File: sub.ml

package info (click to toggle)
hol88 2.02.19940316-8
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 63,120 kB
  • ctags: 19,367
  • sloc: ml: 199,939; ansic: 9,300; sh: 7,118; makefile: 6,074; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (594 lines) | stat: -rw-r--r-- 21,425 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                            %
%   FILE:         sub.ml                                                     %
%   EDITOR:       Paul Curzon                                                %
%   DATE:         July 1991                                                  %
%   DESCRIPTION : Theorems dealing with substraction 	   	             %
%                                                                            %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%*********************************  HISTORY  ********************************%
%									     %
%   This file is based on the theories of 				     %
%                                                                            %
%   Richard J.Boulton							     %
%   Rachel Cardell-Oliver						     %
%   Paul Curzon							 	     %
%   Elsa L Gunter							     %
%   Wim Ploegaerts							     %
%                                                                            %
%****************************************************************************%
%                                                                            %
% PC 21/4/93                                                                 %
%     Removed dependencies on several external files/theories                %
%                                                                            %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%****************************************************************************%
%                                                                            %
%  DEPENDANCIES :                                                            %
%                                                                            %
%      suc                                 for theorems about SUC            %
%      ineq                                for theorems about inequalities   %
%      add                                 for theorems about addition       %
%      zero_ineq                           for theorems about 0              %
%      num_convs                           for num conversions               %
%                                                                            %
%****************************************************************************%

system `rm -f sub.th`;;

new_theory `sub`;;

new_parent `add`;;
new_parent `zero_ineq`;;

loadt `num_convs`;;

% PC 22-4-92 These are no longer used%
%loadf `tools`;;%
%loadf (library_pathname() ^ `/group/start_groups`);;%
%autoload_defs_and_thms `ineq`;;%


let autoload_defs_and_thms thy =
   map (\name. autoload_theory(`definition`,thy,name))
     (map fst (definitions thy));
   map (\name. autoload_theory(`theorem`,thy,name))
     (map fst (theorems thy)) in

  autoload_defs_and_thms `suc`;
  autoload_defs_and_thms `add`;
  autoload_defs_and_thms `zero_ineq`;;


%============================================================================%
%									     %
% 		     Theorems dealing with substraction			     %
%									     %
%============================================================================%

%<WP>%
let SUB_SUC_PRE_SUB = prove_thm (
  `SUB_SUC_PRE_SUB`,
  "! n m . (0 < n) ==> (n - (SUC m) = (PRE n) - m)",
  INDUCT_TAC THEN
  REWRITE_TAC [NOT_LESS_0;SUB_MONO_EQ;PRE]
);;

%<-------------------------------------------------------------------------->%

%<WP>%
let ADD_SUC = SYM (el 4 (CONJUNCTS ADD_CLAUSES));;

%<WP>%
let SUB_SUC = prove_thm (
  `SUB_SUC`,
   "! k m .  (m < k ) ==> ( k - m = SUC (k - SUC m) ) ",
  REPEAT GEN_TAC THEN
  SUBST_TAC [SYM (SPECL ["k:num";"m:num"] SUB_MONO_EQ)] THEN
  DISCH_THEN \thm .  
               let thm' = MATCH_MP  LESS_SUC_NOT thm in
               ACCEPT_TAC (REWRITE_RULE [thm'] 
                      (SPECL ["k:num";"SUC m"] (CONJUNCT2 SUB)))
);;

%<-------------------------------------------------------------------------->%

%<ELG>%
let SUB_LESS_TO_LESS_ADDR = prove_thm(`SUB_LESS_TO_LESS_ADDR`,
"!m n p.((p<=m)==>(((m-p)<n)=(m<(n+p))))",
((REPEAT GEN_TAC) THEN
 DISCH_TAC THEN
 (REWRITE_TAC
  [(SYM(SPECL["m-p";"n:num";"p:num"]LESS_MONO_ADD_EQ));
   (UNDISCH_ALL(SPECL["m:num";"p:num"]SUB_ADD))])));;

%SUB_LESS_TO_LESS_ADDR = 
 |- !m:num n:num p:num. p <= m ==> ((m - p) < n = m < (n + p))%

