1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
%============================================================================%
% This file contains examples to illustrate the HOL tools to support %
% programming logics provided in the library prog_logic88. %
% The principles underlying these tools are described in the paper: %
% %
% "Mechanizing Programming Logics in Higher Order Logic", %
% by M.J.C. Gordon, in "Current Trends in Hardware Verification and %
% Automated Theorem Proving" edited by P.A. Subrahmanyam and %
% Graham Birtwistle, Springer-Verlag, 1989. %
% %
% It is hoped that if the ML phrases in this file are evaluated in the %
% order given, the results will illustrate the contents of the library. %
% %
%============================================================================%
%----------------------------------------------------------------------------%
% The naming convention used below is that ML variables th1, th2, etc %
% are pure logic theorems, hth1, hth2, etc name theorems of Hoare Logic and %
% tth1, tth2, etc name theorems in the Hoare Logic of total correctness %
% (however, theorems of Hoare Logic (for both partial and total correctness) %
% are really only specially printed theorems of pure logic). %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% Examples to illustrate the special parsing and printing. This is %
% currently done in Lisp, but it is hoped eventually to provide ML-level %
% facilities to support user programmable syntax. Work on this will be %
% part of an Esprit Basic Research Action joint with Philips and IMEC. %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% Examples to illustrate forward proof using Hoare Logic (hoare_logic.ml). %
%----------------------------------------------------------------------------%
%----------------------------------------------------------------------------%
% Load in the generated parser for the language. %
%----------------------------------------------------------------------------%
loadf `loader`;;
%----------------------------------------------------------------------------%
% The Assignment Axiom %
%----------------------------------------------------------------------------%
let hth1 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (Y=y)}"`) (MK_NICE `"R := X"`);;
let hth2 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (X=y)}"`) (MK_NICE `"X := Y"`);;
pretty_off();;
hth1;;
MK_SPEC;;
pretty_on();;
%----------------------------------------------------------------------------%
% The Sequencing Rule %
%----------------------------------------------------------------------------%
let hth1 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (Y=y)}"`) (MK_NICE `"R:=X"`);;
let hth2 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (X=y)}"`) (MK_NICE `"X:=Y"`);;
let hth3 = ASSIGN_AX (MK_NICE `"{(Y=x) /\\ (X=y)}"`) (MK_NICE `"Y:=R"`);;
SEQ_THM;;
let hth4 = SEQ_RULE (hth1,hth2);;
let hth5 = SEQ_RULE (hth4,hth3);;
let hth6 = SEQL_RULE[hth1;hth2;hth3];;
%----------------------------------------------------------------------------%
% Precondition Strengthening %
%----------------------------------------------------------------------------%
let th1 = DISCH_ALL(CONTR "((X:num=x) /\ (Y:num=y))" (ASSUME (MK_NICE `"F"`)));;
let hth7 = PRE_STRENGTH_RULE(th1,hth5);;
%----------------------------------------------------------------------------%
% Postcondition Weakening %
%----------------------------------------------------------------------------%
let th2 = prove("((Y:num=x) /\ (X:num=y)) ==> T", REWRITE_TAC[]);;
let hth8 = POST_WEAK_RULE(hth5,th2);;
%----------------------------------------------------------------------------%
% On-armed Conditional Rule %
%----------------------------------------------------------------------------%
new_theory`MAX` ? extend_theory `MAX` ? ();;
let MAX =
new_definition
(`MAX`, "MAX(m,n) = ((m>n) => m | n)") ? definition `MAX` `MAX` ;;
let hth9 = ASSIGN_AX "{X = MAX(x,y)}" (MK_NICE `"X := Y"`);;
let MAX_LEMMA1 =
theorem `MAX` `MAX_LEMMA1`
?
prove_thm
(`MAX_LEMMA1`,
"((X=x) /\ (Y=y)) /\ (Y>X) ==> (Y=MAX(x,y))",
REWRITE_TAC[MAX;GREATER]
THEN REPEAT STRIP_TAC
THEN ASSUM_LIST(\thl. ONCE_REWRITE_TAC(mapfilter SYM thl))
THEN ASM_CASES_TAC (MK_NICE `"Y<X"`)
THEN ASM_REWRITE_TAC[]
THEN IMP_RES_TAC LESS_ANTISYM);;
let hth10 = PRE_STRENGTH_RULE(MAX_LEMMA1,hth9);;
let MAX_LEMMA2 =
theorem `MAX` `MAX_LEMMA2`
?
