==> ^b)"
                  (REFL (concl th')) in
  let th2 = GEN tl (EQ_MP th1 th') in
  CONV_RULE (ONCE_DEPTH_CONV BETA_CONV) (MP IND th2)?failwith `tree_INDUCT`);;

% ---------------------------------------------------------------------	%
%									%
% tree_INDUCT_TAC							%
%									%
%             [A] !t.P[t]						%
%  ================================					%
%    [A,ALL_EL \t.P[t] trl] |- P[node trl]				%
%									%
% ---------------------------------------------------------------------	%

let tree_INDUCT_TAC (A,term) =
 (let t,body = dest_forall term in
  let t' = variant ((frees term) @ (freesl A)) t in
  let body' = subst [t',t] body in
  let trl = variant ((frees body') @ (freesl A)) "trl:(tree)list" in
  let asm = "ALL_EL (\^t'.^body') trl" in
 ([ (asm.A, subst["node ^trl",t']body')],
  \[thm]. tree_INDUCT (GEN trl (DISCH asm thm)))
 ) ? failwith `tree_INDUCT_TAC`;;

% ---------------------------------------------------------------------	%
% Definition of a height function on trees...				%
%									%
% ---------------------------------------------------------------------	%

% First, define a relation "bht n tr" which is true if tr has height 	%
% bounded by n.  I.e. bht n tr = height of tr <= n.			%
let bht = 
    new_definition
    (`bht`,
     "bht = PRIM_REC 
            (\tr. tr = node NIL) 
	    (\res n. \tr. ?trl. (tr = node trl) /\ ALL_EL res trl)");;

% show that bht has the following recursive definition:			%
let bht_thm = 
    TAC_PROOF(
    ([], "(bht 0 tr = (tr = node NIL)) /\
          (bht (SUC n) tr = ?trl. (tr = node trl) /\ ALL_EL (bht n) trl)"),
    PURE_REWRITE_TAC [bht;PRIM_REC_THM] THEN
    CONV_TAC (DEPTH_CONV BETA_CONV) THEN
    STRIP_TAC THEN REFL_TAC);;

% Show that if height t <= n then height t <= (SUC n)			%
let bht_lemma1 = 
    TAC_PROOF(([], "!n. !tr:tree. bht n tr ==> bht (SUC n) tr"),
	      INDUCT_TAC THENL
	      [REWRITE_TAC [bht_thm] THEN
	       REPEAT STRIP_TAC THEN
	       EXISTS_TAC "NIL:(tree)list" THEN
	       ASM_REWRITE_TAC [ALL_EL];
	       ONCE_REWRITE_TAC [bht_thm] THEN
	       REPEAT STRIP_TAC THEN
	       EXISTS_TAC "trl:(tree)list" THEN
	       ASM_REWRITE_TAC [] THEN
	       MAP_EVERY POP_ASSUM [MP_TAC;K ALL_TAC] THEN
	       SPEC_TAC ("trl:(tree)list","trl:(tree)list") THEN
	       LIST_INDUCT_TAC THEN
	       REWRITE_TAC [ALL_EL] THEN
	       REPEAT STRIP_TAC THEN RES_TAC]);;

% show that if height tr <= n then height tr <= n+m			%
let bht_lemma2 = 
    (GEN_ALL o DISCH_ALL o GEN "m:num" o UNDISCH o SPEC_ALL)
    (TAC_PROOF(([], "!m n. !tr:tree. bht n tr ==>  bht (n+m) tr"),
    	       INDUCT_TAC THEN
	       REWRITE_TAC [ADD_CLAUSES] THEN 
	       REPEAT STRIP_TAC THEN
	       RES_TAC THEN IMP_RES_TAC bht_lemma1));;

