1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% FILE: sub.ml %
% EDITOR: Paul Curzon %
% DATE: July 1991 %
% DESCRIPTION : Theorems dealing with substraction %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%********************************* HISTORY ********************************%
% %
% This file is based on the theories of %
% %
% Richard J.Boulton %
% Rachel Cardell-Oliver %
% Paul Curzon %
% Elsa L Gunter %
% Wim Ploegaerts %
% %
%****************************************************************************%
% %
% PC 21/4/93 %
% Removed dependencies on several external files/theories %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%****************************************************************************%
% %
% DEPENDANCIES : %
% %
% suc for theorems about SUC %
% ineq for theorems about inequalities %
% add for theorems about addition %
% zero_ineq for theorems about 0 %
% num_convs for num conversions %
% %
%****************************************************************************%
system `rm -f sub.th`;;
new_theory `sub`;;
new_parent `add`;;
new_parent `zero_ineq`;;
loadt `num_convs`;;
% PC 22-4-92 These are no longer used%
%loadf `tools`;;%
%loadf (library_pathname() ^ `/group/start_groups`);;%
%autoload_defs_and_thms `ineq`;;%
let autoload_defs_and_thms thy =
map (\name. autoload_theory(`definition`,thy,name))
(map fst (definitions thy));
map (\name. autoload_theory(`theorem`,thy,name))
(map fst (theorems thy)) in
autoload_defs_and_thms `suc`;
autoload_defs_and_thms `add`;
autoload_defs_and_thms `zero_ineq`;;
%============================================================================%
% %
% Theorems dealing with substraction %
% %
%============================================================================%
%<WP>%
let SUB_SUC_PRE_SUB = prove_thm (
`SUB_SUC_PRE_SUB`,
"! n m . (0 < n) ==> (n - (SUC m) = (PRE n) - m)",
INDUCT_TAC THEN
REWRITE_TAC [NOT_LESS_0;SUB_MONO_EQ;PRE]
);;
%<-------------------------------------------------------------------------->%
%<WP>%
let ADD_SUC = SYM (el 4 (CONJUNCTS ADD_CLAUSES));;
%<WP>%
let SUB_SUC = prove_thm (
`SUB_SUC`,
"! k m . (m < k ) ==> ( k - m = SUC (k - SUC m) ) ",
REPEAT GEN_TAC THEN
SUBST_TAC [SYM (SPECL ["k:num";"m:num"] SUB_MONO_EQ)] THEN
DISCH_THEN \thm .
let thm' = MATCH_MP LESS_SUC_NOT thm in
ACCEPT_TAC (REWRITE_RULE [thm']
(SPECL ["k:num";"SUC m"] (CONJUNCT2 SUB)))
);;
%<-------------------------------------------------------------------------->%
%<ELG>%
let SUB_LESS_TO_LESS_ADDR = prove_thm(`SUB_LESS_TO_LESS_ADDR`,
"!m n p.((p<=m)==>(((m-p)<n)=(m<(n+p))))",
((REPEAT GEN_TAC) THEN
DISCH_TAC THEN