prove_thm
(`MAX_LEMMA2`,
"((X=x) /\ (Y=y)) /\ ~(Y>X) ==> (X=MAX(x,y))",
REWRITE_TAC[MAX;GREATER;NOT_LESS;LESS_OR_EQ]
THEN REPEAT STRIP_TAC
THEN ASSUM_LIST(\thl. ONCE_REWRITE_TAC(mapfilter SYM thl))
THEN ASM_CASES_TAC (MK_NICE `"Y<X"`)
THEN ASM_REWRITE_TAC[]
THEN RES_TAC);;
let hth11 = IF1_RULE(hth10,MAX_LEMMA2);;
%----------------------------------------------------------------------------%
% Two-armed Conditional Rule %
%----------------------------------------------------------------------------%
let hth12 = ASSIGN_AX "{R = MAX(x,y)}" (MK_NICE `"R := Y"`);;
let hth13 = PRE_STRENGTH_RULE(MAX_LEMMA1,hth12);;
let hth14 = ASSIGN_AX "{R = MAX(x,y)}" (MK_NICE `"R := X"`);;
let hth15 = PRE_STRENGTH_RULE(MAX_LEMMA2,hth14);;
let hth16 = IF2_RULE(hth13,hth15);;
%----------------------------------------------------------------------------%
% The WHILE-Rule %
%----------------------------------------------------------------------------%
let hth17 = ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`)
(MK_NICE `"Q := (Q + 1)"`);;
let hth18 = ASSIGN_AX (MK_NICE `"{X = R + (Y * (Q + 1))}"`)
(MK_NICE `"R := (R-Y)"`);;
let hth19 = SEQ_RULE(hth18,hth17);;
let th2 =
prove
((MK_NICE `"((X = R + (Y * Q)) /\\ (Y<=R)) ==>
(X = (R - Y) + (Y * (Q + 1)))"`),
REPEAT STRIP_TAC
THEN REWRITE_TAC[LEFT_ADD_DISTRIB;MULT_CLAUSES]
THEN ONCE_REWRITE_TAC[SPEC (MK_NICE `"Y*Q"`) ADD_SYM]
THEN ONCE_REWRITE_TAC[ADD_ASSOC]
THEN IMP_RES_TAC SUB_ADD
THEN ASM_REWRITE_TAC[]);;
let hth20 = PRE_STRENGTH_RULE(th2,hth19);;
let hth21 = WHILE_RULE hth20;;
pretty_off();;
WHILE_THM;;
%----------------------------------------------------------------------------%
% The pretty printer needs more work ... %
%----------------------------------------------------------------------------%
pretty_on();;
WHILE_THM;; % "{p s /\ b s}" should print as "{p /\ s}" %
let hth22 =
SEQL_RULE
[ASSIGN_AX (MK_NICE `"{X = R + (Y * 0)}"`) (MK_NICE `"R := X"`);
ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) (MK_NICE `"Q := 0"`);
hth21];;
let th3 =
prove
((MK_NICE `"(~(Y <= R)) = (R < Y)"`),
ONCE_REWRITE_TAC[SYM(SPEC (MK_NICE `"R<Y"`) (hd(CONJUNCTS NOT_CLAUSES)))]
THEN PURE_REWRITE_TAC[NOT_LESS]
THEN REFL_TAC);;
let hth23 = REWRITE_RULE[th3;MULT_CLAUSES;ADD_CLAUSES]hth22;;
let hth24 =
SEQL_RULE
[ASSIGN_AX (MK_NICE `"{X = R + (Y * 0)}"`) (MK_NICE `"R := X"`);
ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) (MK_NICE `"Q := 0"`);
WHILE_RULE
(PRE_STRENGTH_RULE
(th2,SEQL_RULE
[ASSIGN_AX (MK_NICE `"{X = R + (Y * (Q + 1))}"`)
(MK_NICE `"R := (R-Y)"`);
ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`)