% show that height bounds for all the trees in a list implies a single	%
% bound for all the trees in the list.					%
let bht_lemma3 = 
    TAC_PROOF(
     ([],"!trl.ALL_EL (\tr:tree.?n.bht n tr) trl ==> ?n. ALL_EL (bht n) trl"),
     LIST_INDUCT_TAC THEN
     REWRITE_TAC [ALL_EL] THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THEN RES_TAC THEN
     POP_ASSUM STRIP_ASSUME_TAC THEN
     EXISTS_TAC "n+n'" THEN
     STRIP_TAC THENL
     [IMP_RES_TAC bht_lemma2 THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
      POP_ASSUM MP_TAC THEN REPEAT (POP_ASSUM (K ALL_TAC)) THEN
      ONCE_REWRITE_TAC [ADD_SYM] THEN
      SPEC_TAC ("trl:(tree)list","trl:(tree)list") THEN
      LIST_INDUCT_TAC THEN
      REWRITE_TAC [ALL_EL] THEN
      REPEAT STRIP_TAC THEN RES_TAC THEN
      IMP_RES_TAC bht_lemma2 THEN
      POP_ASSUM MATCH_ACCEPT_TAC]);;

% show that there always exists an n such that height tr <= n.		%
let exists_bht = 
    TAC_PROOF(([], "!tr:tree. ?n. bht n tr"),
    	      tree_INDUCT_TAC THEN
	      POP_ASSUM (STRIP_ASSUME_TAC o MATCH_MP bht_lemma3) THEN
	      EXISTS_TAC "SUC n" THEN
	      REWRITE_TAC [bht_thm] THEN
	      EXISTS_TAC "trl:(tree)list" THEN
	      ASM_REWRITE_TAC[]);;

% Show that there is always a minimum bound on the height of a tree.	%
let min_bht = 
    CONV_RULE (DEPTH_CONV BETA_CONV)
    (TAC_PROOF(
     ([], "!t:tree.?n.(\n. bht n t)n /\ (!m. m < n ==> ~((\n. bht n t)m))"),
     GEN_TAC THEN
     MATCH_MP_TAC WOP THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     MATCH_ACCEPT_TAC exists_bht));;
	      
% We can now define our hieght function as follows:			%
let HT = 
    new_definition
     (`HT`,
      "HT (t:tree) = @n.  bht n t /\ (!m. m < n ==> ~bht m t)");;

% A number of theorems about HT follow:					%
% The main thing is to show that:					%
% 1) !tl. ALL_EL (\t. HT t < HT(node tl)) tl				% 
% 2) !trl. (HT (node trl) = 0) = (trl = NIL)				%

let HT_thm1 = 
    TAC_PROOF(([], "!tr:tree. bht (HT tr) tr"),
    	      REWRITE_TAC [HT] THEN
	      GEN_TAC THEN
	      STRIP_ASSUME_TAC (SELECT_RULE (SPEC "tr:tree" min_bht)));;

let HT_thm2 = 
    TAC_PROOF(([], "!tr:tree.!m. m < (HT tr) ==> ~bht m tr"),
    	      REWRITE_TAC [HT] THEN
	      GEN_TAC THEN
	      STRIP_ASSUME_TAC (SELECT_RULE (SPEC "tr:tree" min_bht)));;

% A Key result about HT.						%
let HT_leaf =
    TAC_PROOF(([], "!trl. (HT (node trl) = 0) = (trl = NIL)"),
    	      REPEAT STRIP_TAC THEN EQ_TAC THENL
	      [DISCH_TAC THEN MP_TAC (SPEC "node trl" HT_thm1) THEN
	       POP_ASSUM SUBST1_TAC THEN
	       REWRITE_TAC [bht_thm;node_11] THEN
	       STRIP_TAC;
	       DISCH_THEN SUBST1_TAC THEN
	       STRIP_ASSUME_TAC (SPEC "HT(node NIL)" num_CASES) THEN
	       MP_TAC (SPEC "node NIL" HT_thm2) THEN
	       POP_ASSUM SUBST1_TAC THEN
	       REWRITE_TAC [NOT_SUC] THEN
	       CONV_TAC NOT_FORALL_CONV THEN
	       REWRITE_TAC [taut1] THEN
	       EXISTS_TAC "0" THEN
	       REWRITE_TAC [bht_thm;LESS_0]]);;

