File: examples.out

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (1045 lines) | stat: -rw-r--r-- 29,109 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

          _  _    __    _      __    __
   |___   |__|   |  |   |     |__|  |__|
   |      |  |   |__|   |__   |__|  |__|
   
          Version 1.12 (pre-release), built on Jan 21 1990

#
#%============================================================================%
#% This file contains examples to illustrate the HOL tools to support         %
#% programming logics provided in the library prog_logic88.                   %
#% The principles underlying these tools are described in the paper:          %
#%                                                                            %
#%    "Mechanizing Programming Logics in Higher Order Logic",                 %
#%    by M.J.C. Gordon, in "Current Trends in Hardware Verification and       %
#%    Automated Theorem Proving" edited by P.A. Subrahmanyam and              %
#%    Graham Birtwistle, Springer-Verlag, 1989.                               %
#%                                                                            %
#% It is hoped that if the ML phrases in this file are evaluated in the       %
#% order given, the results will illustrate the contents of the library.      %
#%                                                                            %
#%============================================================================%
#
#%----------------------------------------------------------------------------%
#% The naming convention used below is that ML variables th1, th2, etc        %
#% are pure logic theorems, hth1, hth2, etc name theorems of Hoare Logic and  %
#% tth1, tth2, etc name theorems in the Hoare Logic of total correctness      %
#% (however, theorems of Hoare Logic (for both partial and total correctness) %
#% are really only specially printed theorems of pure logic).                 %
#%----------------------------------------------------------------------------%
#
#%----------------------------------------------------------------------------%
#% Examples to illustrate the special parsing and printing. This is           %
#% currently done in Lisp, but it is hoped eventually to provide ML-level     %
#% facilities to support user programmable syntax. Work on this will be       %
#% part of an Esprit Basic Research Action joint with Philips and IMEC.       %
#%----------------------------------------------------------------------------%
#
#
#%----------------------------------------------------------------------------%
#% Examples to illustrate forward proof using Hoare Logic (hoare_logic.ml).   %
#%----------------------------------------------------------------------------%
#
#%----------------------------------------------------------------------------%
#% Load in the generated parser for the language.                             %
#%----------------------------------------------------------------------------%
#
#loadf `/usr/users/jvt/HOL/CHEOPS/Parser/Examples/tiny/tiny_load`;;
[fasl /usr/users/jvt/HOL/CHEOPS/Parser/ml/general_ml.o]
............................prog_logic88 already loaded
.........................................................................() : void

#
#%----------------------------------------------------------------------------%
#% The Assignment Axiom                                                       %
#%----------------------------------------------------------------------------%
#
#let hth1 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (Y=y)}"`) (MK_NICE `"R := X"`);;
hth1 = |- {(X = x) /\ (Y = y)}R := X{(R = x) /\ (Y = y)}

#let hth2 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (X=y)}"`) (MK_NICE `"X := Y"`);;
hth2 = |- {(R = x) /\ (Y = y)}X := Y{(R = x) /\ (X = y)}

#
#pretty_off();;
true : bool

#
#hth1;;
|- MK_SPEC
   ((\s. (s `X` = x) /\ (s `Y` = y)),MK_ASSIGN(`R`,(\s. s `X`)),
    (\s. (s `R` = x) /\ (s `Y` = y)))

#
#MK_SPEC;;
Definition MK_SPEC autoloaded from theory `semantics`.
MK_SPEC = 
|- !p c q. MK_SPEC(p,c,q) = (!s1 s2. p s1 /\ c(s1,s2) ==> q s2)

|- !p c q. MK_SPEC(p,c,q) = (!s1 s2. p s1 /\ c(s1,s2) ==> q s2)

#
#pretty_on();;
false : bool

#
#%----------------------------------------------------------------------------%
#% The Sequencing Rule                                                        %
#%----------------------------------------------------------------------------%
#
#let hth1 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (Y=y)}"`) (MK_NICE `"R:=X"`);;
hth1 = |- {(X = x) /\ (Y = y)}R := X{(R = x) /\ (Y = y)}

#let hth2 = ASSIGN_AX (MK_NICE `"{(R=x) /\\ (X=y)}"`) (MK_NICE `"X:=Y"`);;
hth2 = |- {(R = x) /\ (Y = y)}X := Y{(R = x) /\ (X = y)}

#let hth3 = ASSIGN_AX (MK_NICE `"{(Y=x) /\\ (X=y)}"`) (MK_NICE `"Y:=R"`);;
hth3 = |- {(R = x) /\ (X = y)}Y := R{(Y = x) /\ (X = y)}

#
#SEQ_THM;;
|- !p q r c1 c2. {p}c1{q} /\ {q}c2{r} ==> {p}c1; c2{r}

#
#let hth4 = SEQ_RULE (hth1,hth2);;
hth4 = |- {(X = x) /\ (Y = y)}R := X; X := Y{(R = x) /\ (X = y)}

#let hth5 = SEQ_RULE (hth4,hth3);;
hth5 = |- {(X = x) /\ (Y = y)}R := X; X := Y; Y := R{(Y = x) /\ (X = y)}

