File: examples.ml

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (459 lines) | stat: -rw-r--r-- 14,940 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

%============================================================================%
% This file contains examples to illustrate the HOL tools to support         %
% programming logics provided in the library prog_logic88.                   %
% The principles underlying these tools are described in the paper:          %
%                                                                            %
%    "Mechanizing Programming Logics in Higher Order Logic",                 %
%    by M.J.C. Gordon, in "Current Trends in Hardware Verification and       %
%    Automated Theorem Proving" edited by P.A. Subrahmanyam and              %
%    Graham Birtwistle, Springer-Verlag, 1989.                               %
%                                                                            %
% It is hoped that if the ML phrases in this file are evaluated in the       %
% order given, the results will illustrate the contents of the library.      %
%                                                                            %
%============================================================================%

%----------------------------------------------------------------------------%
% The naming convention used below is that ML variables th1, th2, etc        %
% are pure logic theorems, hth1, hth2, etc name theorems of Hoare Logic and  %
% tth1, tth2, etc name theorems in the Hoare Logic of total correctness      %
% (however, theorems of Hoare Logic (for both partial and total correctness) %
% are really only specially printed theorems of pure logic).                 %
%----------------------------------------------------------------------------%

%----------------------------------------------------------------------------%
% Examples to illustrate the special parsing and printing. This is           %
% currently done in Lisp, but it is hoped eventually to provide ML-level     %
% facilities to support user programmable syntax. Work on this will be       %
% part of an Esprit Basic Research Action joint with Philips and IMEC.       %
%----------------------------------------------------------------------------%


%----------------------------------------------------------------------------%
% Examples to illustrate forward proof using Hoare Logic (hoare_logic.ml).   %
%----------------------------------------------------------------------------%

%----------------------------------------------------------------------------%
% Load in the generated parser for the language.                             %
%----------------------------------------------------------------------------%

loadf `loader`;;

%----------------------------------------------------------------------------%
% The Assignment Axiom                                                       %
%----------------------------------------------------------------------------%

let hth1 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (Y=y)}"`) (MK_NICE `"R := X"`);;
let hth2 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (X=y)}"`) (MK_NICE `"X := Y"`);;

pretty_off();;

hth1;;

MK_SPEC;;

pretty_on();;

%----------------------------------------------------------------------------%
% The Sequencing Rule                                                        %
%----------------------------------------------------------------------------%

let hth1 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (Y=y)}"`) (MK_NICE `"R:=X"`);;
let hth2 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (X=y)}"`) (MK_NICE `"X:=Y"`);;
let hth3 = ASSIGN_AX (MK_NICE `"{(Y=x) /\\ (X=y)}"`) (MK_NICE `"Y:=R"`);;

SEQ_THM;;

let hth4 = SEQ_RULE (hth1,hth2);;
let hth5 = SEQ_RULE (hth4,hth3);;

let hth6 = SEQL_RULE[hth1;hth2;hth3];;

%----------------------------------------------------------------------------%
% Precondition Strengthening                                                 %
%----------------------------------------------------------------------------%

let th1  = DISCH_ALL(CONTR "((X:num=x) /\ (Y:num=y))" (ASSUME (MK_NICE `"F"`)));;

let hth7 = PRE_STRENGTH_RULE(th1,hth5);; 

%----------------------------------------------------------------------------%
% Postcondition Weakening                                                    %
%----------------------------------------------------------------------------%

let th2  = prove("((Y:num=x) /\ (X:num=y)) ==> T", REWRITE_TAC[]);;

let hth8 = POST_WEAK_RULE(hth5,th2);;

%----------------------------------------------------------------------------%
% On-armed Conditional Rule                                                  %
%----------------------------------------------------------------------------%

new_theory`MAX` ? extend_theory `MAX` ? ();;

let MAX =
 new_definition
  (`MAX`, "MAX(m,n) = ((m>n) => m | n)") ? definition `MAX` `MAX` ;;

let hth9 = ASSIGN_AX "{X = MAX(x,y)}" (MK_NICE `"X := Y"`);;

let MAX_LEMMA1 =
 theorem `MAX` `MAX_LEMMA1`
 ?
 prove_thm
  (`MAX_LEMMA1`,
   "((X=x) /\ (Y=y)) /\ (Y>X) ==> (Y=MAX(x,y))",
   REWRITE_TAC[MAX;GREATER]
    THEN REPEAT STRIP_TAC
    THEN ASSUM_LIST(\thl. ONCE_REWRITE_TAC(mapfilter SYM thl))
    THEN ASM_CASES_TAC (MK_NICE `"Y<X"`)
    THEN ASM_REWRITE_TAC[]
    THEN IMP_RES_TAC LESS_ANTISYM);;