let HT_thm3 = 
    TAC_PROOF(([], "!m. !tr:tree. (~bht m tr) ==> m < (HT tr)"),
    	      CONV_TAC (ONCE_DEPTH_CONV CONTRAPOS_CONV) THEN
	      REWRITE_TAC [NOT_LESS;LESS_OR_EQ] THEN
	      REPEAT STRIP_TAC THENL
	      [POP_ASSUM 
		((STRIP_THM_THEN SUBST1_TAC) o MATCH_MP LESS_ADD_1) THEN
	       STRIP_ASSUME_TAC (SPEC "tr:tree" HT_thm1) THEN
	       IMP_RES_TAC bht_lemma2 THEN POP_ASSUM MATCH_ACCEPT_TAC;
	       POP_ASSUM (SUBST1_TAC o SYM) THEN
	       MATCH_ACCEPT_TAC HT_thm1]);;

let HT_thm4 = 
    TAC_PROOF(([], "!tr:tree. !m. m < (HT tr) = ~bht m tr"),
              REPEAT STRIP_TAC THEN EQ_TAC THENL
	      (map MATCH_ACCEPT_TAC [HT_thm2;HT_thm3]));;

% TFM: fixed error "tl" for "trl" after quantifier. 88.11.17	%
let HT_thm5 = 
    TAC_PROOF(
     ([], "!n tl h. ~bht n (node tl) ==> ~bht n (node (CONS h tl))"),
    CONV_TAC (ONCE_DEPTH_CONV CONTRAPOS_CONV) THEN
    GEN_TAC THEN STRIP_ASSUME_TAC (SPEC "n:num" num_CASES) THEN
    ASM_REWRITE_TAC [bht_thm] THEN
    POP_ASSUM (K ALL_TAC) THENL
    [REWRITE_TAC [node_11] THEN
     REPEAT STRIP_TAC THEN
     POP_ASSUM (MP_TAC o (AP_TERM "NULL:(tree)list->bool")) THEN
     REWRITE_TAC [NULL];
     REWRITE_TAC [node_11] THEN
     REPEAT STRIP_TAC THEN
     MAP_EVERY POP_ASSUM [MP_TAC;SUBST1_TAC o SYM] THEN
     REWRITE_TAC [ALL_EL] THEN STRIP_TAC THEN
     EXISTS_TAC "tl:tree list" THEN
     ASM_REWRITE_TAC []]);;

let HT_thm6 = 
    TAC_PROOF(
     ([], "!trl tl. !t:tree.
	    ALL_EL (\t. ~bht (HT t) (node tl)) trl ==>
            ALL_EL (\t. ~bht (HT t) (node (CONS h tl))) trl"),
     LIST_INDUCT_TAC THEN
     REWRITE_TAC [ALL_EL] THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     REPEAT STRIP_TAC THENL
     [IMP_RES_TAC HT_thm5;RES_TAC]);;
    
% A Key result about HT.						%
let HT_node = 
    TAC_PROOF(([], "!tl. ALL_EL (\t. HT t < HT(node tl)) tl"),
              REWRITE_TAC [HT_thm4] THEN
              LIST_INDUCT_TAC THEN
	      REWRITE_TAC [ALL_EL] THEN
	      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
	      REPEAT GEN_TAC THEN STRIP_TAC THENL
	      [STRIP_ASSUME_TAC (SPEC "HT (h:tree)" num_CASES) THENL
	       [ASM_REWRITE_TAC [bht_thm;node_11;CONS_11] THEN
		DISCH_THEN (MP_TAC o AP_TERM "NULL:(tree)list->bool") THEN
	        REWRITE_TAC [NULL];
	        MP_TAC (SPEC "h:tree" HT_thm2) THEN
	        ASM_REWRITE_TAC [bht_thm;ALL_EL;node_11] THEN
	        DISCH_TAC THEN
	        CONV_TAC (REDEPTH_CONV NOT_EXISTS_CONV) THEN
	        ONCE_REWRITE_TAC [DE_MORGAN_THM] THEN
	        ONCE_REWRITE_TAC [SYM(SPEC_ALL IMP_DISJ_THM)] THEN
	        REPEAT GEN_TAC THEN 
	        DISCH_THEN (SUBST1_TAC o SYM) THEN
	        REWRITE_TAC [ALL_EL;DE_MORGAN_THM] THEN
	        DISJ1_TAC THEN 
	        FIRST_ASSUM MATCH_MP_TAC THEN
	        MATCH_ACCEPT_TAC LESS_SUC_REFL];
	       IMP_RES_THEN MATCH_ACCEPT_TAC HT_thm6]);; 