#
#let hth6 = SEQL_RULE[hth1;hth2;hth3];;
hth6 = |- {(X = x) /\ (Y = y)}R := X; X := Y; Y := R{(Y = x) /\ (X = y)}

#
#%----------------------------------------------------------------------------%
#% Precondition Strengthening                                                 %
#%----------------------------------------------------------------------------%
#
#let th1  = DISCH_ALL(CONTR "((X:num=x) /\ (Y:num=y))" (ASSUME (MK_NICE `"F"`)));;
th1 = |- F ==> (X = x) /\ (Y = y)

#
#let hth7 = PRE_STRENGTH_RULE(th1,hth5);; 
hth7 = |- {F}R := X; X := Y; Y := R{(Y = x) /\ (X = y)}

#
#%----------------------------------------------------------------------------%
#% Postcondition Weakening                                                    %
#%----------------------------------------------------------------------------%
#
#let th2  = prove("((Y:num=x) /\ (X:num=y)) ==> T", REWRITE_TAC[]);;
th2 = |- (Y = x) /\ (X = y) ==> T

#
#let hth8 = POST_WEAK_RULE(hth5,th2);;
hth8 = |- {(X = x) /\ (Y = y)}R := X; X := Y; Y := R{T}

#
#%----------------------------------------------------------------------------%
#% On-armed Conditional Rule                                                  %
#%----------------------------------------------------------------------------%
#
#new_theory`MAX` ? extend_theory `MAX` ? ();;
() : void

#
#let MAX =
# new_definition
#  (`MAX`, "MAX(m,n) = ((m>n) => m | n)") ? definition `MAX` `MAX` ;;
MAX = |- !m n. MAX(m,n) = (m > n => m | n)

#
#let hth9 = ASSIGN_AX "{X = MAX(x,y)}" (MK_NICE `"X := Y"`);;
hth9 = |- {Y = MAX(x,y)}X := Y{X = MAX(x,y)}

#
#let MAX_LEMMA1 =
# theorem `MAX` `MAX_LEMMA1`
# ?
# prove_thm
#  (`MAX_LEMMA1`,
#   "((X=x) /\ (Y=y)) /\ (Y>X) ==> (Y=MAX(x,y))",
#   REWRITE_TAC[MAX;GREATER]
#    THEN REPEAT STRIP_TAC
#    THEN ASSUM_LIST(\thl. ONCE_REWRITE_TAC(mapfilter SYM thl))
#    THEN ASM_CASES_TAC (MK_NICE `"Y<X"`)
#    THEN ASM_REWRITE_TAC[]
#    THEN IMP_RES_TAC LESS_ANTISYM);;
Theorem LESS_ANTISYM autoloaded from theory `arithmetic`.
LESS_ANTISYM = |- !m n. ~(m < n /\ n < m)

Definition GREATER autoloaded from theory `arithmetic`.
GREATER = |- !m n. m > n = n < m

MAX_LEMMA1 = |- ((X = x) /\ (Y = y)) /\ Y > X ==> (Y = MAX(x,y))

#
#let hth10 = PRE_STRENGTH_RULE(MAX_LEMMA1,hth9);;
hth10 = |- {((X = x) /\ (Y = y)) /\ Y > X}X := Y{X = MAX(x,y)}

#
#let MAX_LEMMA2 =
# theorem `MAX` `MAX_LEMMA2`
# ?
# prove_thm
#  (`MAX_LEMMA2`,
#   "((X=x) /\ (Y=y)) /\ ~(Y>X) ==> (X=MAX(x,y))",
#   REWRITE_TAC[MAX;GREATER;NOT_LESS;LESS_OR_EQ]
#    THEN REPEAT STRIP_TAC
#    THEN ASSUM_LIST(\thl. ONCE_REWRITE_TAC(mapfilter SYM thl))
#    THEN ASM_CASES_TAC "Y<X"
#    THEN ASM_REWRITE_TAC[]
#   THEN RES_TAC);;
Definition LESS_OR_EQ autoloaded from theory `arithmetic`.
LESS_OR_EQ = |- !m n. m <= n = m < n \/ (m = n)

Theorem NOT_LESS autoloaded from theory `arithmetic`.
NOT_LESS = |- !m n. ~m < n = n <= m

MAX_LEMMA2 = |- ((X = x) /\ (Y = y)) /\ ~Y > X ==> (X = MAX(x,y))

#
#let hth11 = IF1_RULE(hth10,MAX_LEMMA2);;
hth11 = |- {(X = x) /\ (Y = y)}if Y > X then X := Y{X = MAX(x,y)}

#
#%----------------------------------------------------------------------------%
#% Two-armed Conditional Rule                                                 %
#%----------------------------------------------------------------------------%
#
#let hth12 = ASSIGN_AX "{R = MAX(x,y)}" (MK_NICE `"R := Y"`);;
hth12 = |- {Y = MAX(x,y)}R := Y{R = MAX(x,y)}

