File: tools.ml

package info (click to toggle)
hol88 2.02.19940316-8
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 63,120 kB
  • ctags: 19,367
  • sloc: ml: 199,939; ansic: 9,300; sh: 7,118; makefile: 6,074; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (489 lines) | stat: -rw-r--r-- 20,898 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
%****************************************************************************%
%									     %
% File:         tools.ml						     %
%									     %
% Editor:       Paul Curzon			     			     %
%									     %
% Date:         May 1991						     %
%									     %
% Description:  General Purpose Stuff that can be loaded without	     %
% 	        having to load any other library/file			     %
%									     %
%****************************************************************************%



%*********************************  HISTORY  ********************************%
%									     %
%	This file is the amalgamation of general purpose tool files from     %
%	  Mike Benjamin							     %
%	  Paul Curzon							     %
%	  Wim Ploegaerts						     %
%	The files have been trimmed to include only those tools used by the  %
%	more_arithmetic and more_lists libraries			     %
%									     %
%*****************************  END OF HISTORY  *****************************%





%****************************************************************************%
%									     %
% File:         general_purp.ml						     %
%									     %
% Author:       Wim Ploegaerts  (ploegaer@imec.be)			     %
%									     %
% Date:         Mon Feb 11 1991						     %
%									     %
% Organization: Imec vzw.						     %
%               Kapeldreef 75						     %
%               3001 Leuven - Belgium					     %
%									     %
% Description:  General Purpose Stuff that can be loaded without	     %
% 	      having to load any other library/file			     %
%									     %
%****************************************************************************%





%----------------------------------------------------------------------------%
%									     %
% 				 CONVERSIONS				     %
%									     %
%----------------------------------------------------------------------------%


let LHS_CONV = RATOR_CONV o RAND_CONV;;

let CONJ1 = fst o CONJ_PAIR;;

let CONJ2 = snd o CONJ_PAIR;;

let SPEC_SYM = SYM o SPEC_ALL;;






%----------------------------------------------------------------------------%
%									     %
% 				    RULES				     %
%									     %
%----------------------------------------------------------------------------%


let SYM_RULE = 
    CONV_RULE (ONCE_DEPTH_CONV SYM_CONV) 
    ? failwith `SYM_RULE`;;


%----------------------------------------------------------------------------%
%									     %
% 				   TACTICS				     %
%									     %
%----------------------------------------------------------------------------%


%============================================================================%
%									     %
%                        PROTECT_REWRITE_CONV:				     %
%									     %
%        Conversion for rewrite rules of the form |- !x1 ... xn. t == u	     %
%              Matches x1 ... xn : 	 t'  ---->  |- t' == u'		     %
%   Matches all types in conclusion except those mentioned in hypotheses     %
%									     %
%============================================================================%



%									     %
%      `REWRITE_CONV` behandelt alle vrije variabelen met vervanging door    %
%      generieke variabelen  (`genvars`). De volgende protected functies     %
%      leggen hieraan restricties op.					     %
%									     %




letrec PROTECT_GSPEC tml th =
    let wl,w = dest_thm th in
    if is_forall w then
	let tm = fst(dest_forall w) in
	let tm' = (mem tm tml) => (genvar (type_of tm)) | tm in
	PROTECT_GSPEC tml (SPEC tm' th)
    else th;;

%									     %
% Match a given part of "th" to a term, instantiating "th".		     %
% The part should be free in the theorem, except for outer bound variables   %
%									     %

let PROTECT_PART_MATCH tml  partfn th =
    let pth = PROTECT_GSPEC tml (GEN_ALL th)  in
    let pat = partfn(concl pth) in
    let matchfn = match pat in
    \tm. INST_TY_TERM (matchfn tm) pth;;



let PROTECT_REWRITE_CONV tml =
  set_fail_prefix `PROTECT_REWRITE_CONV`
     (PROTECT_PART_MATCH tml (fst o dest_eq));;  