% The following lemmas are used in the proof of approx_lemma below:	%

let Less_lemma = 
    TAC_PROOF(([], "!n m. (n < SUC m) = (n <= m)"),
    	      REWRITE_TAC [LESS_OR_EQ] THEN
	      CONV_TAC (ONCE_DEPTH_CONV (REWR_CONV DISJ_SYM)) THEN
	      MATCH_ACCEPT_TAC LESS_THM);;

let less_HT = 
    TAC_PROOF(([], "!trl m n.
		    (m <= n) ==> 
		    ALL_EL (\t. HT t < m) trl ==>
		    ALL_EL (\t:tree. HT t <= n) trl"),
	      LIST_INDUCT_TAC THEN
	      REWRITE_TAC [ALL_EL] THEN
	      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
	      REPEAT STRIP_TAC THENL
	      [IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
	       IMP_RES_TAC LESS_EQ_TRANS;
	       RES_TAC]);;

let less_HT2 = 
     TAC_PROOF(
     ([], "!trl n. HT(node trl) < n ==> ALL_EL (\t. HT t < n) trl"),
          REPEAT GEN_TAC THEN
	  DISCH_THEN (STRIP_THM_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1) THEN
	  MP_TAC (SPEC "trl:(tree)list" HT_node) THEN
	  SPEC_TAC ("HT(node trl)","n:num") THEN
	  REWRITE_TAC [ADD_CLAUSES;num_CONV "1"] THEN
	  SPEC_TAC ("trl:(tree)list","trl:(tree)list") THEN
	  LIST_INDUCT_TAC THEN
	  REWRITE_TAC [ALL_EL] THEN
	  CONV_TAC (REDEPTH_CONV BETA_CONV) THEN
	  REPEAT STRIP_TAC THEN RES_TAC THEN
	  STRIP_ASSUME_TAC (REWRITE_RULE [LESS_OR_EQ] 
			      (SPECL ["n:num";"p:num"] LESS_EQ_ADD)) THENL
	  [IMP_RES_TAC LESS_TRANS;
	   POP_ASSUM (SUBST1_TAC o SYM)] THEN
	   IMP_RES_TAC LESS_SUC);;
	  
let less_HT3  = 
    TAC_PROOF(
    ([],"!trl.
      (HT(node trl) <= HT(node (CONS (node trl) NIL)))"),
    REPEAT STRIP_TAC THEN
    MP_TAC (SPEC "CONS (node trl) NIL" HT_node) THEN
    REWRITE_TAC [ALL_EL] THEN
    CONV_TAC (DEPTH_CONV BETA_CONV) THEN
    STRIP_TAC THEN IMP_RES_TAC LESS_IMP_LESS_OR_EQ);;

% Following proof revised for version 1.12 resolution. 	 [TFM 91.01.18] %

let less_HT4 = 
    TAC_PROOF
     (([], "!trl m n. (m <= n) ==> 
 		      ALL_EL (\t. HT t < m) trl ==>
		      ALL_EL (\t:tree. HT t < n) trl"),
      PURE_ONCE_REWRITE_TAC [LESS_OR_EQ] THEN
      REPEAT GEN_TAC THEN
      DISCH_THEN (STRIP_THM_THEN (\th g. SUBST1_TAC th g ? MP_TAC th g)) THENL
      [MAP_EVERY (\t. SPEC_TAC(t,t)) ["n:num";"m:num";"trl:(tree)list"] THEN
       LIST_INDUCT_TAC THEN REWRITE_TAC [ALL_EL] THEN
       CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
       REPEAT STRIP_TAC THENL [IMP_RES_TAC LESS_TRANS; RES_TAC];
       DISCH_THEN ACCEPT_TAC]);;

let less_HT5 = 
    let spec = SPEC "CONS (h:tree) NIL" HT_node in
    let rew = CONV_RULE (DEPTH_CONV BETA_CONV) 
    	                (REWRITE_RULE [ALL_EL] spec) in
    GEN_ALL rew;;