%<-------------------------------------------------------------------------->%

%<ELG>%

let SUB_LESS_TO_LESS_ADDL = prove_thm(`SUB_LESS_TO_LESS_ADDL`,
"!m n p.((n<=m)==>(((m-n)<p)=(m<(n+p))))",
((REPEAT GEN_TAC) THEN
 (PURE_ONCE_REWRITE_TAC[ADD_SYM]) THEN
 (ACCEPT_TAC (SPECL["m:num";"p:num";"n:num"]SUB_LESS_TO_LESS_ADDR))));;


%SUB_LESS_TO_LESS_ADDL = 
 |- !m:num n:num p:num. n <= m ==> ((m - n) < p = m < (n + p))%
%<-------------------------------------------------------------------------->%

%<ELG>%

% This theorem could be strengthened; see SUB_LEFT_LESS       [RJB 92.09.29] %
let LESS_SUB_TO_ADDR_LESS = prove_thm(`LESS_SUB_TO_ADDR_LESS`,
"!m n p.((p<=m)==>((n<(m-p))=(n+p)<m))",
((REPEAT GEN_TAC) THEN
 DISCH_TAC THEN
 (REWRITE_TAC
  [(SYM(SPECL["n:num";"m-p";"p:num"]LESS_MONO_ADD_EQ));
   (UNDISCH_ALL(SPECL["m:num";"p:num"] SUB_ADD))])));;

%LESS_SUB_TO_ADDR_LESS = 
 |- !m:num n:num p:num. p <= m ==> (n < (m - p) = (n + p) < m)%


%<-------------------------------------------------------------------------->%

%<ELG>%
let LESS_SUB_TO_ADDL_LESS = prove_thm(`LESS_SUB_TO_ADDL_LESS`,
"!m n p.((n<=m)==>((p<(m-n))=((n+p)<m)))",
((REPEAT GEN_TAC) THEN
 (PURE_ONCE_REWRITE_TAC[ADD_SYM]) THEN
 (ACCEPT_TAC (SPECL["m:num";"p:num";"n:num"]LESS_SUB_TO_ADDR_LESS))));;

%LESS_SUB_TO_ADDL_LESS = 
 |- !m:num n:num p:num. n <= m ==> (p < (m - n) = (n + p) < m)%

%<-------------------------------------------------------------------------->%

%<ELG>%

let SUC_SUB = prove_thm (`SUC_SUB`,
"!m n.(((m<n)==>(((SUC m)-n)=0))/\(~(m<n)==>(((SUC m)-n)=SUC(m-n))))",
%New proof by PC 22-4-93%
((REPEAT GEN_TAC) THEN
 (ASM_CASES_TAC "m<n") THEN
 (ASM_REWRITE_TAC[SUB])));;

%((REPEAT GEN_TAC) THEN (ASM_CASES_TAC "m<n") THEN%
% (ASM_REWRITE_TAC%
%  [((REWRITE_RULE [COND_DEF] (CONJUNCT2 SUB)) and_then%
%    CONV_RULE(DEPTH_CONV BETA_CONV))])%
%THENL%
% [((SELECT_TAC "@x.x=0") THEN (EXISTS_TAC "0") THEN REFL_TAC);%
%  ((SELECT_TAC"@x.x=SUC(m-n)")THEN(EXISTS_TAC"SUC(m-n)")THEN REFL_TAC)]));;%

%SUC_SUB = 
 |- !m:num n:num.
     (m < n ==> ((SUC m) - n = 0)) /\
     (~m < n ==> ((SUC m) - n = SUC(m - n)))%


%<--------------------------------------------------------------------------->%

%<WP>%
% Name change to avoid clash with 1.12 arithmetics SUB_SUB %

let LESS_SUB_BOUND = PROVE
  ("!k l . (k < l) ==> ((l - k) <= l)",
   REWRITE_TAC[SUB_LESS_EQ]
);;

let SUB_SUB_ID = prove_thm (
  `SUB_SUB_ID`,
  "!k l . (l < k) ==> (k - (k - l) = l)",
  REPEAT GEN_TAC THEN 
  DISCH_THEN \thm .
      CONV_TAC ((NUM_EQ_PLUS_CONV "k-l" ) THENC
                (RAND_CONV (ONCE_DEPTH_CONV (REWR_CONV ADD_SYM)))) THEN
      MAP_EVERY  SUBST1_TAC  (map (\t . MATCH_MP SUB_ADD t)
                     [MATCH_MP LESS_SUB_BOUND thm;
                      MATCH_MP LESS_IMP_LESS_OR_EQ thm]) THEN
  REFL_TAC
);;