(REWRITE_TAC
[(SYM(SPECL["m-p";"n:num";"p:num"]LESS_MONO_ADD_EQ));
(UNDISCH_ALL(SPECL["m:num";"p:num"]SUB_ADD))])));;
%SUB_LESS_TO_LESS_ADDR =
|- !m:num n:num p:num. p <= m ==> ((m - p) < n = m < (n + p))%
%<-------------------------------------------------------------------------->%
%<ELG>%
let SUB_LESS_TO_LESS_ADDL = prove_thm(`SUB_LESS_TO_LESS_ADDL`,
"!m n p.((n<=m)==>(((m-n)<p)=(m<(n+p))))",
((REPEAT GEN_TAC) THEN
(PURE_ONCE_REWRITE_TAC[ADD_SYM]) THEN
(ACCEPT_TAC (SPECL["m:num";"p:num";"n:num"]SUB_LESS_TO_LESS_ADDR))));;
%SUB_LESS_TO_LESS_ADDL =
|- !m:num n:num p:num. n <= m ==> ((m - n) < p = m < (n + p))%
%<-------------------------------------------------------------------------->%
%<ELG>%
% This theorem could be strengthened; see SUB_LEFT_LESS [RJB 92.09.29] %
let LESS_SUB_TO_ADDR_LESS = prove_thm(`LESS_SUB_TO_ADDR_LESS`,
"!m n p.((p<=m)==>((n<(m-p))=(n+p)<m))",
((REPEAT GEN_TAC) THEN
DISCH_TAC THEN
(REWRITE_TAC
[(SYM(SPECL["n:num";"m-p";"p:num"]LESS_MONO_ADD_EQ));
(UNDISCH_ALL(SPECL["m:num";"p:num"] SUB_ADD))])));;
%LESS_SUB_TO_ADDR_LESS =
|- !m:num n:num p:num. p <= m ==> (n < (m - p) = (n + p) < m)%
%<-------------------------------------------------------------------------->%
%<ELG>%
let LESS_SUB_TO_ADDL_LESS = prove_thm(`LESS_SUB_TO_ADDL_LESS`,
"!m n p.((n<=m)==>((p<(m-n))=((n+p)<m)))",
((REPEAT GEN_TAC) THEN
(PURE_ONCE_REWRITE_TAC[ADD_SYM]) THEN
(ACCEPT_TAC (SPECL["m:num";"p:num";"n:num"]LESS_SUB_TO_ADDR_LESS))));;
%LESS_SUB_TO_ADDL_LESS =
|- !m:num n:num p:num. n <= m ==> (p < (m - n) = (n + p) < m)%
%<-------------------------------------------------------------------------->%
%<ELG>%
let SUC_SUB = prove_thm (`SUC_SUB`,
"!m n.(((m<n)==>(((SUC m)-n)=0))/\(~(m<n)==>(((SUC m)-n)=SUC(m-n))))",
%New proof by PC 22-4-93%
((REPEAT GEN_TAC) THEN
(ASM_CASES_TAC "m<n") THEN
(ASM_REWRITE_TAC[SUB])));;
%((REPEAT GEN_TAC) THEN (ASM_CASES_TAC "m<n") THEN%
% (ASM_REWRITE_TAC%
% [((REWRITE_RULE [COND_DEF] (CONJUNCT2 SUB)) and_then%
% CONV_RULE(DEPTH_CONV BETA_CONV))])%
%THENL%
% [((SELECT_TAC "@x.x=0") THEN (EXISTS_TAC "0") THEN REFL_TAC);%
% ((SELECT_TAC"@x.x=SUC(m-n)")THEN(EXISTS_TAC"SUC(m-n)")THEN REFL_TAC)]));;%
%SUC_SUB =
|- !m:num n:num.
(m < n ==> ((SUC m) - n = 0)) /\
(~m < n ==> ((SUC m) - n = SUC(m - n)))%
%<--------------------------------------------------------------------------->%
%<WP>%
% Name change to avoid clash with 1.12 arithmetics SUB_SUB %
let LESS_SUB_BOUND = PROVE
("!k l . (k < l) ==> ((l - k) <= l)",
REWRITE_TAC[SUB_LESS_EQ]
);;
let SUB_SUB_ID = prove_thm (
`SUB_SUB_ID`,
"!k l . (l < k) ==> (k - (k - l) = l)",
REPEAT GEN_TAC THEN
DISCH_THEN \thm .