#
#let hth13 = PRE_STRENGTH_RULE(MAX_LEMMA1,hth12);;
hth13 = |- {((X = x) /\ (Y = y)) /\ Y > X}R := Y{R = MAX(x,y)}

#
#let hth14 = ASSIGN_AX "{R = MAX(x,y)}" (MK_NICE `"R := X"`);;
hth14 = |- {X = MAX(x,y)}R := X{R = MAX(x,y)}

#
#let hth15 = PRE_STRENGTH_RULE(MAX_LEMMA2,hth14);;
hth15 = |- {((X = x) /\ (Y = y)) /\ ~Y > X}R := X{R = MAX(x,y)}

#
#let hth16 = IF2_RULE(hth13,hth15);;
hth16 = 
|- {(X = x) /\ (Y = y)}if Y > X then R := Y else R := X{R = MAX(x,y)}

#
#%----------------------------------------------------------------------------%
#% The WHILE-Rule                                                             %
#%----------------------------------------------------------------------------%
#
#let hth17 = ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) 
#                      (MK_NICE `"Q := (Q + 1)"`);;
hth17 = |- {X = R + (Y * (Q + 1))}Q := Q + 1{X = R + (Y * Q)}

#
#let hth18 = ASSIGN_AX (MK_NICE `"{X = R + (Y * (Q + 1))}"`) 
#                      (MK_NICE `"R := (R-Y)"`);;
hth18 = 
|- {X = (R - Y) + (Y * (Q + 1))}R := R - Y{X = R + (Y * (Q + 1))}

#
#let hth19 = SEQ_RULE(hth18,hth17);;
hth19 = 
|- {X = (R - Y) + (Y * (Q + 1))}R := R - Y; Q := Q + 1{X = R + (Y * Q)}

#
#let th2 =
# prove
#  ((MK_NICE `"((X = R + (Y * Q)) /\\ (Y<=R)) ==> 
#              (X = (R - Y) + (Y * (Q + 1)))"`),
#   REPEAT STRIP_TAC
#    THEN REWRITE_TAC[LEFT_ADD_DISTRIB;MULT_CLAUSES]
#    THEN ONCE_REWRITE_TAC[SPEC (MK_NICE `"Y*Q"`) ADD_SYM]
#    THEN ONCE_REWRITE_TAC[ADD_ASSOC]
#    THEN IMP_RES_TAC SUB_ADD
#    THEN ASM_REWRITE_TAC[]);;
Theorem SUB_ADD autoloaded from theory `arithmetic`.
SUB_ADD = |- !m n. n <= m ==> ((m - n) + n = m)

Theorem ADD_ASSOC autoloaded from theory `arithmetic`.
ADD_ASSOC = |- !m n p. m + (n + p) = (m + n) + p

Theorem ADD_SYM autoloaded from theory `arithmetic`.
ADD_SYM = |- !m n. m + n = n + m

Theorem MULT_CLAUSES autoloaded from theory `arithmetic`.
MULT_CLAUSES = 
|- !m n.
    (0 * m = 0) /\
    (m * 0 = 0) /\
    (1 * m = m) /\
    (m * 1 = m) /\
    ((SUC m) * n = (m * n) + n) /\
    (m * (SUC n) = m + (m * n))

Theorem LEFT_ADD_DISTRIB autoloaded from theory `arithmetic`.
LEFT_ADD_DISTRIB = |- !m n p. p * (m + n) = (p * m) + (p * n)

th2 = |- (X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))

#
#let hth20 = PRE_STRENGTH_RULE(th2,hth19);;
hth20 = 
|- {(X = R + (Y * Q)) /\ Y <= R}R := R - Y; Q := Q + 1{X = R + (Y * Q)}

#
#let hth21 = WHILE_RULE hth20;;
hth21 = 
|- {X = R + (Y * Q)}
    while Y <= R do R := R - Y; Q := Q + 1
   {(X = R + (Y * Q)) /\ ~Y <= R}

#
#pretty_off();;
true : bool

#
#WHILE_THM;;
|- !p c b.
    MK_SPEC((\s. p s /\ b s),c,p) ==>
    MK_SPEC(p,MK_WHILE(b,c),(\s. p s /\ ~b s))

#
#%----------------------------------------------------------------------------%
#% The pretty printer needs more work ...                                     %
#%----------------------------------------------------------------------------%
#
#pretty_on();;
false : bool

#
#WHILE_THM;;  % "{p s /\ b s}" should print as "{p /\ s}" %
|- !p c b. {p s /\ b s}c{p} ==> {p}while b do c{p s /\ ~b s}

#
#let hth22 =
# SEQL_RULE
#  [ASSIGN_AX (MK_NICE `"{X = R + (Y * 0)}"`) (MK_NICE `"R := X"`);
#   ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) (MK_NICE `"Q := 0"`);
#   hth21];;
hth22 = 
|- {X = X + (Y * 0)}
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   {(X = R + (Y * Q)) /\ ~Y <= R}