%<--------------------------------------------------------------------------->%

%<WP>%
let LESS_SUB_IMP_INV = prove_thm (
  `LESS_SUB_IMP_INV`,
  "!k l . (0 < k - l) ==> (l < k)",
  REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN 
  REWRITE_TAC [NOT_LESS;GSYM SUB_EQ_0;SUB_0]
);;

%============================================================================%
%									     %
% 				Simplications				     %
%									     %
%============================================================================%

%<ELG>%
let LESS_EQ_ADD_SUB1 =prove_thm (`LESS_EQ_ADD_SUB1`,
"!m n p.((p <= n) ==> (m+(n-p)=(m+n)-p))",
((REPEAT GEN_TAC) THEN (SPEC_TAC ("m:num", "m:num")) THEN INDUCT_TAC THENL
 [(REWRITE_TAC [(CONJUNCT1 ADD)]);
  ((REWRITE_TAC [(CONJUNCT2 ADD)]) THEN
   DISCH_TAC THEN
   (ASSUME_TAC (SPECL ["p:num";"n:num";"m:num"] ADDL_GREATER_EQ)) THEN
   (ASSUME_TAC (snd(EQ_IMP_RULE(SPECL ["m+n";"p:num"] NOT_LESS)))) THEN
   RES_TAC THEN RES_TAC THEN
   (ASM_REWRITE_TAC [(UNDISCH_ALL(CONJUNCT2(SPECL["m+n";"p:num"]SUC_SUB)))])
  )]));;

%LESS_EQ_ADD_SUB1 =
      |- !m:num n:num p:num. p <= n ==> (m + (n - p) = (m + n) - p)%


%<-------------------------------------------------------------------------->%

%<ELG>%
let LESS_EQ_SUB_ADD=prove_thm (`LESS_EQ_SUB_ADD`,
"!m n p. p <= m ==> ((m-p)+n = (m+n)-p)",
((REPEAT GEN_TAC) THEN
 (PURE_ONCE_REWRITE_TAC[ADD_SYM]) THEN
 (ACCEPT_TAC (SPECL["n:num";"m:num";"p:num"]LESS_EQ_ADD_SUB1))));;

%LESS_EQ_SUB_ADD =
    |- !m:num n:num p:num. p <= m ==> ((m - p) + n = (m + n) - p)%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                            %
%   AUTHOR:       Paul Curzon                                                %
%   DATE:         June 1991                                                  %
%                                                                            %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% See also SUB_LESS_TO_LESS_ADDL and SUB_LESS_TO_LESS_ADDR %

let GREATER_EQ_SUB_LESS_TO_ADD = prove_thm (
  `GREATER_EQ_SUB_LESS_TO_ADD`,
  "!n m p. (p >= n) ==> (((p - n) < m) = (p < (n + m)))",
 (REWRITE_TAC
    [SYM (SPEC "n:num" (SPEC "m:num" (SPEC "p - n" LESS_MONO_ADD_EQ)))]) THEN
 (REPEAT STRIP_TAC) THEN
 (POP_ASSUM (\th .ASSUME_TAC
    (MP  (SPEC "n:num" (SPEC "p:num" SUB_ADD)) 
          (REWRITE_RULE[SPEC "n:num" (SPEC "p:num" GREATER_EQ)]
                       th)))) THEN
 (SUBST_TAC[SPEC_ALL ADD_SYM]) THEN
 (ASM_REWRITE_TAC[]));;

% ********************************************************************** %
let SUB_GREATER_EQ_ADD = prove_thm (
  `SUB_GREATER_EQ_ADD`,
  "!n m p. (p >= n) ==> (((p - n) >= m) = (p >= (n + m)))",
 (REWRITE_TAC[
      SYM (SPEC "n:num" (SPEC "p-n" (SPEC "m:num" 
           (REWRITE_RULE[GSYM GREATER_EQ] LESS_EQ_MONO_ADD_EQ))))]) THEN
 (REPEAT STRIP_TAC) THEN
 (POP_ASSUM (\th .ASSUME_TAC
     (MP  (SPEC "n:num" (SPEC "p:num" SUB_ADD)) 
          (REWRITE_RULE[SPEC "n:num" (SPEC "p:num" GREATER_EQ)]
                       th)))) THEN
 (SUBST_TAC[(SPEC_ALL ADD_SYM)]) THEN
 (ASM_REWRITE_TAC[]));;