CONV_TAC ((NUM_EQ_PLUS_CONV "k-l" ) THENC
(RAND_CONV (ONCE_DEPTH_CONV (REWR_CONV ADD_SYM)))) THEN
MAP_EVERY SUBST1_TAC (map (\t . MATCH_MP SUB_ADD t)
[MATCH_MP LESS_SUB_BOUND thm;
MATCH_MP LESS_IMP_LESS_OR_EQ thm]) THEN
REFL_TAC
);;
%<--------------------------------------------------------------------------->%
%<WP>%
let LESS_SUB_IMP_INV = prove_thm (
`LESS_SUB_IMP_INV`,
"!k l . (0 < k - l) ==> (l < k)",
REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC [NOT_LESS;GSYM SUB_EQ_0;SUB_0]
);;
%============================================================================%
% %
% Simplications %
% %
%============================================================================%
%<ELG>%
let LESS_EQ_ADD_SUB1 =prove_thm (`LESS_EQ_ADD_SUB1`,
"!m n p.((p <= n) ==> (m+(n-p)=(m+n)-p))",
((REPEAT GEN_TAC) THEN (SPEC_TAC ("m:num", "m:num")) THEN INDUCT_TAC THENL
[(REWRITE_TAC [(CONJUNCT1 ADD)]);
((REWRITE_TAC [(CONJUNCT2 ADD)]) THEN
DISCH_TAC THEN
(ASSUME_TAC (SPECL ["p:num";"n:num";"m:num"] ADDL_GREATER_EQ)) THEN
(ASSUME_TAC (snd(EQ_IMP_RULE(SPECL ["m+n";"p:num"] NOT_LESS)))) THEN
RES_TAC THEN RES_TAC THEN
(ASM_REWRITE_TAC [(UNDISCH_ALL(CONJUNCT2(SPECL["m+n";"p:num"]SUC_SUB)))])
)]));;
%LESS_EQ_ADD_SUB1 =
|- !m:num n:num p:num. p <= n ==> (m + (n - p) = (m + n) - p)%
%<-------------------------------------------------------------------------->%
%<ELG>%
let LESS_EQ_SUB_ADD=prove_thm (`LESS_EQ_SUB_ADD`,
"!m n p. p <= m ==> ((m-p)+n = (m+n)-p)",
((REPEAT GEN_TAC) THEN
(PURE_ONCE_REWRITE_TAC[ADD_SYM]) THEN
(ACCEPT_TAC (SPECL["n:num";"m:num";"p:num"]LESS_EQ_ADD_SUB1))));;
%LESS_EQ_SUB_ADD =
|- !m:num n:num p:num. p <= m ==> ((m - p) + n = (m + n) - p)%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% AUTHOR: Paul Curzon %
% DATE: June 1991 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% See also SUB_LESS_TO_LESS_ADDL and SUB_LESS_TO_LESS_ADDR %
let GREATER_EQ_SUB_LESS_TO_ADD = prove_thm (
`GREATER_EQ_SUB_LESS_TO_ADD`,
"!n m p. (p >= n) ==> (((p - n) < m) = (p < (n + m)))",
(REWRITE_TAC
[SYM (SPEC "n:num" (SPEC "m:num" (SPEC "p - n" LESS_MONO_ADD_EQ)))]) THEN
(REPEAT STRIP_TAC) THEN
(POP_ASSUM (\th .ASSUME_TAC
(MP (SPEC "n:num" (SPEC "p:num" SUB_ADD))
(REWRITE_RULE[SPEC "n:num" (SPEC "p:num" GREATER_EQ)]
th)))) THEN
(SUBST_TAC[SPEC_ALL ADD_SYM]) THEN
(ASM_REWRITE_TAC[]));;
% ********************************************************************** %
let SUB_GREATER_EQ_ADD = prove_thm (
`SUB_GREATER_EQ_ADD`,
"!n m p. (p >= n) ==> (((p - n) >= m) = (p >= (n + m)))",
(REWRITE_TAC[
SYM (SPEC "n:num" (SPEC "p-n" (SPEC "m:num"