#
#let th3 =
# prove
#  ((MK_NICE `"(~(Y <= R)) = (R < Y)"`),
#   ONCE_REWRITE_TAC[SYM(SPEC (MK_NICE `"R<Y"`) (hd(CONJUNCTS NOT_CLAUSES)))]
#    THEN PURE_REWRITE_TAC[NOT_LESS]
#    THEN REFL_TAC);;
th3 = |- ~Y <= R = R < Y

#
#let hth23 = REWRITE_RULE[th3;MULT_CLAUSES;ADD_CLAUSES]hth22;;
Theorem ADD_CLAUSES autoloaded from theory `arithmetic`.
ADD_CLAUSES = 
|- (0 + m = m) /\
   (m + 0 = m) /\
   ((SUC m) + n = SUC(m + n)) /\
   (m + (SUC n) = SUC(m + n))

hth23 = 
|- {T}
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   {(X = R + (Y * Q)) /\ R < Y}

#
#let hth24 =
# SEQL_RULE
#  [ASSIGN_AX (MK_NICE `"{X = R + (Y * 0)}"`) (MK_NICE `"R := X"`);
#   ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) (MK_NICE `"Q := 0"`);
#   WHILE_RULE
#    (PRE_STRENGTH_RULE
#      (th2,SEQL_RULE
#            [ASSIGN_AX (MK_NICE `"{X = R + (Y * (Q + 1))}"`) 
#                       (MK_NICE `"R := (R-Y)"`);
#             ASSIGN_AX (MK_NICE `"{X = R + (Y * Q)}"`) 
#                       (MK_NICE `"Q := (Q + 1)"`)]))];;
hth24 = 
|- {X = X + (Y * 0)}
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   {(X = R + (Y * Q)) /\ ~Y <= R}

#
#%----------------------------------------------------------------------------%
#% Examples to illustrate the generation of verification conditions           %
#% using tactics (vc_gen.ml).                                                 %
#%----------------------------------------------------------------------------%
#
#let goal = g and apply = expandf;;
goal = - : (term -> void)
apply = - : (tactic -> void)

#
#goal (MK_NICE
#      `"{T}
#        (R:=X;
#         Q:=0;
#         assert{(R = X) /\\ (Q = 0)};
#         while Y<=R
#          do (invariant{X = (R + (Y * Q))};
#              R := R-Y; Q := Q+1))
#        {(R < Y) /\\ (X = (R + (Y * Q)))}"`);;
"{T}
  R := X; 
  Q := 0; 
  assert{(R = X) /\ (Q = 0)}; 
  while Y <= R do invariant{X = R + (Y * Q)}; R := R - Y; Q := Q + 1
 {R < Y /\ (X = R + (Y * Q))}"

() : void

#
#apply(SEQ_TAC);;
OK..
2 subgoals
"{(R = X) /\ (Q = 0)}
  while Y <= R do invariant{X = R + (Y * Q)}; R := R - Y; Q := Q + 1
 {R < Y /\ (X = R + (Y * Q))}"

"{T}R := X; Q := 0{(R = X) /\ (Q = 0)}"

() : void

#
#apply(SEQ_TAC);;
OK..
"{T}R := X{(R = X) /\ (0 = 0)}"

() : void

#apply(ASSIGN_TAC);;
OK..
"T ==> (X = X) /\ (0 = 0)"

() : void

#apply(REWRITE_TAC[]);;
OK..
goal proved
|- T ==> (X = X) /\ (0 = 0)
|- {T}R := X{(R = X) /\ (0 = 0)}
|- {T}R := X; Q := 0{(R = X) /\ (Q = 0)}

Previous subproof:
"{(R = X) /\ (Q = 0)}
  while Y <= R do invariant{X = R + (Y * Q)}; R := R - Y; Q := Q + 1
 {R < Y /\ (X = R + (Y * Q))}"

() : void

#
#apply(WHILE_TAC);;
OK..
3 subgoals
"(X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))"

"{(X = R + (Y * Q)) /\ Y <= R}R := R - Y; Q := Q + 1{X = R + (Y * Q)}"

"(R = X) /\ (Q = 0) ==> (X = R + (Y * Q))"

() : void

#
#apply(STRIP_TAC);;
OK..
"X = R + (Y * Q)"
    [ "R = X" ]
    [ "Q = 0" ]

() : void

#apply(ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;
OK..
goal proved
.. |- X = R + (Y * Q)
|- (R = X) /\ (Q = 0) ==> (X = R + (Y * Q))

Previous subproof:
2 subgoals
"(X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))"

"{(X = R + (Y * Q)) /\ Y <= R}R := R - Y; Q := Q + 1{X = R + (Y * Q)}"

() : void

#
#apply(SEQ_TAC);;
OK..
"{(X = R + (Y * Q)) /\ Y <= R}R := R - Y{X = R + (Y * (Q + 1))}"

() : void

#apply(ASSIGN_TAC);;
OK..
"(X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))"

() : void

#apply(ACCEPT_TAC th2);;
OK..
goal proved
|- (X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))
|- {(X = R + (Y * Q)) /\ Y <= R}R := R - Y{X = R + (Y * (Q + 1))}
|- {(X = R + (Y * Q)) /\ Y <= R}R := R - Y; Q := Q + 1{X = R + (Y * Q)}