%									     %
%    Example of the use:						     %
%    ------------------							     %
%									     %
%    TRANSLATION_LEQ_EQ:						     %
%      " !z x y . (x leq y) = (x plus z) leq (y plus z)"		     %
%									     %
%    let thm = SPEC "n:zet" TRANSLATION_LEQ_EQ;;			     %
%    thm = |- !x y. x leq y = (x plus n) leq (y plus n) : thm		     %
%									     %
%    (PROTECT_REWRITE_CONV ["x:zet";"y:zet"] thm) "a leq b";;		     %
%    |- a leq b = (a plus n) leq (b plus n)				     %
%									     %
%    (REWR_CONV thm) "a leq b";;					     %
%    |- a leq b = (a plus GEN_VAR_871) leq (b plus GEN_VAR_871)		     %
%									     %

%<-------------------------------------------------------------------------->%

%****************************************************************************%
%									     %
% File:         tactics.ml						     %
%									     %
% Author:       Paul Curzon			     			     %
%									     %
% Date:         May 1991						     %
%									     %
%									     %
%****************************************************************************%

%****************************************************************************%
%									     %
%   Tactic to rewrite using the last added assumption and general rewrites   %
%									     %
%****************************************************************************%

let POP_REWRITE_TAC = POP_ASSUM (\th.REWRITE_TAC[th]);;

%****************************************************************************%
%									     %
%   Tactic to remove the last added assumption from the assumption list      %
%									     %
%****************************************************************************%

let POP_JUNK_TAC = POP_ASSUM (\th. ALL_TAC);;

%****************************************************************************%
%									     %
%   Tactics to apply rules to the last added assumption from the             %
%   assumption list      						     %
%									     %
%****************************************************************************%

let POP_TAC rule = POP_ASSUM (\th . ASSUME_TAC (rule th));;


let PEEK_ASSUM (thm_tac:thm_tactic) ((asl,g):goal) =
     thm_tac (ASSUME (hd asl))
             (asl, g);;


let PEEK_TAC rule = PEEK_ASSUM (\th . ASSUME_TAC (rule th));;

%****************************************************************************%
%									     %
%   Specialize a single named variable t1 to t2				     %
%									     %
%****************************************************************************%

let SPEC1 t1 t2 th =
     (GEN_ALL (SPEC t2 (GEN t1 (SPEC_ALL th))));;

%****************************************************************************%
%									     %
%   Rewrite the last assumption with the second last			     %
%									     %
%****************************************************************************%

let REWRITE_A1_WITH_A2_THEN (tac:thm_tactic)  =
      (POP_ASSUM (\th1 . (POP_ASSUM (\th2. tac
         (REWRITE_RULE[th2] th1)))));;

%****************************************************************************%
%									     %
%   Rewrite the second last assumption with the  last			     %
%									     %
%****************************************************************************%


let REWRITE_A2_WITH_A1_THEN (tac:thm_tactic)  =
      (POP_ASSUM (\th1 . (POP_ASSUM (\th2. tac
         (REWRITE_RULE[th1] th2)))));;
%****************************************************************************%
%									     %
%   Versions of RES_TAC and IMP_RES_TAC which only add a single new	     %
%   assumption	to the assumption list. It must be identical to the term     %
%   given orelse no new assumption is added		    	     	     %
%									     %
%****************************************************************************%


let FILTER_THM f target th =
         if (snd (dest_thm th)) = target
         then f th
         else ALL_TAC;;

letrec filter_assume_tac th (asl,c) g =
   if (asl = []) then ASSUME_TAC th g
   else if ((snd (dest_thm th)) = (hd asl)) then ALL_TAC g
   else filter_assume_tac th ((tl asl),c) g ;;

let FILTER_ASSUME_TAC th1 g =
      filter_assume_tac th1 g g;;

let FILTER_IMP_RES_TAC t  =
   REPEAT_GTCL IMP_RES_THEN (FILTER_THM FILTER_ASSUME_TAC t);;

let FILTER_RES_TAC t  =
    let FILTER_THM f target th =
         if (snd (dest_thm th)) = target
         then f th
         else FILTER_IMP_RES_TAC target th
     in
       RES_THEN (FILTER_THM FILTER_ASSUME_TAC t);;
%****************************************************************************%
%									     %
%   STRIP_TAC except do not split CONJUNCTS apart.			     %
%									     %
%****************************************************************************%
let NC_STRIP_TAC (asl,t) =
     if is_conj t
     then NO_TAC (asl,t)
     else (STRIP_TAC (asl,t)) ;; 