let less_HT6 = 
    let spec = SPEC "CONS (h:tree) trl" HT_node in
    let rew = CONV_RULE (DEPTH_CONV BETA_CONV)
    	      (REWRITE_RULE [ALL_EL] spec) in
    let less1 = CONJUNCT1(SPEC_ALL rew) in
    let spec2 = SPEC "node (CONS h trl)" (GEN_ALL less_HT5) in
    GEN_ALL(MATCH_MP LESS_TRANS (CONJ less1 spec2));;

let less_HT7 = 
    let less1 = (SPEC_ALL HT_node) in
    let less2 = (SPEC_ALL less_HT3) in
     (MATCH_MP (GEN_ALL(MATCH_MP less_HT4 less2)) less1);;

let less_HT8 = 
    let sp = REWRITE_RULE [ALL_EL]
            (SPEC "CONS (h:tree) trl" (GEN_ALL less_HT7)) in
      (CONJUNCT2 sp);;


% Show that dest is the destructor for node.				%
let dest_node_thm = 
     TAC_PROOF(([], "!tl. dest_node (node tl) = tl"),
               REWRITE_TAC [dest_node;node_11] THEN
	       REPEAT STRIP_TAC THEN
	       CONV_TAC SYM_CONV THEN
	       CONV_TAC SELECT_CONV THEN
	       EXISTS_TAC "tl:(tree)list" THEN REFL_TAC);;

% we now show that for all n there is a recursive function that works	%
% as desired for trees of height <= n.					%
let approx_lemma = 
    TAC_PROOF
    (([], "!f. !n. ?fn. !trl.
           (HT(node trl) <= n) ==>
	   (fn (node trl) = f (MAP fn trl):**)"),
     GEN_TAC THEN INDUCT_TAC THENL
     [REWRITE_TAC [NOT_LESS_0;LESS_OR_EQ;HT_leaf] THEN
      EXISTS_TAC "\t:tree. f (NIL:(**)list):**" THEN
      REPEAT (STRIP_GOAL_THEN SUBST1_TAC)  THEN
      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
      REWRITE_TAC [MAP];
      POP_ASSUM STRIP_ASSUME_TAC THEN
      REWRITE_TAC [LESS_OR_EQ] THEN REWRITE_TAC [Less_lemma] THEN
      EXISTS_TAC 
      "\t:tree. ((HT t) <= n) => (fn t:**) | f(MAP fn (dest_node t))" THEN
      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
      REWRITE_TAC [dest_node_thm] THEN
      REPEAT STRIP_TAC THENL
      [RES_TAC THEN ASM_REWRITE_TAC [] THEN
       ASSUME_TAC (SPEC "trl:(tree)list" HT_node) THEN
       IMP_RES_TAC less_HT THEN
       POP_ASSUM MP_TAC THEN POP_ASSUM_LIST (K ALL_TAC) THEN
       DISCH_THEN (\th. AP_TERM_TAC THEN MP_TAC th) THEN
       SPEC_TAC ("trl:(tree)list","trl:(tree)list") THEN
       LIST_INDUCT_TAC THEN
       REWRITE_TAC [ALL_EL;MAP] THEN
       CONV_TAC (REDEPTH_CONV BETA_CONV) THEN
       REPEAT STRIP_TAC THEN RES_TAC THEN ASM_REWRITE_TAC[];
       MP_TAC (SPEC "trl:(tree)list" HT_node) THEN
       ASM_REWRITE_TAC [Less_lemma;SYM(SPEC_ALL LESS_EQ);LESS_REFL] THEN
       POP_ASSUM_LIST (K ALL_TAC) THEN
       DISCH_THEN (\th. AP_TERM_TAC THEN MP_TAC th) THEN
       SPEC_TAC ("trl:(tree)list","trl:(tree)list") THEN
       LIST_INDUCT_TAC THEN
       REWRITE_TAC [ALL_EL;MAP] THEN
       CONV_TAC (DEPTH_CONV BETA_CONV) THEN
       REPEAT STRIP_TAC THEN RES_TAC THEN ASM_REWRITE_TAC[]]]);;