Previous subproof:
"(X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))"

() : void

#
#apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
OK..
"(X = R + (Y * Q)) /\ R < Y ==> R < Y /\ (X = R + (Y * Q))"

() : void

#apply(DISCH_TAC);;
OK..
"R < Y /\ (X = R + (Y * Q))"
    [ "(X = R + (Y * Q)) /\ R < Y" ]

() : void

#apply(ASM_REWRITE_TAC[]);;
OK..
goal proved
. |- R < Y /\ (X = R + (Y * Q))
|- (X = R + (Y * Q)) /\ R < Y ==> R < Y /\ (X = R + (Y * Q))
|- (X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))
|- {(R = X) /\ (Q = 0)}
    while Y <= R do R := R - Y; Q := Q + 1
   {R < Y /\ (X = R + (Y * Q))}
|- {T}
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   {R < Y /\ (X = R + (Y * Q))}

Previous subproof:
goal proved
() : void

#
#let VC_TAC =
# REPEAT(ASSIGN_TAC 
#         ORELSE SEQ_TAC 
#         ORELSE IF1_TAC 
#         ORELSE IF2_TAC 
#         ORELSE WHILE_TAC);;
VC_TAC = - : tactic

#
#goal (MK_NICE
#      `"{T}
#        (R:=X;
#         Q:=0;
#         assert{(R = X) /\\ (Q = 0)};
#         while Y<=R
#          do (invariant{X = (R + (Y * Q))};
#              R := R-Y; Q := Q+1))
#        {(R < Y) /\\ (X = (R + (Y * Q)))}"`);;
"{T}
  R := X; 
  Q := 0; 
  assert{(R = X) /\ (Q = 0)}; 
  while Y <= R do invariant{X = R + (Y * Q)}; R := R - Y; Q := Q + 1
 {R < Y /\ (X = R + (Y * Q))}"

() : void

#
#apply(VC_TAC);;
OK..
4 subgoals
"(X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))"

"(X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))"

"(R = X) /\ (Q = 0) ==> (X = R + (Y * Q))"

"T ==> (X = X) /\ (0 = 0)"

() : void

#
#apply(REWRITE_TAC[]);;
OK..
goal proved
|- T ==> (X = X) /\ (0 = 0)

Previous subproof:
3 subgoals
"(X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))"

"(X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))"

"(R = X) /\ (Q = 0) ==> (X = R + (Y * Q))"

() : void

#
#apply(STRIP_TAC);;
OK..
"X = R + (Y * Q)"
    [ "R = X" ]
    [ "Q = 0" ]

() : void

#apply(ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;
OK..
goal proved
.. |- X = R + (Y * Q)
|- (R = X) /\ (Q = 0) ==> (X = R + (Y * Q))

Previous subproof:
2 subgoals
"(X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))"

"(X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))"

() : void

#
#apply(ACCEPT_TAC th2);;
OK..
goal proved
|- (X = R + (Y * Q)) /\ Y <= R ==> (X = (R - Y) + (Y * (Q + 1)))

Previous subproof:
"(X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))"

() : void

#
#apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
OK..
"(X = R + (Y * Q)) /\ R < Y ==> R < Y /\ (X = R + (Y * Q))"

() : void

#apply(DISCH_TAC);;
OK..
"R < Y /\ (X = R + (Y * Q))"
    [ "(X = R + (Y * Q)) /\ R < Y" ]

() : void

#apply(ASM_REWRITE_TAC[]);;
OK..
goal proved
. |- R < Y /\ (X = R + (Y * Q))
|- (X = R + (Y * Q)) /\ R < Y ==> R < Y /\ (X = R + (Y * Q))
|- (X = R + (Y * Q)) /\ ~Y <= R ==> R < Y /\ (X = R + (Y * Q))
|- {T}
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   {R < Y /\ (X = R + (Y * Q))}

Previous subproof:
goal proved
() : void

# 
#prove
# ((MK_NICE
#        `"{T}
#          (R:=X;
#           Q:=0;
#           assert{(R = X) /\\ (Q = 0)};
#           while Y<=R
#            do (invariant{X = (R + (Y * Q))};
#                R:=R-Y; Q:=Q+1))
#          {(R < Y) /\\ (X = (R + (Y * Q)))}"`),
#   VC_TAC
#    THENL
#     [REWRITE_TAC[];
#      STRIP_TAC
#       THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES];
#      ACCEPT_TAC th2;
#      REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]
#       THEN DISCH_TAC
#       THEN ASM_REWRITE_TAC[]
#     ]);;
|- {T}
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   {R < Y /\ (X = R + (Y * Q))}

#
#
#%----------------------------------------------------------------------------%
#% The Hoare Logic of total correctness in HOL (halts_logic.ml)               %
#%----------------------------------------------------------------------------%
#
#let tth1 =
# ASSIGN_T_AX (MK_NICE `"{(0 < Y /\\ (X = R + (Y * Q))) /\\ R < r}"`)
#             (MK_NICE `"Q := (Q + 1)"`);;
tth1 = 
|- [(0 < Y /\ (X = R + (Y * (Q + 1)))) /\ R < r]
    Q := Q + 1
   [(0 < Y /\ (X = R + (Y * Q))) /\ R < r]

