1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
|
\chapter{The HOL Logic in ML}\label{HOLsyschapter}
In this chapter, the concrete representation of the \HOL\ logic is described.
This involves describing the \ML\ functions that comprise the interface to the
logic (up to and including Section~\ref{avra_terms}); the quotation, printing
and parsing of logical terms (Section~\ref{quotation}); the representation of
theorems (Section~\ref{avra_theorems}); the representation of theories
(Section~\ref{theoryfns}); the basic \HOL\ theories that are built into the
\HOL\ system (Sections~\ref{HOL-theory} and \ref{rules}); the methods for
extending theories (throughout Section~\ref{HOL-ancestry} and in
Section~\ref{types-package}); and the \ML\ system functions concerning the
logic (Section~\ref{HOLflags}). It is assumed that the reader is familiar
with \ML. If not, the introduction to \ML\ in {\sl Getting Started with
HOL\/} in \TUTORIAL\ should be read first.
The \HOL\ system provides \ML\ types \ml{type} and \ml{term} to represent
types and terms of the \HOL\ logic, as defined in Sections~\ref{types} and
\ref{terms}, respectively.\footnote{Care must be taken to avoid confusion
between ML types and types of the HOL logic: the ML type {\tt type} represents
types of the HOL logic in ML.} It also provides primitive \ML\ functions for
creating and manipulating values of these types. The key idea of the \HOL\
system, due to Robin Milner\index{Milner, R.}, and discussed in this chapter,
is that theorems are represented as an abstract \ML\ type whose only
pre-defined values are axioms, and whose only operations are rules of
inference. This means that the only way to construct theorems in \HOL\ is
to apply rules of inference to axioms or existing theorems; hence the
consistency of the logic is preserved.
The purpose of the meta-language \ML\ is to provide a programming environment
in which to build theorem proving tools to assist in the construction of
proofs. When the \HOL\ system is built, a range of useful theorems are
pre-proved and a set of tools pre-defined. The basic system thus offers a rich
initial environment; users can further enrich it by implementing their own
application specific tools and building their own application specific
theories.
\section{Lexical matters}
\label{HOL-lex}
\index{identifiers, in HOL logic@identifiers, in \HOL\ logic|(}
The name of a \HOL\ variable\index{variables, in HOL logic@variables, in \HOL\ logic!names of|(}
can be any \ML\ string, but the quotation
mechanism will parse only names that are
identifiers (see Section~\ref{ident} below).
The use of non-identifiers as variable names is discouraged except
in special circumstances (for example, when writing
derived rules that generate
variables with names that are guaranteed to be different from existing names).
The names of type
variables\index{type variables, in HOL logic@type variables, in \HOL\ logic!names of} in the \HOL\ logic are strings
of \ml{*}s optionally followed by a number or an identifier (see
Section~\ref{tyvars} for examples).
The name of a type constant or a term constant of the \HOL\ logic can
be any identifier. \ML\ identifiers are described in Part~\ref{MLpart}; the
lexical structure of \HOL\ identifiers is identical, however the
description is repeated here for convenience.
\index{identifiers, in HOL logic@identifiers, in \HOL\ logic|)}
\subsection{Identifiers}
\label{ident}
The structure of \HOL\ identifiers is partly programmable. The default
is that an identifier can be of two forms:
\begin{myenumerate}
\item A sequence of alphanumerics starting with a letter,
where the default structure of an alphanumeric is that it is a letter,
a digit, a prime (\ml{'}) or an underbar (\ty{\_}).
\item A special symbol chosen from the following list
{\small \begin{verbatim}
** ++ <-- <-> --> --- >< >>
>= <== <=> === ==> \/ // /\
!? !! !\ ?! ?? ?\ := <>
<- << <= -- -> => ==
\end{verbatim}}
\end{myenumerate}
\noindent A letter is a member of the list:
\begin{hol}\begin{verbatim}
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
\end{verbatim}\end{hol}
\noindent \HOL\ is case-sensitive: upper and lower case letters are
considered to be different.
The function
\begin{boxed}\index{new_letter@\ml{new\_letter}|pin}
\begin{verbatim}
new_letter : string -> void
\end{verbatim}\end{boxed}
\noindent makes a new character behave like a letter. For example:
\begin{hol}\begin{verbatim}
new_letter `+`;;
\end{verbatim}\end{hol}
\noindent will make \ml{+int} and \ml{foo+bar} become allowable identifiers.