(MK_NICE `"Q := (Q + 1)"`)]))];;
%----------------------------------------------------------------------------%
% Examples to illustrate the generation of verification conditions %
% using tactics (vc_gen.ml). %
%----------------------------------------------------------------------------%
let goal = g and apply = expandf;;
goal (MK_NICE
`"{T}
(R:=X;
Q:=0;
assert{(R = X) /\\ (Q = 0)};
while Y<=R
do (invariant{X = (R + (Y * Q))};
R := R-Y; Q := Q+1))
{(R < Y) /\\ (X = (R + (Y * Q)))}"`);;
apply(SEQ_TAC);;
apply(SEQ_TAC);;
apply(ASSIGN_TAC);;
apply(REWRITE_TAC[]);;
apply(WHILE_TAC);;
apply(STRIP_TAC);;
apply(ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;
apply(SEQ_TAC);;
apply(ASSIGN_TAC);;
apply(ACCEPT_TAC th2);;
apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
apply(DISCH_TAC);;
apply(ASM_REWRITE_TAC[]);;
let VC_TAC =
REPEAT(ASSIGN_TAC
ORELSE SEQ_TAC
ORELSE IF1_TAC
ORELSE IF2_TAC
ORELSE WHILE_TAC);;
goal (MK_NICE
`"{T}
(R:=X;
Q:=0;
assert{(R = X) /\\ (Q = 0)};
while Y<=R
do (invariant{X = (R + (Y * Q))};
R := R-Y; Q := Q+1))
{(R < Y) /\\ (X = (R + (Y * Q)))}"`);;
apply(VC_TAC);;
apply(REWRITE_TAC[]);;
apply(STRIP_TAC);;
apply(ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;
apply(ACCEPT_TAC th2);;
apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
apply(DISCH_TAC);;
apply(ASM_REWRITE_TAC[]);;
prove
((MK_NICE
`"{T}
(R:=X;
Q:=0;
assert{(R = X) /\\ (Q = 0)};
while Y<=R
do (invariant{X = (R + (Y * Q))};
R:=R-Y; Q:=Q+1))
{(R < Y) /\\ (X = (R + (Y * Q)))}"`),
VC_TAC
THENL
[REWRITE_TAC[];
STRIP_TAC
THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES];
ACCEPT_TAC th2;
REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]
THEN DISCH_TAC
THEN ASM_REWRITE_TAC[]
]);;
%----------------------------------------------------------------------------%
% The Hoare Logic of total correctness in HOL (halts_logic.ml) %
%----------------------------------------------------------------------------%
let tth1 =
ASSIGN_T_AX (MK_NICE `"{(0 < Y /\\ (X = R + (Y * Q))) /\\ R < r}"`)
(MK_NICE `"Q := (Q + 1)"`);;
pretty_off();;
tth1;;
T_SPEC;;
HALTS;;
pretty_on();;
let tth2 =
ASSIGN_T_AX (MK_NICE `"{(0 < Y /\\ (X = R + (Y * (Q + 1)))) /\\ R < r}"`)
(MK_NICE `"R := (R-Y)"`);;
let tth3 = SEQ_T_RULE(tth2,tth1);;
let th4 =
prove
("!m. 0 < m ==> !n. 0 < n ==> (n - m) < n",
INDUCT_TAC
THEN REWRITE_TAC[LESS_REFL;LESS_0]
THEN INDUCT_TAC
THEN REWRITE_TAC[LESS_REFL;LESS_0;SUB;LESS_MONO_EQ]
THEN ASM_CASES_TAC "n < SUC m"
THEN ASM_REWRITE_TAC[LESS_0;LESS_MONO_EQ]
THEN ASM_CASES_TAC "0 < n"
THEN RES_TAC
THEN POP_ASSUM_LIST
(\[th1;th2;th3;th4].