%   ***************************************************************************
    *                                                                         *
    *    Mike Benjamin                                                        *
    *    FPC 267                                                              *
    *    British Aerospace Sowerby Research Centre                            *
    *    PO BOX 5                                                             *
    *    Filton                                                               *
    *    Bristol  BS12 7QW                                                    *
    *                                                                         *
    *    Tel: (0272) 366198                                                   *
    *    EMAIL: benjamin@src.bae.co.uk                                        *
    *                                                                         *
    **************************************************************************%



%   **************************************************************************
    *                                                                         *
    *    GENERAL PURPOSE TACTICS.                                             *
    *                                                                         *
    *    These are based on existing tactics in Cambrideg-LCF that don't seem
          to have been implemented                                            *
    *    in HOL.                                                              *
    *                                                                         *
    *         !!! WARNING !!!                                                 *
    *    No provision has been made in these routines for exception handling. *
    *                                                                         *
    **************************************************************************%




%   ***************************************************************************
    *                                                                         *
    *    CUT : thm -> thm -> thm                                              *
    *                                                                         *
    *    X |- A    Y, A |- B                                                  *
    *    -------------------                                                  *
    *        X, Y |- B                                                        *
    *                                                                         *
    **************************************************************************%

let CUT ath bth = MP (DISCH (concl ath) bth) ath;;

%   ***************************************************************************
    *                                                                         *
    *    Introduce a lemma.                                                   *
    *                                                                         *
    *    CUT_TAC : form -> tactic                                             *
    *               A                                                         *
    *                                                                         *
    *    X |- A    X, A |- B                                                  *
    *    -------------------                                                  *
    *        X |- B                                                           *
    *                                                                         *
    **************************************************************************%

let CUT_TAC A :tactic (asl,B) = 
    ([(asl,A);(A.asl,B)], (\ [thA;thB]. CUT thA thB));;

%   ***************************************************************************
    *                                                                         *
    *    Add a theorem to the assumption list.                                *
    *                                                                         *
    *    CUT_TAC : thm -> tactic                                              *
    *               A                                                         *
    *                                                                         *
    *    Y, A |- B                                                            *
    *    ---------                                                            *
    *     Y |- B                                                              *
    *                                                                         *
    **************************************************************************%
 
let CUT_THM_TAC bth :tactic (asl,w) =
    ([(((concl bth).asl),w)],(\ [th]. CUT bth th));;


%   ***************************************************************************
    *                                                                         *
    * Disjunction elimination in the assumption list, generating two subgoals.*
    *                                                                         *
    *    DISJ_LEFT_TAC : tactic                                               *
    *                                                                         *
    *      X, A |- C   X ,B |- C                                              *
    *     ----------------------                                              *
    *         X, A \/ B |- C                                                  *
    *                                                                         *
    **************************************************************************%


letrec take  p (rxs, xxs) = if
                             (length xxs = 0)
                           then 
                              ([], rev rxs)
                           else
                             (if 
                                p (hd xxs)
                              then
                                ([hd xxs], rev rxs @ (tl xxs))
                              else
                                take p ((hd xxs).rxs, (tl xxs)));;

let take_first p xs = take p ([],xs);;

let DISJ_LEFT_TAC :tactic (asl,C) =
       let 
         ([asm], asl') = (take_first is_disj asl)
       in
           let 
              (A,B) = (dest_disj asm)
           in  
    ([(A.asl',C); (B.asl',C)], \[thA;thB]. DISJ_CASES (ASSUME asm) thA thB);;