Failure occurs if the argument string is longer than one character.
The function
\begin{boxed}\index{is_letter@\ml{is\_letter}|pin}
\begin{verbatim}
is_letter : string -> bool
\end{verbatim}\end{boxed}
\noindent tests if a unit string is a letter; it fails if the string has more
than one character.
Alphanumerics are, by default, letters or digits. A digit is one of
{\small\verb%0%}, {\small\verb%1%}, {\small\verb%2%}, {\small\verb%3%},
{\small\verb%4%}, {\small\verb%5%}, {\small\verb%6%}, {\small\verb%7%},
{\small\verb%8%}, or {\small\verb%9%}.
A {\it number\/} is a string of one or more digits.
The function
\begin{boxed}\index{new_alphanum@\ml{new\_alphanum}|pin}
\begin{verbatim}
new_alphanum : string -> void
\end{verbatim}\end{boxed}
\noindent makes a new character behave like an alphanumeric. For example:
\begin{hol}\begin{verbatim}
new_alphanum `+`;;
\end{verbatim}\end{hol}
\noindent will make \ml{foo+bar} and \ml{foo+} become allowable names (but not
\ml{+bar}). Failure occurs if the argument string is longer than one
character.
The function
\begin{boxed}\index{is_alphanum@\ml{is\_alphanum}|pin}
\begin{verbatim}
is_alphanum : string -> bool
\end{verbatim}\end{boxed}
\noindent tests if a unit string is an alphanumeric; it fails if the string
has more than one character.
It is a consequence of the way lexical analysis is implemented that any
initial subsequence of a special symbol is also a special symbol (e.g. since
\ml{==>} is a special symbol, so are \ml{==} and \ml{=}). The function
\begin{boxed}\index{new_special_symbol@\ml{new\_special\_symbol}|pin}
\begin{verbatim}
new_special_symbol : string -> bool
\end{verbatim}\end{boxed}
\noindent makes the argument string, and all its substrings, special symbols;
it fails if
\begin{myenumerate}
\item the argument string is a single character, or
\item it starts with a letter or an alphanumeric.
\end{myenumerate}
\noindent For example:
\begin{hol}\begin{verbatim}
new_special_symbol `===>>>`;;
\end{verbatim}\end{hol}
\noindent makes \ml{===>>>}, \ml{===>>}, \ml{===>} and \ml{===}
into new special symbols
(\ml{==} is already a special symbol because \ml{==>} is).
The function
\begin{boxed}\index{special_symbols@\ml{special\_symbols}|pin}
\begin{verbatim}
special_symbols : void -> string list
\end{verbatim}\end{boxed}
\noindent gives the list of currently declared special symbols\index{variables, in HOL logic@variables, in \HOL\ logic!names of|)} .
\subsubsection{Separators}
The separators used by the \HOL\ lexical analyser are (with ascii codes in
brackets):
\bigskip
space (32), carriage return (13), line feed (10), tab ({\verb%^%}I, 9),
form feed ({\verb%^%}L, 12)
\subsection{Type variable names}
\label{tyvars}
The names of type variables in the \HOL\ logic are strings
of \ml{*}s optionally followed by a number or by an identifier; for example:
\begin{hol}\begin{verbatim}
* ** *** *' **' **25 ***thing
\end{verbatim}\end{hol}
\section{Types}\index{types, in HOL logic@types, in \HOL\ logic}
The allowed types\index{type constraint!in HOL logic@in \HOL\ logic} depend on which type constants\index{type constants, in HOL logic@type constants, in \HOL\ logic} have been declared in the
current theory. See Section~\ref{theoryfns} for details of how such
declarations are made.
There are two primitive constructor\index{types, in HOL logic@types, in \HOL\ logic!constructors for}
\index{type constructors!in HOL logic@in \HOL\ logic} functions for values of type
\ml{type}:
\begin{boxed}
\index{function types, in HOL logic@function types, in \HOL\ logic!constructors for}\index{mk_vartype@\ml{mk\_vartype}|pin}
\index{mk_type@\ml{mk\_type}|pin}
\begin{verbatim}
mk_vartype : string -> type
mk_type : (string # type list) -> type
\end{verbatim}\end{boxed}
The function \ml{mk\_vartype}
constructs a type variable\index{type variables, in HOL logic@type variables, in \HOL\ logic!constructor for} with a given name;
it fails if the name is not an allowable type variable name (\ie\ not
a string of \ml{*}s followed by a number or identifier).