% Now, define tree_rec_fun n f to be the function that works for trees	%
% shorter than n.							%
let trf = 
    new_definition
     (`trf`,
      "trf n f = @fn. !trl.
      	         (HT(node trl)) <= n ==>
		 (fn(node trl):** = f(MAP fn trl))");;

% Prove that trf has the appropriate property.				%
let trf_thm = 
    TAC_PROOF(([], "!f n trl.
    		    (HT (node trl)) <= n ==>
		    (trf n f (node trl):** = f(MAP (trf n f) trl))"),
	      REWRITE_TAC [trf] THEN
	      CONV_TAC (DEPTH_CONV SELECT_CONV) THEN
	      MATCH_ACCEPT_TAC approx_lemma);;

% show that trf n f = trf m f for trees shorter than n amd m.		%
let trf_EQ_thm = 
    TAC_PROOF(([], "!t:tree. !n m f. HT(t) < n /\ HT(t) < m ==>
	                  (trf n f t:** = trf m f t)"),
	      tree_INDUCT_TAC THEN
	      REPEAT STRIP_TAC THEN
	      IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
	      IMP_RES_THEN (SUBST1_TAC o SPEC_ALL) trf_thm THEN
	      AP_TERM_TAC THEN 
	      MAP_EVERY POP_ASSUM [K ALL_TAC;K ALL_TAC] THEN
	      REPEAT (POP_ASSUM (MP_TAC o MATCH_MP less_HT2)) THEN
	      POP_ASSUM MP_TAC THEN 
              SPEC_TAC ("trl:(tree)list","trl:(tree)list") THEN
	      LIST_INDUCT_TAC THEN REWRITE_TAC [MAP;ALL_EL] THEN
	      CONV_TAC (REDEPTH_CONV BETA_CONV) THEN
   	      GEN_TAC THEN CONV_TAC ANTE_CONJ_CONV THEN
	      DISCH_THEN 
	      (\th. ASSUME_TAC th THEN REPEAT STRIP_TAC THEN
	            MP_TAC (SPECL ["n:num";"m:num";"f:(**)list->**"] th)) THEN
	      RES_TAC THEN POP_ASSUM SUBST1_TAC THEN
	      REWRITE_TAC [CONS_11] THEN
	      STRIP_TAC THEN RES_TAC THEN FIRST_ASSUM ACCEPT_TAC);;

% extend the above result for lists of trees.				%
let trf_EQ_thm2 = 
    TAC_PROOF(
    ([], "!trl:(tree)list. 
	  !n m f. (ALL_EL (\t. HT t < n) trl  /\  ALL_EL (\t. HT t < m) trl) ==>
	 	   (MAP (trf n f) trl:(**)list = MAP(trf m f) trl)"),
    LIST_INDUCT_TAC THEN
    REWRITE_TAC [MAP;ALL_EL] THEN
    CONV_TAC (DEPTH_CONV BETA_CONV) THEN
    REPEAT STRIP_TAC THEN
    IMP_RES_THEN (ASSUME_TAC o SPEC_ALL) trf_EQ_thm THEN RES_TAC THEN
    REWRITE_TAC [CONS_11] THEN CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;


% Now, by taking "\t. trf (HT (node [t])) f t" we have a function that	%
% works for all trees t.						%
let FN_EXISTS = 
    TAC_PROOF(
    ([], "!f. ?fn. !trl. (fn (node trl):** = f (MAP fn trl))"),
    STRIP_TAC THEN
    EXISTS_TAC 
     "\t. trf (HT(node (CONS t NIL))) (f:(**)list->**) t" THEN
    CONV_TAC (DEPTH_CONV BETA_CONV) THEN   
    REPEAT STRIP_TAC THEN
    ASSUME_TAC (SPEC "trl:(tree)list" less_HT3) THEN
    IMP_RES_THEN (SUBST1_TAC o SPEC_ALL) trf_thm THEN
    POP_ASSUM (K ALL_TAC) THEN
    AP_TERM_TAC THEN 
    SPEC_TAC ("trl:(tree)list","trl:(tree)list") THEN
    LIST_INDUCT_TAC THEN
    REWRITE_TAC [ALL_EL;MAP] THEN
    REPEAT STRIP_TAC THEN 
    CONV_TAC (DEPTH_CONV BETA_CONV) THEN
    REWRITE_TAC [CONS_11] THEN STRIP_TAC THENL
    [MATCH_MP_TAC trf_EQ_thm THEN STRIP_TAC THENL
     [MATCH_ACCEPT_TAC less_HT6;
      MATCH_ACCEPT_TAC less_HT5];
     FIRST_ASSUM (SUBST1_TAC o SYM) THEN
     MATCH_MP_TAC trf_EQ_thm2 THEN
     STRIP_TAC THENL
     [ACCEPT_TAC less_HT8;
      MATCH_ACCEPT_TAC (GEN_ALL less_HT7)]]);;