#
#pretty_off();;
true : bool

#
#tth1;;
|- T_SPEC
   ((\s.
      (0 < (s `Y`) /\ (s `X` = (s `R`) + ((s `Y`) * ((s `Q`) + 1)))) /\
      (s `R`) < r),MK_ASSIGN(`Q`,(\s. (s `Q`) + 1)),
    (\s.
      (0 < (s `Y`) /\ (s `X` = (s `R`) + ((s `Y`) * (s `Q`)))) /\
      (s `R`) < r))

#
#T_SPEC;;
Definition T_SPEC autoloaded from theory `halts_thms`.
T_SPEC = |- !p c q. T_SPEC(p,c,q) = MK_SPEC(p,c,q) /\ HALTS p c

|- !p c q. T_SPEC(p,c,q) = MK_SPEC(p,c,q) /\ HALTS p c

#
#HALTS;;
Definition HALTS autoloaded from theory `halts`.
HALTS = |- !p c. HALTS p c = (!s. p s ==> (?s'. c(s,s')))

|- !p c. HALTS p c = (!s. p s ==> (?s'. c(s,s')))

#
#pretty_on();;
false : bool

#
#let tth2 =
# ASSIGN_T_AX (MK_NICE `"{(0 < Y /\\ (X = R + (Y * (Q + 1)))) /\\ R < r}"`)
#             (MK_NICE `"R := (R-Y)"`);;
tth2 = 
|- [(0 < Y /\ (X = (R - Y) + (Y * (Q + 1)))) /\ (R - Y) < r]
    R := R - Y
   [(0 < Y /\ (X = R + (Y * (Q + 1)))) /\ R < r]

#
#let tth3 = SEQ_T_RULE(tth2,tth1);;
tth3 = 
|- [(0 < Y /\ (X = (R - Y) + (Y * (Q + 1)))) /\ (R - Y) < r]
    R := R - Y; Q := Q + 1
   [(0 < Y /\ (X = R + (Y * Q))) /\ R < r]

#
#let th4 =
# prove
#  ("!m. 0 < m ==> !n. 0 < n ==> (n - m) < n",
#   INDUCT_TAC
#    THEN REWRITE_TAC[LESS_REFL;LESS_0]
#    THEN INDUCT_TAC
#    THEN REWRITE_TAC[LESS_REFL;LESS_0;SUB;LESS_MONO_EQ]
#    THEN ASM_CASES_TAC "n < SUC m"
#    THEN ASM_REWRITE_TAC[LESS_0;LESS_MONO_EQ]
#    THEN ASM_CASES_TAC "0 < n"
#    THEN RES_TAC
#    THEN POP_ASSUM_LIST
#          (\[th1;th2;th3;th4].
#             STRIP_ASSUME_TAC(REWRITE_RULE[NOT_LESS](CONJ th1 th2)))
#    THEN IMP_RES_TAC LESS_EQ_TRANS
#    THEN IMP_RES_TAC OR_LESS
#    THEN IMP_RES_TAC NOT_LESS_0);;
Theorem NOT_LESS_0 autoloaded from theory `prim_rec`.
NOT_LESS_0 = |- !n. ~n < 0

Theorem OR_LESS autoloaded from theory `arithmetic`.
OR_LESS = |- !m n. (SUC m) <= n ==> m < n

Theorem LESS_EQ_TRANS autoloaded from theory `arithmetic`.
LESS_EQ_TRANS = |- !m n p. m <= n /\ n <= p ==> m <= p

Theorem LESS_MONO_EQ autoloaded from theory `arithmetic`.
LESS_MONO_EQ = |- !m n. (SUC m) < (SUC n) = m < n

Definition SUB autoloaded from theory `arithmetic`.
SUB = 
|- (!m. 0 - m = 0) /\ (!m n. (SUC m) - n = (m < n => 0 | SUC(m - n)))

Theorem LESS_0 autoloaded from theory `prim_rec`.
LESS_0 = |- !n. 0 < (SUC n)

Theorem LESS_REFL autoloaded from theory `prim_rec`.
LESS_REFL = |- !n. ~n < n

th4 = |- !m. 0 < m ==> (!n. 0 < n ==> (n - m) < n)