The function \ml{mk\_type} constructs a compound type\index{compound types, in HOL logic@compound types, in \HOL\ logic!constructors for}
from a string
representing the name of the type operator and a list of types representing the
arguments to the operator. Function types $\sigma_1\fun\sigma_2$
of the logic are
represented in \ML\ as though they were compound types
$(\sigma_1,\sigma_2)$\ml{fun} (in Section~\ref{types}, however,
function types were not regarded as compound types).
The evaluation of
\ml{mk\_type(`}$name$\ml{`,\ [}$\sigma_1$\ml{;}$\cdots$\ml{;}$\sigma_n$\ml{])}
fails if
\begin{myenumerate}
\item $name$ is not an identifier;
\item $name$ is not a type operator of the current theory;
\item $name$ is a type operator of the current theory,
but its arity is not $n$.
\end{myenumerate}
For example, \ml{mk\_type(`bool`,[])}\index{truth values, in HOL logic@truth values, in \HOL\ logic}\index{bool, the type in HOL logic@\ml{bool}, the type in \HOL\ logic} evaluates to
an \ML\ value of type term representing the type \ty{bool} and
{\small\verb%mk_type(`fun`, [mk_type(`ind`,[]); mk_type(`bool`,[])])%}
evaluates to a value representing $\ty{ind}\fun\ty{bool}$.
(These types are introduced in Section~\ref{boolthy}).
There are two primitive destructor\index{types, in HOL logic@types, in
\HOL\ logic!destructors for}\index{type destructors, in HOL logic@type destructors, in \HOL\ logic}
functions for values of type
\ml{type}:
\begin{boxed}
\index{function types, in HOL logic@function types, in \HOL\ logic!destructors for}
\index{dest_vartype@\ml{dest\_vartype}|pin}
\index{dest_type@\ml{dest\_type}|pin}
\begin{verbatim}
dest_vartype : type -> string
dest_type : type -> (string # type list)
\end{verbatim}\end{boxed}
\noindent The function \ml{dest\_vartype}\index{type variables, in HOL logic@type variables, in \HOL\ logic!destructors for}\index{compound types, in HOL logic@compound types, in \HOL\ logic!destructors for}
extracts the name of a type variable.
The function \ml{dest\_type} destructs a compound type into the name of the
type operator and a list of the argument types; \ml{dest\_vartype} and
\ml{dest\_type} are thus the inverses of \ml{mk\_vartype} and \ml{mk\_type},
respectively. The destructors fail on arguments of the wrong form.
Types are printed\index{ type constraint, in HOL logic@\ml{:} (type constraint, in \HOL\ logic)}
\index{printing, in HOL logic@printing, in \HOL\ logic!of types} in the form \ml{":}$\ \cdots\ $\ml{"}
using the quotation syntax described in Section~\ref{quotation}.
For example, the \ML\ value of type \ml{type} representing
$\ty{ind}\fun(\ty{ind}\fun\ty{bool})$ would be printed
as \ml{":ind -> ind -> bool"}.
\section{Terms}
\label{avra_terms}
The four primitive kinds of terms of the logic
are described in Section~\ref{terms}. The
\ML\ functions for manipulating these are described in this section. There are
also various derived terms that are described in Section~\ref{derived-terms}.
The allowed terms depend on which constants have been declared
in the current theory. See Section~\ref{theoryfns} for details
of how such declarations are made.
There are four primitive constructor\index{variables, in HOL logic@variables, in \HOL\ logic!constructor for}\index{terms, in HOL logic@terms, in \HOL\ logic!constructors for}\index{term constructors, in HOL logic@term constructors, in \HOL\ logic}
functions for values of type
\ml{term}:
\begin{boxed}
\index{mk_var@\ml{mk\_var}|pin}
\begin{verbatim}
mk_var : (string # type) -> term
\end{verbatim}\end{boxed}
\noindent\ml{mk\_var(}$x$\ml{,}$\sigma$\ml{)} evaluates to a variable with name
$x$ and type $\sigma$; it always succeeds.
\begin{boxed}
\index{mk_const@\ml{mk\_const}|pin}
\begin{verbatim}
mk_const : (string # type) -> term
\end{verbatim}\end{boxed}
\noindent\ml{mk\_const(}$c$\ml{,}$\sigma$\ml{)} evaluates to a
term representing
the constant\index{constants, in HOL logic@constants, in \HOL\ logic!constructor for} with name $c$ and type $\sigma$; it fails if:
\begin{myenumerate}
\item $c$ is not an allowable constant name;
\item $c$ is not the name of a constant in the current theory;
\item $\sigma$ is not an instance of the generic type of $c$
(the generic type of a constant is established when the constant is defined;
see Section~\ref{theoryfns}).