STRIP_ASSUME_TAC(REWRITE_RULE[NOT_LESS](CONJ th1 th2)))
THEN IMP_RES_TAC LESS_EQ_TRANS
THEN IMP_RES_TAC OR_LESS
THEN IMP_RES_TAC NOT_LESS_0);;
let th5 =
prove
("!m n p. m < n /\ n <= p ==> m < p",
REWRITE_TAC[LESS_OR_EQ]
THEN REPEAT STRIP_TAC
THEN IMP_RES_TAC LESS_TRANS
THEN ASSUM_LIST(\[th1;th2;th3]. REWRITE_TAC[SYM th2])
THEN ASM_REWRITE_TAC[]);;
let th6 =
prove
((MK_NICE `"((0 < Y /\\ (X = R + (Y * Q))) /\\ (Y<=R) /\\ (R = r))
==> (0 < Y /\\ (X = (R - Y) + (Y * (Q + 1)))) /\\ (R - Y) < r"`),
REPEAT STRIP_TAC
THEN REWRITE_TAC[LEFT_ADD_DISTRIB;MULT_CLAUSES]
THEN ONCE_REWRITE_TAC[SPEC "Y*Q" ADD_SYM]
THEN ONCE_REWRITE_TAC[ADD_ASSOC]
THEN IMP_RES_TAC SUB_ADD
THEN ASM_REWRITE_TAC[]
THEN IMP_RES_TAC th5
THEN ASSUM_LIST(\thl. REWRITE_TAC[SYM(el 4 thl)])
THEN IMP_RES_TAC th4);;
let tth4 = PRE_STRENGTH_T_RULE(th6,tth3);;
let tth5 = WHILE_T_RULE tth4;;
let tth6 =
SEQL_T_RULE
[ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * 0))}"`)
(MK_NICE `"R := X"`);
ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * Q))}"`)
(MK_NICE `"Q := 0"`);
tth5];;
let th7 =
prove
((MK_NICE `"(~(Y <= R)) = (R < Y)"`),
ONCE_REWRITE_TAC[SYM(SPEC "R<Y" (hd(CONJUNCTS NOT_CLAUSES)))]
THEN PURE_REWRITE_TAC[NOT_LESS]
THEN REFL_TAC);;
let tth7 = REWRITE_RULE[th7;MULT_CLAUSES;ADD_CLAUSES]tth6;;
let tth6 =
SEQL_T_RULE
[ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * 0))}"`)
(MK_NICE `"R := X"`);
ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * Q))}"`)
(MK_NICE `"Q := 0"`);
WHILE_T_RULE
(PRE_STRENGTH_T_RULE
(th6,SEQL_T_RULE
[ASSIGN_T_AX (MK_NICE `"{((0 < Y) /\\ (X = R + (Y * (Q + 1)))) /\\
(R < r)}"`)
(MK_NICE `"R := (R-Y)"`);
ASSIGN_T_AX (MK_NICE `"{((0 < Y) /\\ (X = R + (Y * Q))) /\\
(R < r)}"`)
(MK_NICE `"Q := (Q + 1)"`)]))];;
%----------------------------------------------------------------------------%
% Verification conditions for total correctness (halts_vc_gen) %
%----------------------------------------------------------------------------%
goal
(MK_NICE
`"[0 < Y]
(R := X;
Q := 0;
assert{(0 < Y) /\\ (R=X) /\\ (Q=0)};
while Y <= R
do (invariant{(0 < Y) /\\ (X = R + (Y * Q))}; variant{R};
R := R-Y; Q := Q+1))
[(X = R + (Y * Q)) /\\ R < Y]"`);;
apply(VC_T_TAC);;
apply(REWRITE_TAC[]);;
apply(STRIP_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;
apply(ACCEPT_TAC th6);;
apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
apply(DISCH_TAC);;
apply(ASM_REWRITE_TAC[]);;
let DIV_CORRECT =
prove
((MK_NICE `"[0 < Y]
(R:=X;
Q:=0;
assert{(0 < Y) /\\ (R = X) /\\ (Q = 0)};
while Y<=R
do (invariant{(0 < Y) /\\ (X = (R + (Y * Q)))};
variant{R};
R:=R-Y; Q:=Q+1))
[(R < Y) /\\ (X = (R + (Y * Q)))]"`),
VC_T_TAC
THENL
[REWRITE_TAC[];
STRIP_TAC
THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES];
ACCEPT_TAC th6;
REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]
THEN DISCH_TAC
THEN ASM_REWRITE_TAC[]
]);;
pretty_off();;
DIV_CORRECT;;
pretty_on();;
%----------------------------------------------------------------------------%
% To see how weakest preconditions and dynamic logic can be represented in %
% HOL, browse the files mk_dijkstra.ml and mk_dynamic_logic.ml, respectively.%
%----------------------------------------------------------------------------%
|