(REWRITE_RULE[GSYM GREATER_EQ] LESS_EQ_MONO_ADD_EQ))))]) THEN
(REPEAT STRIP_TAC) THEN
(POP_ASSUM (\th .ASSUME_TAC
(MP (SPEC "n:num" (SPEC "p:num" SUB_ADD))
(REWRITE_RULE[SPEC "n:num" (SPEC "p:num" GREATER_EQ)]
th)))) THEN
(SUBST_TAC[(SPEC_ALL ADD_SYM)]) THEN
(ASM_REWRITE_TAC[]));;
% ********************************************************************** %
% |- !n m p. n <= p ==> (m <= (p - n) = (n + m) <= p) %
let SUB_LE_ADD = save_thm(`SUB_LE_ADD`,
REWRITE_RULE[GREATER_EQ] SUB_GREATER_EQ_ADD);;
% ************************************************************************ %
let NOT_SUB_0 = prove_thm (`NOT_SUB_0`,
"!m n . m < n ==> ~(n - m = 0)",
(REWRITE_TAC[SUB_EQ_0]) THEN
(REPEAT STRIP_TAC) THEN
(IMP_RES_TAC LESS_EQ_ANTISYM));;
% ************************************************************************ %
%New proof by PC 22-4-93%
let NOT_0_SUB = prove_thm( `NOT_0_SUB`,
"! m n . (~ (m - n = 0)) ==> ~ (m = 0)",
(REPEAT STRIP_TAC) THEN
(CONTR_TAC
(REWRITE_RULE [ASSUME "m = 0"; SUB_0]
(ASSUME "~(m - n = 0)") ))
);;
% (REPEAT STRIP_TAC) THEN%
% (POP_ASSUM%
% (\th . ASSUME_TAC (REWRITE_RULE [th] (ASSUME "~(m - n = 0)")))) THEN%
% (POP_TAC (REWRITE_RULE[SUB_0])) THEN%
% (POP_ASSUM CONTR_TAC));;%
% ************************************************************************ %
% see also PRE_K_K %
let SUB_1_LESS = prove_thm(`SUB_1_LESS`,
"! m n . ((~ (m = 0)) /\ (m < SUC n)) ==> ((m - 1) < n)",
%New proof by PC 22-4-93%
(REPEAT STRIP_TAC) THEN
(REWRITE_TAC[
(ONCE_REWRITE_RULE[ADD_SYM]
(REWRITE_RULE [ADD1] (ASSUME "m < SUC n")));
MATCH_MP (SPECL["1";"n:num"] GREATER_EQ_SUB_LESS_TO_ADD)
(MATCH_MP NOT_EQ_0 (ASSUME "~ (m = 0)"))]));;
% (REPEAT STRIP_TAC) THEN%
% (POP_TAC (REWRITE_RULE [ADD1])) THEN%
% (IMP_RES_TAC NOT_EQ_0) THEN%
% (IMP_RES_TAC (SPECL["1";"n:num"] GREATER_EQ_SUB_LESS_TO_ADD)) THEN%
% POP_JUNK_TAC THEN%
% POP_JUNK_TAC THEN%
% POP_REWRITE_TAC THEN%
% (ONCE_REWRITE_TAC[ADD_SYM]) THEN%
% (ASM_REWRITE_TAC[]));;%
% ************************************************************************ %
let SUB_1_LESS_EQ = prove_thm(`SUB_1_LESS_EQ`,
"! m n. (m < n) ==> ((n - 1) >= m)",
%New proof by PC 22-4-93%
GEN_TAC THEN
INDUCT_TAC THENL
[
(REWRITE_TAC[SUB_0;GREATER_EQ;LESS_IMP_LESS_OR_EQ]);
(REPEAT STRIP_TAC) THEN
(REWRITE_TAC[SUC_SUB1;GREATER_EQ;LESS_OR_EQ]) THEN
(DISJ_CASES_TAC (REWRITE_RULE[LESS_THM](ASSUME "m < SUC n") )) THEN
(ASM_REWRITE_TAC[])]);;
% GEN_TAC THEN%
% INDUCT_TAC THENL%
% [%
% (REWRITE_TAC[SUB_0;GREATER_EQ;LESS_IMP_LESS_OR_EQ]);%
% (REPEAT STRIP_TAC) THEN%
% (REWRITE_TAC[SUC_SUB1;GREATER_EQ;LESS_OR_EQ]) THEN%
% (POP_TAC (REWRITE_RULE[LESS_THM])) THEN%