#
#let th5 =
# prove
#  ("!m n p. m < n /\ n <= p ==> m < p",
#   REWRITE_TAC[LESS_OR_EQ]
#    THEN REPEAT STRIP_TAC
#    THEN IMP_RES_TAC LESS_TRANS
#    THEN ASSUM_LIST(\[th1;th2;th3]. REWRITE_TAC[SYM th2])
#    THEN ASM_REWRITE_TAC[]);;
Theorem LESS_TRANS autoloaded from theory `arithmetic`.
LESS_TRANS = |- !m n p. m < n /\ n < p ==> m < p

th5 = |- !m n p. m < n /\ n <= p ==> m < p

#
#let th6 =
# prove
#  ((MK_NICE `"((0 < Y /\\ (X = R + (Y * Q))) /\\ (Y<=R) /\\ (R = r))
#     ==> (0 < Y /\\ (X = (R - Y) + (Y * (Q + 1)))) /\\ (R - Y) < r"`),
#   REPEAT STRIP_TAC
#    THEN REWRITE_TAC[LEFT_ADD_DISTRIB;MULT_CLAUSES]
#    THEN ONCE_REWRITE_TAC[SPEC "Y*Q" ADD_SYM]
#    THEN ONCE_REWRITE_TAC[ADD_ASSOC]
#    THEN IMP_RES_TAC SUB_ADD
#    THEN ASM_REWRITE_TAC[]
#    THEN IMP_RES_TAC th5
#    THEN ASSUM_LIST(\thl. REWRITE_TAC[SYM(el 4 thl)])
#    THEN IMP_RES_TAC th4);;
th6 = 
|- (0 < Y /\ (X = R + (Y * Q))) /\ Y <= R /\ (R = r) ==>
   (0 < Y /\ (X = (R - Y) + (Y * (Q + 1)))) /\ (R - Y) < r

#
#let tth4 = PRE_STRENGTH_T_RULE(th6,tth3);;
tth4 = 
|- [(0 < Y /\ (X = R + (Y * Q))) /\ Y <= R /\ (R = r)]
    R := R - Y; Q := Q + 1
   [(0 < Y /\ (X = R + (Y * Q))) /\ R < r]

#
#let tth5 = WHILE_T_RULE tth4;;
tth5 = 
|- [0 < Y /\ (X = R + (Y * Q))]
    while Y <= R do R := R - Y; Q := Q + 1
   [(0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R]

#
#let tth6 =
# SEQL_T_RULE
#  [ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * 0))}"`) 
#               (MK_NICE `"R := X"`);
#   ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * Q))}"`)
#               (MK_NICE `"Q := 0"`);
#   tth5];;
tth6 = 
|- [0 < Y /\ (X = X + (Y * 0))]
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   [(0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R]

#
#let th7 =
# prove
#  ((MK_NICE `"(~(Y <= R)) = (R < Y)"`),
#   ONCE_REWRITE_TAC[SYM(SPEC "R<Y" (hd(CONJUNCTS NOT_CLAUSES)))]
#    THEN PURE_REWRITE_TAC[NOT_LESS]
#    THEN REFL_TAC);;
th7 = |- ~Y <= R = R < Y

#
#let tth7 = REWRITE_RULE[th7;MULT_CLAUSES;ADD_CLAUSES]tth6;;
tth7 = 
|- [0 < Y]
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   [(0 < Y /\ (X = R + (Y * Q))) /\ R < Y]

#
#let tth6 =
# SEQL_T_RULE
#  [ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * 0))}"`)
#               (MK_NICE `"R := X"`);
#   ASSIGN_T_AX (MK_NICE `"{(0 < Y) /\\ (X = R + (Y * Q))}"`) 
#               (MK_NICE `"Q := 0"`);
#   WHILE_T_RULE
#    (PRE_STRENGTH_T_RULE
#      (th6,SEQL_T_RULE
#            [ASSIGN_T_AX (MK_NICE `"{((0 < Y) /\\ (X = R + (Y * (Q + 1)))) /\\ 
#                                     (R < r)}"`)
#                         (MK_NICE `"R := (R-Y)"`);
#             ASSIGN_T_AX (MK_NICE `"{((0 < Y) /\\ (X = R + (Y * Q))) /\\ 
#                                    (R < r)}"`)
#                         (MK_NICE `"Q := (Q + 1)"`)]))];;
tth6 = 
|- [0 < Y /\ (X = X + (Y * 0))]
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   [(0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R]

#
#%----------------------------------------------------------------------------%
#% Verification conditions for total correctness (halts_vc_gen)               %
#%----------------------------------------------------------------------------%
#
#goal
# (MK_NICE
#  `"[0 < Y]
#    (R := X;
#     Q := 0;
#     assert{(0 < Y) /\\ (R=X) /\\ (Q=0)};
#     while Y <= R
#      do (invariant{(0 < Y) /\\ (X = R + (Y * Q))}; variant{R};
#          R := R-Y; Q := Q+1))
#    [(X = R + (Y * Q)) /\\ R < Y]"`);;
"[0 < Y]
  R := X; 
  Q := 0; 
  assert{0 < Y /\ (R = X) /\ (Q = 0)}; 
  while Y <= R do 
   invariant{0 < Y /\ (X = R + (Y * Q))}; 
   variant{R}; R := R - Y; Q := Q + 1
 [(X = R + (Y * Q)) /\ R < Y]"

() : void

#
#apply(VC_T_TAC);;
OK..
4 subgoals
"(0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R ==> (X = R + (Y * Q)) /\ R < Y"

"(0 < Y /\ (X = R + (Y * Q))) /\ Y <= R /\ (R = r) ==>
 (0 < Y /\ (X = (R - Y) + (Y * (Q + 1)))) /\ (R - Y) < r"