let hth10 = PRE_STRENGTH_RULE(MAX_LEMMA1,hth9);;

let MAX_LEMMA2 =
 theorem `MAX` `MAX_LEMMA2`
 ?
 prove_thm
  (`MAX_LEMMA2`,
   "((X=x) /\ (Y=y)) /\ ~(Y>X) ==> (X=MAX(x,y))",
   REWRITE_TAC[MAX;GREATER;NOT_LESS;LESS_OR_EQ]
    THEN REPEAT STRIP_TAC
    THEN ASSUM_LIST(\thl. ONCE_REWRITE_TAC(mapfilter SYM thl))
    THEN ASM_CASES_TAC (MK_NICE `"Y<X"`)
    THEN ASM_REWRITE_TAC[]
   THEN RES_TAC);;

let hth11 = IF1_RULE(hth10,MAX_LEMMA2);;

%----------------------------------------------------------------------------%
% Two-armed Conditional Rule                                                 %
%----------------------------------------------------------------------------%

let hth12 = ASSIGN_AX "{R = MAX(x,y)}" (MK_NICE `"R := Y"`);;

let hth13 = PRE_STRENGTH_RULE(MAX_LEMMA1,hth12);;

let hth14 = ASSIGN_AX "{R = MAX(x,y)}" (MK_NICE `"R := X"`);;

let hth15 = PRE_STRENGTH_RULE(MAX_LEMMA2,hth14);;

let hth16 = IF2_RULE(hth13,hth15);;

%----------------------------------------------------------------------------%
% The WHILE-Rule                                                             %
%----------------------------------------------------------------------------%

let hth17 = ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) 
                      (MK_NICE `"Q := (Q + 1)"`);;

let hth18 = ASSIGN_AX (MK_NICE `"{X = R + (Y * (Q + 1))}"`) 
                      (MK_NICE `"R := (R-Y)"`);;

let hth19 = SEQ_RULE(hth18,hth17);;

let th2 =
 prove
  ((MK_NICE `"((X = R + (Y * Q)) /\\ (Y<=R)) ==> 
              (X = (R - Y) + (Y * (Q + 1)))"`),
   REPEAT STRIP_TAC
    THEN REWRITE_TAC[LEFT_ADD_DISTRIB;MULT_CLAUSES]
    THEN ONCE_REWRITE_TAC[SPEC (MK_NICE `"Y*Q"`) ADD_SYM]
    THEN ONCE_REWRITE_TAC[ADD_ASSOC]
    THEN IMP_RES_TAC SUB_ADD
    THEN ASM_REWRITE_TAC[]);;

let hth20 = PRE_STRENGTH_RULE(th2,hth19);;

let hth21 = WHILE_RULE hth20;;

pretty_off();;

WHILE_THM;;

%----------------------------------------------------------------------------%
% The pretty printer needs more work ...                                     %
%----------------------------------------------------------------------------%

pretty_on();;

WHILE_THM;;  % "{p s /\ b s}" should print as "{p /\ s}" %

let hth22 =
 SEQL_RULE
  [ASSIGN_AX (MK_NICE `"{X = R + (Y * 0)}"`) (MK_NICE `"R := X"`);
   ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) (MK_NICE `"Q := 0"`);
   hth21];;

let th3 =
 prove
  ((MK_NICE `"(~(Y <= R)) = (R < Y)"`),
   ONCE_REWRITE_TAC[SYM(SPEC (MK_NICE `"R<Y"`) (hd(CONJUNCTS NOT_CLAUSES)))]
    THEN PURE_REWRITE_TAC[NOT_LESS]
    THEN REFL_TAC);;

let hth23 = REWRITE_RULE[th3;MULT_CLAUSES;ADD_CLAUSES]hth22;;

let hth24 =
 SEQL_RULE
  [ASSIGN_AX (MK_NICE `"{X = R + (Y * 0)}"`) (MK_NICE `"R := X"`);
   ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) (MK_NICE `"Q := 0"`);
   WHILE_RULE
    (PRE_STRENGTH_RULE
      (th2,SEQL_RULE
            [ASSIGN_AX (MK_NICE `"{X = R + (Y * (Q + 1))}"`) 
                       (MK_NICE `"R := (R-Y)"`);
             ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) 
                       (MK_NICE `"Q := (Q + 1)"`)]))];;