\end{myenumerate}
\begin{boxed}\index{mk_comb@\ml{mk\_comb}|pin}
\begin{verbatim}
mk_comb : (term # term) -> term
\end{verbatim}\end{boxed}
\noindent\ml{mk\_comb(}$t_1$\ml{,}$t_2$\ml{)}\index{function application, in HOL logic@function application, in \HOL\ logic!constructor for} evaluates to a term
representing the combination\index{combinations, in HOL logic@combinations, in \HOL\ logic!constructor for}
$t_1\ t_2$. It fails if:
\begin{myenumerate}
\item the type of $t_1$ does not have the form \ml{$\sigma'$->$\sigma$};
\item the type of $t_1$ has the form \ml{$\sigma'$->$\sigma$}, but the
type of $t_2$ is not equal to $\sigma'$.
\end{myenumerate}
\begin{boxed}
\index{mk_abs@\ml{mk\_abs}|pin}
\begin{verbatim}
mk_abs : (term # term) -> term
\end{verbatim}\end{boxed}
\noindent\ml{mk\_abs(}$x$\ml{,}$t$\ml{)} evaluates to a term representing
the abstraction\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!constructor for} $\lquant{x}t$; it fails if $x$ is not a variable.
There are four primitive destructor\index{term destructors, in HOL logic@term destructors, in \HOL\ logic}\index{variables, in HOL logic@variables, in \HOL\ logic!destructor for}\index{constants, in HOL logic@constants, in \HOL\ logic!destructor for}\index{combinations, in HOL logic@combinations, in \HOL\ logic!destructor for}\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!destructor for}\index{function application, in HOL logic@function application, in \HOL\ logic!destructor for} functions on terms:
\begin{boxed}
\index{dest_var@\ml{dest\_var}|pin
}\index{dest_const@\ml{dest\_const}|pin}
\index{dest_comb@\ml{dest\_comb}|pin}
\index{dest_abs@\ml{dest\_abs}|pin}
\begin{verbatim}
dest_var : term -> (string # type)
dest_const : term -> (string # type)
dest_comb : term -> (term # term)
dest_abs : term -> (term # term)
\end{verbatim}\end{boxed}
These are the inverses of \ml{mk\_var}, \ml{mk\_const},
\ml{mk\_comb} and \ml{mk\_abs}, respectively. They fail when applied
to terms of the wrong form. Other useful destructor functions are
\ml{rator}\index{rator@\ml{rator}},
\ml{rand}\index{rand@\ml{rand}},
\ml{bndvar}\index{bndvar@\ml{bndvar}},
\ml{body}\index{body@\ml{body}},
\ml{lhs}\index{lhs@\ml{lhs}} and
\ml{rhs}\index{rhs@\ml{rhs}}.
See \REFERENCE\ for details.
The function
\begin{boxed}\index{type_of@\ml{type\_of}|pin}
\begin{verbatim}
type_of : term -> type
\end{verbatim}\end{boxed}
\noindent returns the type\index{types, in HOL logic@types, in \HOL\ logic!determination of} of a term. It could be defined (recursively)
in terms of the
destructors but is predefined for convenience.
Terms are printed in the form \ml{"}$\ \cdots\ $\ml{"}
using the quotation syntax\index{quotation, in HOL logic@quotation, in \HOL\ logic} described in Section~\ref{quotation}.
For example, the term representing
\[ \uquant{x\ y}x<y \imp\equant{z}x+z = y \]
\noindent would be printed as:
\[ \ml{"!x y. x < y ==> ?z. x + z = y"} \]
Note that a colon\index{ type constraint, in HOL logic@\ml{:} (type constraint, in \HOL\ logic)}
is used to distinguish type quotation from term quotation;
the former have the form \ml{":}$\ \cdots\ $\ml{"} and the latter have
the form \ml{"}$\ \cdots\ $\ml{"}.