"0 < Y /\ (R = X) /\ (Q = 0) ==> 0 < Y /\ (X = R + (Y * Q))"

"0 < Y ==> 0 < Y /\ (X = X) /\ (0 = 0)"

() : void

#
#apply(REWRITE_TAC[]);;
OK..
goal proved
|- 0 < Y ==> 0 < Y /\ (X = X) /\ (0 = 0)

Previous subproof:
3 subgoals
"(0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R ==> (X = R + (Y * Q)) /\ R < Y"

"(0 < Y /\ (X = R + (Y * Q))) /\ Y <= R /\ (R = r) ==>
 (0 < Y /\ (X = (R - Y) + (Y * (Q + 1)))) /\ (R - Y) < r"

"0 < Y /\ (R = X) /\ (Q = 0) ==> 0 < Y /\ (X = R + (Y * Q))"

() : void

#
#apply(STRIP_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES]);;
OK..
goal proved
|- 0 < Y /\ (R = X) /\ (Q = 0) ==> 0 < Y /\ (X = R + (Y * Q))

Previous subproof:
2 subgoals
"(0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R ==> (X = R + (Y * Q)) /\ R < Y"

"(0 < Y /\ (X = R + (Y * Q))) /\ Y <= R /\ (R = r) ==>
 (0 < Y /\ (X = (R - Y) + (Y * (Q + 1)))) /\ (R - Y) < r"

() : void

#
#apply(ACCEPT_TAC th6);;
OK..
goal proved
|- (0 < Y /\ (X = R + (Y * Q))) /\ Y <= R /\ (R = r) ==>
   (0 < Y /\ (X = (R - Y) + (Y * (Q + 1)))) /\ (R - Y) < r

Previous subproof:
"(0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R ==> (X = R + (Y * Q)) /\ R < Y"

() : void

#
#apply(REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]);;
OK..
"(0 < Y /\ (X = R + (Y * Q))) /\ R < Y ==> (X = R + (Y * Q)) /\ R < Y"

() : void

#apply(DISCH_TAC);;
OK..
"(X = R + (Y * Q)) /\ R < Y"
    [ "(0 < Y /\ (X = R + (Y * Q))) /\ R < Y" ]

() : void

#apply(ASM_REWRITE_TAC[]);;
OK..
goal proved
. |- (X = R + (Y * Q)) /\ R < Y
|- (0 < Y /\ (X = R + (Y * Q))) /\ R < Y ==> (X = R + (Y * Q)) /\ R < Y
|- (0 < Y /\ (X = R + (Y * Q))) /\ ~Y <= R ==>
   (X = R + (Y * Q)) /\ R < Y
|- [0 < Y]
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   [(X = R + (Y * Q)) /\ R < Y]

Previous subproof:
goal proved
() : void

#
#let DIV_CORRECT =
# prove
#  ((MK_NICE `"[0 < Y]
#              (R:=X;
#               Q:=0;
#               assert{(0 < Y) /\\ (R = X) /\\ (Q = 0)};
#               while Y<=R
#                do (invariant{(0 < Y) /\\ (X = (R + (Y * Q)))};
#                    variant{R};
#                    R:=R-Y; Q:=Q+1))
#              [(R < Y) /\\ (X = (R + (Y * Q)))]"`),
#   VC_T_TAC
#    THENL
#     [REWRITE_TAC[];
#      STRIP_TAC
#       THEN ASM_REWRITE_TAC[ADD_CLAUSES;MULT_CLAUSES];
#      ACCEPT_TAC th6;
#      REWRITE_TAC[SYM(SPEC_ALL NOT_LESS)]
#       THEN DISCH_TAC
#       THEN ASM_REWRITE_TAC[]
#     ]);;
DIV_CORRECT = 
|- [0 < Y]
    R := X; Q := 0; while Y <= R do R := R - Y; Q := Q + 1
   [R < Y /\ (X = R + (Y * Q))]

#
#pretty_off();;
true : bool

#
#DIV_CORRECT;;
|- T_SPEC
   ((\s. 0 < (s `Y`)),
    MK_SEQ
    (MK_SEQ(MK_ASSIGN(`R`,(\s. s `X`)),MK_ASSIGN(`Q`,(\s. 0))),
     MK_WHILE
     ((\s. (s `Y`) <= (s `R`)),
      MK_SEQ
      (MK_ASSIGN(`R`,(\s. (s `R`) - (s `Y`))),
       MK_ASSIGN(`Q`,(\s. (s `Q`) + 1))))),
    (\s. (s `R`) < (s `Y`) /\ (s `X` = (s `R`) + ((s `Y`) * (s `Q`)))))

#
#pretty_on();;
false : bool

#
#%----------------------------------------------------------------------------%
#% To see how weakest preconditions and dynamic logic can be represented in   %
#% HOL, browse the files mk_dijkstra.ml and mk_dynamic_logic.ml, respectively.%
#%----------------------------------------------------------------------------%
#
[Return to top level]
->