%----------------------------------------------------------------------------%
% Examples to illustrate the generation of verification conditions           %
% using tactics (vc_gen.ml).                                                 %
%----------------------------------------------------------------------------%

let goal = g and apply = expandf;;

goal (MK_NICE
      `"{T}
        (R:=X;
         Q:=0;
         assert{(R = X) /\\ (Q = 0)};
         while Y<=R
          do (invariant{X = (R + (Y * Q))};
              R := R-Y; Q := Q+1))
        {(R < Y) /\\ (X = (R + (Y * Q)))}"`);;

apply(SEQ_TAC);;

apply(SEQ_TAC);;
apply(ASSIGN_TAC);;
apply(REWRITE_TAC[]);;

apply(WHILE_TAC);;

apply(STRIP_TAC);;
apply(ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;

apply(SEQ_TAC);;
apply(ASSIGN_TAC);;
apply(ACCEPT_TAC th2);;

apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
apply(DISCH_TAC);;
apply(ASM_REWRITE_TAC[]);;

let VC_TAC =
 REPEAT(ASSIGN_TAC 
         ORELSE SEQ_TAC 
         ORELSE IF1_TAC 
         ORELSE IF2_TAC 
         ORELSE WHILE_TAC);;

goal (MK_NICE
      `"{T}
        (R:=X;
         Q:=0;
         assert{(R = X) /\\ (Q = 0)};
         while Y<=R
          do (invariant{X = (R + (Y * Q))};
              R := R-Y; Q := Q+1))
        {(R < Y) /\\ (X = (R + (Y * Q)))}"`);;

apply(VC_TAC);;

apply(REWRITE_TAC[]);;

apply(STRIP_TAC);;
apply(ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;

apply(ACCEPT_TAC th2);;

apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
apply(DISCH_TAC);;
apply(ASM_REWRITE_TAC[]);;
 
prove
 ((MK_NICE
        `"{T}
          (R:=X;
           Q:=0;
           assert{(R = X) /\\ (Q = 0)};
           while Y<=R
            do (invariant{X = (R + (Y * Q))};
                R:=R-Y; Q:=Q+1))
          {(R < Y) /\\ (X = (R + (Y * Q)))}"`),
   VC_TAC
    THENL
     [REWRITE_TAC[];
      STRIP_TAC
       THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES];
      ACCEPT_TAC th2;
      REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]
       THEN DISCH_TAC
       THEN ASM_REWRITE_TAC[]
     ]);;


%----------------------------------------------------------------------------%
% The Hoare Logic of total correctness in HOL (halts_logic.ml)               %
%----------------------------------------------------------------------------%

let tth1 =
 ASSIGN_T_AX (MK_NICE `"{(0 < Y /\\ (X = R + (Y * Q))) /\\ R < r}"`)
             (MK_NICE `"Q := (Q + 1)"`);;

pretty_off();;

tth1;;

T_SPEC;;

HALTS;;

pretty_on();;

let tth2 =
 ASSIGN_T_AX (MK_NICE `"{(0 < Y /\\ (X = R + (Y * (Q + 1)))) /\\ R < r}"`)
             (MK_NICE `"R := (R-Y)"`);;

let tth3 = SEQ_T_RULE(tth2,tth1);;

let th4 =
 prove
  ("!m. 0 < m ==> !n. 0 < n ==> (n - m) < n",
   INDUCT_TAC
    THEN REWRITE_TAC[LESS_REFL;LESS_0]
    THEN INDUCT_TAC
    THEN REWRITE_TAC[LESS_REFL;LESS_0;SUB;LESS_MONO_EQ]
    THEN ASM_CASES_TAC "n < SUC m"
    THEN ASM_REWRITE_TAC[LESS_0;LESS_MONO_EQ]
    THEN ASM_CASES_TAC "0 < n"
    THEN RES_TAC
    THEN POP_ASSUM_LIST
          (\[th1;th2;th3;th4].
             STRIP_ASSUME_TAC(REWRITE_RULE[NOT_LESS](CONJ th1 th2)))
    THEN IMP_RES_TAC LESS_EQ_TRANS
    THEN IMP_RES_TAC OR_LESS
    THEN IMP_RES_TAC NOT_LESS_0);;

let th5 =
 prove
  ("!m n p. m < n /\ n <= p ==> m < p",
   REWRITE_TAC[LESS_OR_EQ]
    THEN REPEAT STRIP_TAC
    THEN IMP_RES_TAC LESS_TRANS
    THEN ASSUM_LIST(\[th1;th2;th3]. REWRITE_TAC[SYM th2])
    THEN ASM_REWRITE_TAC[]);;