\section{Quotation}
\label{quotation}\label{gen-abs}\label{let}
\index{type checking, in HOL logic@type checking, in \HOL\ logic!of quotation syntax|(}
\index{quotation, in HOL logic@quotation, in \HOL\ logic|(}
\index{ type quotes, in ML@\ml{"":$\cdots$""} (type quotes, in \ML)|(}
\index{ term quotes, in ML@\ml{""$\cdots$""} (term quotes, in \ML)|(}
\HOL\ types and terms can be input\index{terms, in HOL logic@terms, in \HOL\ logic!input of} to the system in two ways: by using
constructor functions, or by using {\it quotation\/}. The
former
allows some terms to be built which cannot be constructed using quotation.
For example, a term containing two variables with the same name but different
types, \eg\ the term $x_{\ty{bool}}=(x_{\ty{num}}=1)$,
can be built only by using
constructors.
It would be tedious, however, to always have to input types and terms using the
constructor functions. The \HOL\ system, following \LCF\index{LCF@\LCF}, has a special
quotation\index{quotation, in HOL logic@quotation, in \HOL\ logic!parser for}\index{parsing, of HOL logic@parsing, of \HOL\ logic!of quotation syntax} parser and
type checker that enables terms to be input using a fairly standard syntax. The
\HOL\ printer also outputs types and terms using this syntax\index{printing, in HOL logic@printing, in \HOL\ logic!of quotation syntax}.
For example, the \ML\ expression {\small\verb%":bool->bool"%} denotes
exactly the same value (of \ML\ type {\small\verb%type%}) as
\begin{hol}\index{bool, the type in HOL logic@\ml{bool}, the type in \HOL\ logic}
\begin{verbatim}
mk_type(`fun`,[mk_type(`bool`,[]);mk_type(`bool`,[])])
\end{verbatim}\end{hol}
\noindent and
{\small\verb%"\x.x+1"%}\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic} can be used instead of
\newpage %PBHACK
{\small\baselineskip\HOLSpacing\begin{verbatim}
mk_abs
(mk_var(`x`,mk_type(`num`,[])),
mk_comb
(mk_comb
(mk_const
(`+`,
mk_type(`fun`,[mk_type(`num`,[]);
mk_type(`fun`,[mk_type(`num`,[]);
mk_type(`num`,[])])])),
mk_var(`x`, mk_type(`num`,[]))),
mk_const(`1`, mk_type(`num`,[]))))
\end{verbatim}}
\index{type constraint!in HOL logic@in \HOL\ logic|(}It should be noted
that there is no explicit type information in {\small\verb%"\x.x+1"%}.
The \HOL\ type checker knows that \ml{1} has type \ml{num} and \ml{+} has type
\ml{num->(num->num)}. From this information it can infer that both occurrences
of {\small\verb%x%} in {\small\verb%"\x.x+1"%} could have type
{\small\verb%num%}. This is not the only possible type assignment; for
example, the first occurrence of {\small\verb%x%} could have type \ml{bool} and
the second one have type {\small\verb%num%}. In that case there would be two
{\it different\/} variables with name {\small\verb%x%}, namely
{\small\verb%x%}$_{\tt bool}$ and {\small\verb%x%}$_{\tt num}$, the second of
which is free. In fact, as mentioned,
the only way to construct a term with this
second type assignment is by using constructors, since the type checker uses
the heuristic that all variables in a term
with the same name have the same type. This is
illustrated in the following session.
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#"x = (x = 1)";;
Badly typed application of: "$= x"
which has type: ":num -> bool"
to the argument term: "x = 1"
which has type: ":bool"
evaluation failed mk_comb in quotation
#mk_eq
# (mk_var(`x`,mk_type(`bool`,[])),
# mk_eq
# (mk_var(`x`,mk_type(`num`,[])),
# mk_const(`1`,mk_type(`num`,[]))));;
"x = (x = 1)" : term
\end{verbatim}\end{session}
The quotation type checker was designed and implemented by Robin Milner\index{Milner, R.}. It
employs heuristics like the one above to infer a sensible type for all
variables occurring in a term. If there are not enough clues, then the system
will complain with an error message.