% ********************************************************************** %
% |- !n m p. n <= p ==> (m <= (p - n) = (n + m) <= p) %


let SUB_LE_ADD =  save_thm(`SUB_LE_ADD`,
         REWRITE_RULE[GREATER_EQ] SUB_GREATER_EQ_ADD);;
% ************************************************************************ %
let NOT_SUB_0 = prove_thm (`NOT_SUB_0`,
   "!m n . m < n ==> ~(n - m = 0)",
 (REWRITE_TAC[SUB_EQ_0]) THEN
 (REPEAT STRIP_TAC) THEN
 (IMP_RES_TAC LESS_EQ_ANTISYM));;

% ************************************************************************ %
%New proof by PC 22-4-93%
let  NOT_0_SUB = prove_thm( `NOT_0_SUB`,
    "! m n  . (~ (m - n = 0)) ==> ~ (m = 0)",
 (REPEAT STRIP_TAC) THEN
 (CONTR_TAC 
     (REWRITE_RULE [ASSUME "m = 0"; SUB_0]
                   (ASSUME "~(m - n = 0)") ))
);;

% (REPEAT STRIP_TAC) THEN%
% (POP_ASSUM%
%     (\th . ASSUME_TAC (REWRITE_RULE [th] (ASSUME "~(m - n = 0)")))) THEN%
% (POP_TAC (REWRITE_RULE[SUB_0])) THEN%
% (POP_ASSUM  CONTR_TAC));;%
% ************************************************************************ %
% see also PRE_K_K %

let SUB_1_LESS = prove_thm(`SUB_1_LESS`,
     "! m n . ((~ (m = 0)) /\ (m < SUC n)) ==> ((m - 1) < n)",
%New proof by PC 22-4-93%
 (REPEAT STRIP_TAC) THEN
 (REWRITE_TAC[
      (ONCE_REWRITE_RULE[ADD_SYM]
           (REWRITE_RULE [ADD1] (ASSUME "m < SUC n")));
      MATCH_MP (SPECL["1";"n:num"] GREATER_EQ_SUB_LESS_TO_ADD)
               (MATCH_MP NOT_EQ_0 (ASSUME "~ (m = 0)"))]));;


% (REPEAT STRIP_TAC) THEN%
% (POP_TAC (REWRITE_RULE [ADD1])) THEN%
% (IMP_RES_TAC NOT_EQ_0) THEN%
% (IMP_RES_TAC (SPECL["1";"n:num"] GREATER_EQ_SUB_LESS_TO_ADD)) THEN%
% POP_JUNK_TAC THEN%
% POP_JUNK_TAC THEN%
% POP_REWRITE_TAC THEN%
% (ONCE_REWRITE_TAC[ADD_SYM]) THEN%
% (ASM_REWRITE_TAC[]));;%

% ************************************************************************ %
let  SUB_1_LESS_EQ = prove_thm(`SUB_1_LESS_EQ`,
   "! m n. (m < n) ==> ((n - 1) >= m)",
%New proof by PC 22-4-93%
 GEN_TAC THEN
 INDUCT_TAC THENL
 [
 (REWRITE_TAC[SUB_0;GREATER_EQ;LESS_IMP_LESS_OR_EQ]);

 (REPEAT STRIP_TAC) THEN
 (REWRITE_TAC[SUC_SUB1;GREATER_EQ;LESS_OR_EQ]) THEN
 (DISJ_CASES_TAC (REWRITE_RULE[LESS_THM](ASSUME "m < SUC n") )) THEN
 (ASM_REWRITE_TAC[])]);;

% GEN_TAC THEN%
% INDUCT_TAC THENL%
% [%
% (REWRITE_TAC[SUB_0;GREATER_EQ;LESS_IMP_LESS_OR_EQ]);%
% (REPEAT STRIP_TAC) THEN%
% (REWRITE_TAC[SUC_SUB1;GREATER_EQ;LESS_OR_EQ]) THEN%
% (POP_TAC (REWRITE_RULE[LESS_THM])) THEN%
% (POP_ASSUM (DISJ_CASES_TAC)) THEN%
% POP_REWRITE_TAC]);;%
% ************************************************************************* %
let ADD_LESS_EQ_SUB = save_thm(`ADD_LESS_EQ_SUB`,
   GSYM (REWRITE_RULE[GREATER_EQ] SUB_GREATER_EQ_ADD));;