let th6 =
 prove
  ((MK_NICE `"((0 < Y /\\ (X = R + (Y * Q))) /\\ (Y<=R) /\\ (R = r))
     ==> (0 < Y /\\ (X = (R - Y) + (Y * (Q + 1)))) /\\ (R - Y) < r"`),
   REPEAT STRIP_TAC
    THEN REWRITE_TAC[LEFT_ADD_DISTRIB;MULT_CLAUSES]
    THEN ONCE_REWRITE_TAC[SPEC "Y*Q" ADD_SYM]
    THEN ONCE_REWRITE_TAC[ADD_ASSOC]
    THEN IMP_RES_TAC SUB_ADD
    THEN ASM_REWRITE_TAC[]
    THEN IMP_RES_TAC th5
    THEN ASSUM_LIST(\thl. REWRITE_TAC[SYM(el 4 thl)])
    THEN IMP_RES_TAC th4);;

let tth4 = PRE_STRENGTH_T_RULE(th6,tth3);;

let tth5 = WHILE_T_RULE tth4;;

let tth6 =
 SEQL_T_RULE
  [ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * 0))}"`) 
               (MK_NICE `"R := X"`);
   ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * Q))}"`)
               (MK_NICE `"Q := 0"`);
   tth5];;

let th7 =
 prove
  ((MK_NICE `"(~(Y <= R)) = (R < Y)"`),
   ONCE_REWRITE_TAC[SYM(SPEC "R<Y" (hd(CONJUNCTS NOT_CLAUSES)))]
    THEN PURE_REWRITE_TAC[NOT_LESS]
    THEN REFL_TAC);;

let tth7 = REWRITE_RULE[th7;MULT_CLAUSES;ADD_CLAUSES]tth6;;

let tth6 =
 SEQL_T_RULE
  [ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * 0))}"`)
               (MK_NICE `"R := X"`);
   ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * Q))}"`) 
               (MK_NICE `"Q := 0"`);
   WHILE_T_RULE
    (PRE_STRENGTH_T_RULE
      (th6,SEQL_T_RULE
            [ASSIGN_T_AX (MK_NICE `"{((0 < Y) /\\ (X = R + (Y * (Q + 1)))) /\\ 
                                     (R < r)}"`)
                         (MK_NICE `"R := (R-Y)"`);
             ASSIGN_T_AX (MK_NICE `"{((0 < Y) /\\ (X = R + (Y * Q))) /\\ 
                                    (R < r)}"`)
                         (MK_NICE `"Q := (Q + 1)"`)]))];;

%----------------------------------------------------------------------------%
% Verification conditions for total correctness (halts_vc_gen)               %
%----------------------------------------------------------------------------%

goal
 (MK_NICE
  `"[0 < Y]
    (R := X;
     Q := 0;
     assert{(0 < Y) /\\ (R=X) /\\ (Q=0)};
     while Y <= R
      do (invariant{(0 < Y) /\\ (X = R + (Y * Q))}; variant{R};
          R := R-Y; Q := Q+1))
    [(X = R + (Y * Q)) /\\ R < Y]"`);;

apply(VC_T_TAC);;

apply(REWRITE_TAC[]);;

apply(STRIP_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;

apply(ACCEPT_TAC th6);;

apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
apply(DISCH_TAC);;
apply(ASM_REWRITE_TAC[]);;

let DIV_CORRECT =
 prove
  ((MK_NICE `"[0 < Y]
              (R:=X;
               Q:=0;
               assert{(0 < Y) /\\ (R = X) /\\ (Q = 0)};
               while Y<=R
                do (invariant{(0 < Y) /\\ (X = (R + (Y * Q)))};
                    variant{R};
                    R:=R-Y; Q:=Q+1))
              [(R < Y) /\\ (X = (R + (Y * Q)))]"`),
   VC_T_TAC
    THENL
     [REWRITE_TAC[];
      STRIP_TAC
       THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES];
      ACCEPT_TAC th6;
      REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]
       THEN DISCH_TAC
       THEN ASM_REWRITE_TAC[]
     ]);;

pretty_off();;

DIV_CORRECT;;

pretty_on();;

%----------------------------------------------------------------------------%
% To see how weakest preconditions and dynamic logic can be represented in   %
% HOL, browse the files mk_dijkstra.ml and mk_dynamic_logic.ml, respectively.%
%----------------------------------------------------------------------------%