%   ***************************************************************************
    *                                                                         *
    *    Specialise forall.                                                   *
    *                                                                         *
    *    FORALL_LEFT_TAC : term X term -> tactic                              *
    *                                                                         *
    *     Y, !x.A, A[t/x] |- B                                                *
    *     --------------------                                                *
    *         Y, !x.A |- B                                                    *
    *                                                                         *
    **************************************************************************%

let isvar_forall x C =
    is_forall C &
	let (y,_) = dest_forall C in x=y;;

let FORALL_LEFT_TAC (t:term,x:term) :tactic ((asl,C):goal) =
       let ([asm], z) = take_first (isvar_forall x) asl in
           let specth = SPEC t (ASSUME asm)
           in  ([(concl specth . asl, C)], 
                \ [th]. CUT specth th);;

%   ***************************************************************************
    *                                                                         *
    *    Specialise exists.                                                   *
    *                                                                         *
    *    EXISTS_LEFT_TAC : tactic                                             *
    *                                                                         *
    *     Y, A[x'/x] |- B                                                     *
    *     ---------------  (provided x' is not free in ?x.A, Y, or B)         *
    *       Y, ?x.A |- B                                                      *
    *                                                                         *
    **************************************************************************%

let terml_frees wl = itlist (\ w . union (frees w)) wl [];;

let EXISTS_LEFT_TAC :tactic (asl,C) =
       let ([asm], asl') = take_first is_exists asl in
           let (x,A) = dest_exists asm in
           let x' = variant (terml_frees(C.asl)) x in
           let A' = subst [(x',x)] A
           in  ([(A'.asl',C)], 
                \ [th]. CHOOSE (x', ASSUME asm) th);;

%   ***************************************************************************
    *                                                                         *
    * Solve a goal provided the result to be proven is in the assumption list.*
    *                                                                         *
    *    ACCEPT_ASM_TAC : tactic                                              *
    *                                                                         *
    **************************************************************************%


let ACCEPT_ASM_TAC : tactic ((asl,a):goal) = ([], \[]. ASSUME a);;

%   ***************************************************************************
    *                                                                         *
    *    A set of tactics that rewrite the goal using                         *
    *    assumptions identified by index numbers.                             *
    *                                                                         *
    *    N_REWRITE_TAC : integer -> tactic                                    *
    *    S_REWRITE_TAC : integer list -> tactic                               *
    *    ONCE_N_REWRITE_TAC :integer -> tactic                                *
    *                                                                         *
    **************************************************************************%

letrec index i (x.xs) = if (i = 1) then x else (index (i-1)  xs);;

letrec indexes is xs = if (is = []) then [] else ((index (hd is) xs).(indexes (tl is) xs));;

let N_REWRITE_TAC n  = ASSUM_LIST (\ (x:thm list). REWRITE_TAC [index n x]);;

let S_REWRITE_TAC n  = ASSUM_LIST (\ (x:thm list). REWRITE_TAC (indexes n x));;

let ONCE_N_REWRITE_TAC n  = ASSUM_LIST (\ (x:thm list). ONCE_REWRITE_TAC [index n x]);;
 
%   ***************************************************************************
    *                                                                         *
    * A tactic that adds the inverse of an assumption to the assumption list. *
    *    It is based on the law that equality is symmetric.                   *
    *                                                                         *
    *    N_REVERSE_TAC : integer -> tactic                                    *
    *                                                                         *
    **************************************************************************%

let N_REVERSE_TAC n = ASSUM_LIST (\ (x:thm list). CUT_THM_TAC (ONCE_REWRITE_RULE [EQ_SYM_EQ] (index n x)));;


let autoload_defs_and_thms thy =
   map (\name. autoload_theory(`definition`,thy,name))
     (map fst (definitions thy));
   map (\name. autoload_theory(`theorem`,thy,name))
     (map fst (theorems thy));;

let LEMMA_PROOF term tacticl (asl,g) =
(MP_TAC (TAC_PROOF ((asl,term), (EVERY tacticl))) THEN STRIP_TAC)  (asl,g);;


let MATCH_EQ_MP eqth = 
     let match = PART_MATCH (fst o dest_eq) eqth ? failwith `MATCH_MP` 
     in
     \th. EQ_MP (match (concl th)) th;;