%****************************************************************************%
%                                                                            %
% AUTHOR        : R.J.Boulton                                                %
% DATE          : 1990                                                       %
%                                                                            %
%****************************************************************************%



let PRE_SUB_SUC = prove_thm(`PRE_SUB_SUC`,
  "!m n. (m < n) ==> (PRE (n - m) = (n - (SUC m)))",
   GEN_TAC THEN
   INDUCT_TAC THENL
   [REWRITE_TAC [SUB_0;PRE];
    STRIP_TAC THEN
    ASM_REWRITE_TAC [SUB;SUB_MONO_EQ] THEN
    IMP_RES_TAC (REWRITE_RULE [] (CONTRAPOS (SPEC_ALL LESS_SUC_NOT))) THEN
    ASM_REWRITE_TAC [PRE]]);;
%----------------------------------------------------------------------------%

%****************************************************************************%
%                                                                            %
% AUTHOR        : Rachel Cardell-Oliver                                      %
% DATE          : 1990                                                       %
%                                                                            %
%****************************************************************************%


let LESS_PRE = prove_thm(`LESS_PRE`,
 "!i m:num. ( i < (m-1) ) ==> (i < m)",
 GEN_TAC THEN INDUCT_TAC THEN
 REWRITE_TAC[SUB_0;NOT_LESS_0;SYM (SPEC_ALL PRE_SUB1);PRE;LESS_SUC]);;



let PRE_LESS_LESS_SUC = prove_thm( `PRE_LESS_LESS_SUC`,
 "!i:num. !m:num.  ( i<(m-1)  /\  0<m ) ==> (i+1)<m " ,
 GEN_TAC THEN INDUCT_TAC THEN
 REWRITE_TAC[LESS_REFL;LESS_0;SYM(SPEC_ALL PRE_SUB1);
               SYM(SPEC_ALL ADD1);PRE;LESS_MONO_EQ] );;

let SUB_PRE_SUB_1 = 
prove_thm(
  `SUB_PRE_SUB_1`,
  "!a b:num.(0<b) ==> (((a-(PRE b))-1) = (a-b))",
  REPEAT STRIP_TAC THEN
  REWRITE_TAC [(SYM (SPEC_ALL SUB_PLUS));PRE_SUB1] THEN
  IMP_RES_TAC LESS_OR THEN
  POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [SYM SUC_0])) THEN
  IMP_RES_TAC SUB_ADD THEN
  ASM_REWRITE_TAC[] );;


%less_sub_imp_sum_less --> LESS_SUB_IMP_SUM_LESS PC%
let LESS_SUB_IMP_SUM_LESS = prove_thm(`LESS_SUB_IMP_SUM_LESS`,
 "!i:num. !m:num.  ( i<(m-1)  /\  1<m ) ==> (i+1)<m " ,
  REPEAT STRIP_TAC THEN
  ASSUME_TAC (SPECL ["i:num";"m-1";"1"] LESS_MONO_ADD_EQ) THEN
  IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
  IMP_RES_TAC SUB_ADD THEN
  POP_ASSUM(\thm. ONCE_REWRITE_TAC[SYM thm]) THEN
  ASM_REWRITE_TAC[]  );;


let SUB_SELF= SUB_EQUAL_0;;

let ADD_SUB_SYM = save_thm(`ADD_SUB_SYM`,
    ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB);;

let SUB_ADD_SELF = prove_thm(`SUB_ADD_SELF`,
  "!m n. ~(m<n) ==> ( ((m-n)+n)=m )" ,
   REWRITE_TAC[NOT_LESS;SUB_ADD]  );;




let SMALLER_SUM = prove_thm(`SMALLER_SUM`,
  "!m n p. (m<p /\ n<p) ==> ~( ((m+n)-p) > m)",
  REPEAT STRIP_TAC THEN
  POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [GREATER])) THEN
  ASM_CASES_TAC "(m+n)<=p" THENL
  [ POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [GSYM SUB_EQ_0])) THEN
    UNDISCH_TAC "m < ((m + n) - p)" THEN ASM_REWRITE_TAC[NOT_LESS_0] ;

% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
%    POP_ASSUM(ASSUME_TAC o (REWRITE_RULE [NOT_LESS_EQ_LESS])) THEN %
    POP_ASSUM(ASSUME_TAC o (REWRITE_RULE [NOT_LESS_EQUAL])) THEN
    IMP_RES_TAC (SPEC "p:num" (SPEC "(m+n)-p" (SPEC "m:num" 
      LESS_MONO_ADD))) THEN
    POP_ASSUM(\thm. MP_TAC thm) THEN
    IMP_RES_TAC (SPEC "m+n" (SPEC "p:num" LESS_IMP_LESS_OR_EQ)) THEN
    IMP_RES_TAC (SPEC "p:num" (SPEC "m+n" SUB_ADD)) THEN
    ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
    POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [ADD_MONO_LESS])) THEN
    UNDISCH_TAC "n<p" THEN
    UNDISCH_TAC "p<n" THEN
    REWRITE_TAC [IMP_DISJ_THM;NOT_CLAUSES;
        (SYM (CONJUNCT1 (SPEC_ALL DE_MORGAN_THM)));LESS_ANTISYM] ] );;




let NOT_LESS_SUB = prove_thm(`NOT_LESS_SUB`,
  "!m n. ~( m < (m-n) )"  ,
   REPEAT GEN_TAC THEN
   ASM_CASES_TAC "m<=n" THENL
   [ POP_ASSUM(\thm. REWRITE_TAC[REWRITE_RULE[GSYM SUB_EQ_0]thm;NOT_LESS_0]);
% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
%     POP_ASSUM(ASSUME_TAC o REWRITE_RULE[NOT_LESS_EQ_LESS]) THEN%
     POP_ASSUM(ASSUME_TAC o REWRITE_RULE[NOT_LESS_EQUAL]) THEN
     IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
     IMP_RES_TAC SUB_ADD THEN
     REWRITE_TAC[NOT_LESS] THEN
     ONCE_REWRITE_TAC[GSYM(SPECL["m-n";"m:num";"n:num"]LESS_EQ_MONO_ADD_EQ)]
     THEN ASM_REWRITE_TAC[LESS_EQ_ADD] ] );;



let SUB_BOTH_SIDES = prove_thm(`SUB_BOTH_SIDES`,
  "!m n p. (m=n) ==> ( (m-p)=(n-p) )",
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] );;

let SUB_LESS_BOTH_SIDES = prove_thm(`SUB_LESS_BOTH_SIDES`,
  "!m n p. ((p<=m) /\ (m<n)) ==> ( (m-p) < (n-p) )",
  REPEAT STRIP_TAC THEN
  IMP_RES_TAC SUB_ADD THEN
  ASM_REWRITE_TAC[
    SYM(SPEC "p:num" (SPEC "n-p" (SPEC "m-p" LESS_MONO_ADD_EQ)))] THEN
  IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
  IMP_RES_TAC LESS_IMP_LESS_OR_EQ THEN
  IMP_RES_TAC SUB_ADD THEN
  ASM_REWRITE_TAC[] );;


%New proof by PC 22-4-93%
let LESS_TWICE_IMP_LESS_SUB =prove_thm(`LESS_TWICE_IMP_LESS_SUB`,
  "!a:num. !b:num. !m:num.
     ( a<m /\ b<m /\ m<=(a+b) ) ==> ( ((a+b)-m) < m )" ,
   REPEAT STRIP_TAC THEN
   (ACCEPT_TAC
    (REWRITE_RULE [ADD_SUB_SYM]
     (MATCH_MP SUB_LESS_BOTH_SIDES
      (CONJ (ASSUME"m <= (a + b)")
         (MATCH_MP LESS_LESS_MONO 
            (CONJ (ASSUME"a < m")  (ASSUME"b < m") ))))))
);;

%   REPEAT STRIP_TAC THEN%
%   IMP_RES_TAC LESS_LESS_MONO THEN%
%   FILTER_IMP_RES_TAC "((a + b) - m) < ((m + m) - m)" SUB_LESS_BOTH_SIDES THEN%
%   POP_ASSUM ( ASSUME_TAC o (REWRITE_RULE [ADD_SUB_SYM])) THEN%
%   ASM_REWRITE_TAC[] );;%