% Now show that there is a function that produces the desired tree	%
% recursive function, given f.						%
let FN_thm = 
    TAC_PROOF
    (([], "?FN. !f. !trl. ((FN f) (node trl) = f (MAP (FN f) trl):**)"),
     EXISTS_TAC "\f.  @fn. !trl. (fn(node trl):** = f(MAP fn trl))" THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     CONV_TAC (DEPTH_CONV SELECT_CONV) THEN
     MATCH_ACCEPT_TAC FN_EXISTS);;

% Prove the existence of a certain function AP.				%
let AP = 
    prove_rec_fn_exists list_Axiom 
      "(!l. AP NIL l = NIL) /\
       (!h t l. AP (CONS h t) l = CONS (h (HD l:*):**) (AP t (TL l)))";;

% Got to have the types just right for use of AP below.			%
let AP = INST_TYPE [":tree",":*"] AP;;
let AP_DEF = conjuncts(snd(dest_exists(concl AP)));;

% A lemma about AP and MAP.						%
let AP_MAP = 
    TAC_PROOF((AP_DEF, 
    	      "!l. AP (MAP (f:tree->tree->**) l) l = MAP (\x. f x x) l"),
              LIST_INDUCT_TAC THEN
	      ASM_REWRITE_TAC [MAP;HD;TL] THEN
	      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
	      STRIP_TAC THEN REFL_TAC);;

% Now, prove the existence of the recursively defined functions.	%
let EXISTS_THM = 
    TAC_PROOF(
     ([], "!f. ?fn. !tl. fn (node tl):** = f (MAP fn tl) tl"),
     STRIP_TAC THEN
     STRIP_ASSUME_TAC (INST_TYPE [":tree->**",":**"] FN_thm) THEN
     STRIP_ASSUME_TAC AP THEN
     let fn = 
        "\n:tree. ((FN (\fnl:(tree->**)list.\n:tree.
		       f (AP fnl (dest_node n):(**)list) 
    	    	         (dest_node n):**)) (n:tree) (n:tree):**)" in
     EXISTS_TAC fn THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     ASM_REWRITE_TAC [] THEN
     CONV_TAC (DEPTH_CONV BETA_CONV) THEN
     REWRITE_TAC [dest_node_thm;AP_MAP]);;

% A little lemma...							%
let lemma = 
    TAC_PROOF(([],"!l. ALL_EL (\x:*. f x:** = g x) l ==> (MAP f l = MAP g l)"),
              LIST_INDUCT_TAC THEN
	      REWRITE_TAC [MAP;ALL_EL] THEN
	      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
	      REPEAT STRIP_TAC THEN RES_TAC THEN
	      ASM_REWRITE_TAC[]);;

% Finally, prove the theorem for trees!					%
let tree_Axiom = 
    prove_thm
    (`tree_Axiom`,
     "!f. ?!fn. !tl. fn (node tl):** = f (MAP fn tl) tl",
     GEN_TAC THEN 
     CONV_TAC EXISTS_UNIQUE_CONV THEN
     STRIP_TAC THENL
     [MATCH_ACCEPT_TAC EXISTS_THM;
      CONV_TAC (DEPTH_CONV BETA_CONV) THEN
      REPEAT STRIP_TAC THEN CONV_TAC FUN_EQ_CONV THEN
      tree_INDUCT_TAC THEN
      IMP_RES_TAC lemma THEN
      ASM_REWRITE_TAC []]);;

% Close the theory.                                                     %
close_theory();;

quit();;