% (POP_ASSUM (DISJ_CASES_TAC)) THEN%
% POP_REWRITE_TAC]);;%
% ************************************************************************* %
let ADD_LESS_EQ_SUB = save_thm(`ADD_LESS_EQ_SUB`,
GSYM (REWRITE_RULE[GREATER_EQ] SUB_GREATER_EQ_ADD));;
%****************************************************************************%
% %
% AUTHOR : R.J.Boulton %
% DATE : 1990 %
% %
%****************************************************************************%
let PRE_SUB_SUC = prove_thm(`PRE_SUB_SUC`,
"!m n. (m < n) ==> (PRE (n - m) = (n - (SUC m)))",
GEN_TAC THEN
INDUCT_TAC THENL
[REWRITE_TAC [SUB_0;PRE];
STRIP_TAC THEN
ASM_REWRITE_TAC [SUB;SUB_MONO_EQ] THEN
IMP_RES_TAC (REWRITE_RULE [] (CONTRAPOS (SPEC_ALL LESS_SUC_NOT))) THEN
ASM_REWRITE_TAC [PRE]]);;
%----------------------------------------------------------------------------%
%****************************************************************************%
% %
% AUTHOR : Rachel Cardell-Oliver %
% DATE : 1990 %
% %
%****************************************************************************%
let LESS_PRE = prove_thm(`LESS_PRE`,
"!i m:num. ( i < (m-1) ) ==> (i < m)",
GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[SUB_0;NOT_LESS_0;SYM (SPEC_ALL PRE_SUB1);PRE;LESS_SUC]);;
let PRE_LESS_LESS_SUC = prove_thm( `PRE_LESS_LESS_SUC`,
"!i:num. !m:num. ( i<(m-1) /\ 0<m ) ==> (i+1)<m " ,
GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[LESS_REFL;LESS_0;SYM(SPEC_ALL PRE_SUB1);
SYM(SPEC_ALL ADD1);PRE;LESS_MONO_EQ] );;
let SUB_PRE_SUB_1 =
prove_thm(
`SUB_PRE_SUB_1`,
"!a b:num.(0<b) ==> (((a-(PRE b))-1) = (a-b))",
REPEAT STRIP_TAC THEN
REWRITE_TAC [(SYM (SPEC_ALL SUB_PLUS));PRE_SUB1] THEN
IMP_RES_TAC LESS_OR THEN
POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [SYM SUC_0])) THEN
IMP_RES_TAC SUB_ADD THEN
ASM_REWRITE_TAC[] );;
%less_sub_imp_sum_less --> LESS_SUB_IMP_SUM_LESS PC%
let LESS_SUB_IMP_SUM_LESS = prove_thm(`LESS_SUB_IMP_SUM_LESS`,
"!i:num. !m:num. ( i<(m-1) /\ 1<m ) ==> (i+1)<m " ,
REPEAT STRIP_TAC THEN
ASSUME_TAC (SPECL ["i:num";"m-1";"1"] LESS_MONO_ADD_EQ) THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
IMP_RES_TAC SUB_ADD THEN
POP_ASSUM(\thm. ONCE_REWRITE_TAC[SYM thm]) THEN
ASM_REWRITE_TAC[] );;
let SUB_SELF= SUB_EQUAL_0;;
let ADD_SUB_SYM = save_thm(`ADD_SUB_SYM`,
ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB);;
let SUB_ADD_SELF = prove_thm(`SUB_ADD_SELF`,
"!m n. ~(m<n) ==> ( ((m-n)+n)=m )" ,
REWRITE_TAC[NOT_LESS;SUB_ADD] );;
let SMALLER_SUM = prove_thm(`SMALLER_SUM`,
"!m n p. (m<p /\ n<p) ==> ~( ((m+n)-p) > m)",
REPEAT STRIP_TAC THEN
POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [GREATER])) THEN