let SUB_LESS_EQ_SUB_SUC = prove_thm(`SUB_LESS_EQ_SUB_SUC`,
 "!a b c n:num. 0<c /\  a<=(b-n) ==> ( (a-c) <= (b-SUC n) )",
REPEAT INDUCT_TAC THEN 
% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
%let th1 = (REWRITE_RULE [SYM (SPEC_ALL NOT_LESS_EQ_LESS)] LESS_0) in%
let th1 = (REWRITE_RULE [SYM (SPEC_ALL NOT_LESS_EQUAL)] LESS_0) in
  ASM_REWRITE_TAC[LESS_REFL;SUB_0;th1;LESS_0] THEN  
ASM_REWRITE_TAC[SUB_MONO_EQ;LESS_EQ_MONO;SUB_0;ZERO_LESS_EQ] THEN
STRIP_TAC THEN
let th2 = (REWRITE_RULE [NOT_LESS] NOT_LESS_SUB) in
  ASSUME_TAC (SPECL ["a:num";"c:num"] th2) THEN
IMP_RES_TAC LESS_EQ_TRANS THEN
IMP_RES_TAC OR_LESS THEN
IMP_RES_TAC SUB_LESS_OR THEN 
POP_ASSUM (ASSUME_TAC o REWRITE_RULE 
   [SYM (SPEC_ALL SUB_PLUS);SYM(SPEC_ALL ADD1)]) THEN
IMP_RES_TAC LESS_EQ_TRANS );;


let SUB_EQ_SUB_ADD_SUB = prove_thm(`SUB_EQ_SUB_ADD_SUB`,
  "!a b c. ( (a<=b) /\ (b<=c) )  ==> ( (c-a) = ( (c-b)+(b-a) ))",
  REPEAT STRIP_TAC THEN
  REWRITE_TAC 
    [(SYM (SPECL ["c-a";"(c-b)+(b-a)";"a:num"] EQ_MONO_ADD_EQ))] THEN
  IMP_RES_TAC LESS_EQ_TRANS THEN
  IMP_RES_TAC SUB_ADD THEN
  ASM_REWRITE_TAC [(SYM (SPEC_ALL ADD_ASSOC))]  );;


let ADD_EQ_IMP_SUB_EQ =prove_thm(`ADD_EQ_IMP_SUB_EQ`,
  "!a b c:num. (a=(b+c)) ==> ((a-b)=c)",
  ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC (SPECL ["b:num";"c:num"] LESS_EQ_ADD) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_TAC THEN
  MP_TAC (SPECL ["c:num";"b:num";"a:num"] ADD_EQ_SUB) THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  ASM_REWRITE_TAC[] );;


let SUB_GREATER_0 = prove_thm(`SUB_GREATER_0`, 
  "!a b:num. a<b ==> ( (b-a)>0 )",
  REPEAT STRIP_TAC THEN
  POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [
% PC 12/8/92 NOT_LESS_EQ_LESS -> NOT_LESS_EQUAL %
%            (SYM (SPEC_ALL NOT_LESS_EQ_LESS))])) THEN %
            (SYM (SPEC_ALL NOT_LESS_EQUAL))])) THEN
  DISJ_CASES_TAC (SPECL ["b-a"] LESS_0_CASES) THENL
  [ POP_ASSUM (ASSUME_TAC o ((REWRITE_RULE [SUB_EQ_0]) o SYM)) THEN 
    UNDISCH_TAC "b<=a" THEN
    ASM_REWRITE_TAC[] ;
    ASM_REWRITE_TAC[GREATER] ] );;
 
let LESS_EQ_SUB_1 = prove_thm(`LESS_EQ_SUB_1`,
  "!a b.  a<=b ==> ((a-1) <= (b-1))" ,
   REPEAT STRIP_TAC THEN
   POP_ASSUM (DISJ_CASES_TAC o (REWRITE_RULE [LESS_OR_EQ])) THENL
   [ IMP_RES_TAC SUB_LESS_OR THEN
     ASSUME_TAC 
       (REWRITE_RULE [NOT_LESS] (SPECL ["a:num";"1"] NOT_LESS_SUB)) THEN
     IMP_RES_TAC LESS_EQ_TRANS ;
     ASM_REWRITE_TAC[LESS_EQ_REFL] ] );;


let SUB_LESS_EQ_SUB1  = prove_thm(`SUB_LESS_EQ_SUB1`,
  "!x:num. x>0 ==> (!a:num. (a-x) <= (a-1))" ,
  REPEAT STRIP_TAC THEN
  POP_ASSUM (ASSUME_TAC o (REWRITE_RULE [GREATER])) THEN
  IMP_RES_TAC (SPECL ["a:num";"a:num";"x:num";"0"] SUB_LESS_EQ_SUB_SUC) THEN
  POP_ASSUM (ASSUME_TAC o 
     (REWRITE_RULE [SUB_0;LESS_EQ_REFL;(SYM SUC_0)])) THEN
  ASM_REWRITE_TAC[] );;


close_theory();;