ASM_CASES_TAC "(m+n)<=p" THENL
[ POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [GSYM SUB_EQ_0])) THEN
UNDISCH_TAC "m < ((m + n) - p)" THEN ASM_REWRITE_TAC[NOT_LESS_0] ;
% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
% POP_ASSUM(ASSUME_TAC o (REWRITE_RULE [NOT_LESS_EQ_LESS])) THEN %
POP_ASSUM(ASSUME_TAC o (REWRITE_RULE [NOT_LESS_EQUAL])) THEN
IMP_RES_TAC (SPEC "p:num" (SPEC "(m+n)-p" (SPEC "m:num"
LESS_MONO_ADD))) THEN
POP_ASSUM(\thm. MP_TAC thm) THEN
IMP_RES_TAC (SPEC "m+n" (SPEC "p:num" LESS_IMP_LESS_OR_EQ)) THEN
IMP_RES_TAC (SPEC "p:num" (SPEC "m+n" SUB_ADD)) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [ADD_MONO_LESS])) THEN
UNDISCH_TAC "n<p" THEN
UNDISCH_TAC "p<n" THEN
REWRITE_TAC [IMP_DISJ_THM;NOT_CLAUSES;
(SYM (CONJUNCT1 (SPEC_ALL DE_MORGAN_THM)));LESS_ANTISYM] ] );;
let NOT_LESS_SUB = prove_thm(`NOT_LESS_SUB`,
"!m n. ~( m < (m-n) )" ,
REPEAT GEN_TAC THEN
ASM_CASES_TAC "m<=n" THENL
[ POP_ASSUM(\thm. REWRITE_TAC[REWRITE_RULE[GSYM SUB_EQ_0]thm;NOT_LESS_0]);
% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
% POP_ASSUM(ASSUME_TAC o REWRITE_RULE[NOT_LESS_EQ_LESS]) THEN%
POP_ASSUM(ASSUME_TAC o REWRITE_RULE[NOT_LESS_EQUAL]) THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
IMP_RES_TAC SUB_ADD THEN
REWRITE_TAC[NOT_LESS] THEN
ONCE_REWRITE_TAC[GSYM(SPECL["m-n";"m:num";"n:num"]LESS_EQ_MONO_ADD_EQ)]
THEN ASM_REWRITE_TAC[LESS_EQ_ADD] ] );;
let SUB_BOTH_SIDES = prove_thm(`SUB_BOTH_SIDES`,
"!m n p. (m=n) ==> ( (m-p)=(n-p) )",
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] );;
let SUB_LESS_BOTH_SIDES = prove_thm(`SUB_LESS_BOTH_SIDES`,
"!m n p. ((p<=m) /\ (m<n)) ==> ( (m-p) < (n-p) )",
REPEAT STRIP_TAC THEN
IMP_RES_TAC SUB_ADD THEN
ASM_REWRITE_TAC[
SYM(SPEC "p:num" (SPEC "n-p" (SPEC "m-p" LESS_MONO_ADD_EQ)))] THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
IMP_RES_TAC SUB_ADD THEN
ASM_REWRITE_TAC[] );;
%New proof by PC 22-4-93%
let LESS_TWICE_IMP_LESS_SUB =prove_thm(`LESS_TWICE_IMP_LESS_SUB`,
"!a:num. !b:num. !m:num.
( a<m /\ b<m /\ m<=(a+b) ) ==> ( ((a+b)-m) < m )" ,
REPEAT STRIP_TAC THEN
(ACCEPT_TAC
(REWRITE_RULE [ADD_SUB_SYM]
(MATCH_MP SUB_LESS_BOTH_SIDES
(CONJ (ASSUME"m <= (a + b)")
(MATCH_MP LESS_LESS_MONO
(CONJ (ASSUME"a < m") (ASSUME"b < m") ))))))
);;
% REPEAT STRIP_TAC THEN%
% IMP_RES_TAC LESS_LESS_MONO THEN%
% FILTER_IMP_RES_TAC "((a + b) - m) < ((m + m) - m)" SUB_LESS_BOTH_SIDES THEN%
% POP_ASSUM ( ASSUME_TAC o (REWRITE_RULE [ADD_SUB_SYM])) THEN%
% ASM_REWRITE_TAC[] );;%
let SUB_LESS_EQ_SUB_SUC = prove_thm(`SUB_LESS_EQ_SUB_SUC`,
"!a b c n:num. 0<c /\ a<=(b-n) ==> ( (a-c) <= (b-SUC n) )",
REPEAT INDUCT_TAC THEN
% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
%let th1 = (REWRITE_RULE [SYM (SPEC_ALL NOT_LESS_EQ_LESS)] LESS_0) in%
let th1 = (REWRITE_RULE [SYM (SPEC_ALL NOT_LESS_EQUAL)] LESS_0) in
ASM_REWRITE_TAC[LESS_REFL;SUB_0;th1;LESS_0] THEN
ASM_REWRITE_TAC[SUB_MONO_EQ;LESS_EQ_MONO;SUB_0;ZERO_LESS_EQ] THEN
STRIP_TAC THEN
let th2 = (REWRITE_RULE [NOT_LESS] NOT_LESS_SUB) in
ASSUME_TAC (SPECL ["a:num";"c:num"] th2) THEN
IMP_RES_TAC LESS_EQ_TRANS THEN
IMP_RES_TAC OR_LESS THEN
IMP_RES_TAC SUB_LESS_OR THEN
POP_ASSUM (ASSUME_TAC o REWRITE_RULE
[SYM (SPEC_ALL SUB_PLUS);SYM(SPEC_ALL ADD1)]) THEN
IMP_RES_TAC LESS_EQ_TRANS );;
let SUB_EQ_SUB_ADD_SUB = prove_thm(`SUB_EQ_SUB_ADD_SUB`,
"!a b c. ( (a<=b) /\ (b<=c) ) ==> ( (c-a) = ( (c-b)+(b-a) ))",
REPEAT STRIP_TAC THEN
REWRITE_TAC
[(SYM (SPECL ["c-a";"(c-b)+(b-a)";"a:num"] EQ_MONO_ADD_EQ))] THEN
IMP_RES_TAC LESS_EQ_TRANS THEN
IMP_RES_TAC SUB_ADD THEN
ASM_REWRITE_TAC [(SYM (SPEC_ALL ADD_ASSOC))] );;
let ADD_EQ_IMP_SUB_EQ =prove_thm(`ADD_EQ_IMP_SUB_EQ`,
"!a b c:num. (a=(b+c)) ==> ((a-b)=c)",
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
REPEAT STRIP_TAC THEN
MP_TAC (SPECL ["b:num";"c:num"] LESS_EQ_ADD) THEN
ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN
MP_TAC (SPECL ["c:num";"b:num";"a:num"] ADD_EQ_SUB) THEN
ONCE_REWRITE_TAC[ADD_SYM] THEN
ASM_REWRITE_TAC[] );;
let SUB_GREATER_0 = prove_thm(`SUB_GREATER_0`,
"!a b:num. a<b ==> ( (b-a)>0 )",
REPEAT STRIP_TAC THEN
POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [
% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
% (SYM (SPEC_ALL NOT_LESS_EQ_LESS))])) THEN %
(SYM (SPEC_ALL NOT_LESS_EQUAL))])) THEN
DISJ_CASES_TAC (SPECL ["b-a"] LESS_0_CASES) THENL
[ POP_ASSUM (ASSUME_TAC o ((REWRITE_RULE [SUB_EQ_0]) o SYM)) THEN
UNDISCH_TAC "b<=a" THEN
ASM_REWRITE_TAC[] ;
ASM_REWRITE_TAC[GREATER] ] );;
let LESS_EQ_SUB_1 = prove_thm(`LESS_EQ_SUB_1`,
"!a b. a<=b ==> ((a-1) <= (b-1))" ,
REPEAT STRIP_TAC THEN
POP_ASSUM (DISJ_CASES_TAC o (REWRITE_RULE [LESS_OR_EQ])) THENL
[ IMP_RES_TAC SUB_LESS_OR THEN
ASSUME_TAC
(REWRITE_RULE [NOT_LESS] (SPECL ["a:num";"1"] NOT_LESS_SUB)) THEN
IMP_RES_TAC LESS_EQ_TRANS ;
ASM_REWRITE_TAC[LESS_EQ_REFL] ] );;
let SUB_LESS_EQ_SUB1 = prove_thm(`SUB_LESS_EQ_SUB1`,
"!x:num. x>0 ==> (!a:num. (a-x) <= (a-1))" ,
REPEAT STRIP_TAC THEN
POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [GREATER])) THEN
IMP_RES_TAC (SPECL ["a:num";"a:num";"x:num";"0"] SUB_LESS_EQ_SUB_SUC) THEN
POP_ASSUM (ASSUME_TAC o
(REWRITE_RULE [SUB_0;LESS_EQ_REFL;(SYM SUC_0)])) THEN
ASM_REWRITE_TAC[] );;
close_theory();;
|