To give the system a hint, types can be explicitly indicated by following any
subterm with a colon and then a type. For example,
{\small\verb%"f(x:num):bool"%} will type check with {\small\verb%f%} and
{\small\verb%x%} getting types {\small\verb%num->bool%} and {\small\verb%num%}
respectively. If there are polymorphic constants in a term, there must be
enough type information to uniquely identify a type instance for each such
constant. There is also a feature called {\it sticky types\/} that enables
variables to be given default types; this is described in
Section~\ref{stickytypes}.
The type checking\index{type checker, for HOL logic vs ML@type checker, for \HOL\ logic {\it vs} \ML} algorithm used for the \HOL\ logic differs from that used
for \ML. For example, the \ML\ expression {\small\verb%\x.x%}\index{terms, in HOL logic@terms, in \HOL\ logic!function abstraction}\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!type checking of}\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!syntax of}
will get \ML\
type {\small\verb%*->*%}, but the \HOL\ term {\small\verb%"\x.x"%} will
fail to type check, as shown in the session below.
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#"\x. x";;
Indeterminate types: "x:?"
evaluation failed types indeterminate in quotation
\end{verbatim}\end{session}
\noindent To get the term {\small\verb%\x.x%}
to type check, the type of the variable \ml{x} must be given explicitly,
for example by writing {\small\verb%"\x:*.x"%}.
\begin{session}\begin{verbatim}
#"\x:*. x";;
"\x. x" : term
\end{verbatim}\end{session}
\noindent This treatment of types within quotations is inherited from \LCF\index{LCF@\LCF}.
\index{type constraint!in HOL logic@in \HOL\ logic|)}
\index{ term quotes, in ML@\ml{""$\cdots$""} (term quotes, in \ML)|)}
\subsection{Type quotation}
\index{type variables, in HOL logic@type variables, in \HOL\ logic!constructor for}
\index{type constructors!in HOL logic@in \HOL\ logic}
\index{term constructors, in HOL logic@term constructors, in \HOL\ logic|(}
\index{terms, in HOL logic@terms, in \HOL\ logic!constructors for|(}
The table below shows \ML\ expressions for various kinds of type
quotations\index{quotation, in HOL logic@quotation, in \HOL\ logic!of types}.
The expressions in the same row are equivalent.
\bigskip
\begin{center}
\index{compound types, in HOL logic@compound types, in \HOL\ logic!constructors for}
\index{ type variables, in HOL logic@\ml{*,\,**,\,}$\ldots$ (type variables, in \HOL\ logic)}
\index{types, in HOL logic@types, in \HOL\ logic!constructors for}
\index{ function type operator, in HOL logic@\ml{->} (function type operator, in \HOL\ logic)}
\index{mk_vartype@\ml{mk\_vartype}}
\index{mk_type@\ml{mk\_type}}
\begin{tabular}{|l|l|l|} \hline
\multicolumn{3}{|c|}{ } \\
\multicolumn{3}{|c|}{\bf Types} \\
\multicolumn{3}{|c|}{ } \\
{\it Kind of type} & {\it \ML\ quotation} &
{\it Constructor expression} \\ \hline
& & \\
Type variable &
{\small\verb%":*%}$\cdots${\small\verb%"%} & {\small\verb%mk_vartype(`*%}$\cdots${\small\verb%`)%} \\ \hline
Type constant &
{\small\verb%":%}$op${\small\verb%"%} & {\small\verb%mk_type(`%}$op${\small\verb%`,[])%} \\ \hline
Function type &
{\small\verb%":%}$\sigma_1${\small\verb%->%}$\sigma_2${\small\verb%"%} &
{\small\verb%mk_type(`fun`, [":%}$\sigma_1${\small\verb%";":%}$\sigma_2${\small\verb%"])%} \\ \hline
Compound type &
{\small\verb%":(%}$\sigma_1${\small\verb%,%} $\ldots$ {\small\verb%,%} $\sigma_n${\small\verb%)%}$op${\small\verb%"%} &
{\small\verb%mk_type(`%}$op${\small\verb%`, [":%}$\sigma_1${\small\verb%";%} $\ldots$ {\small\verb%;":%}$\sigma_n${\small\verb%"])%}
\\ \hline
\end{tabular}
\end{center}
\index{ type quotes, in ML@\ml{"":$\cdots$""} (type quotes, in \ML)|)}
\subsection{Term quotation}
\index{terms, in HOL logic@terms, in \HOL\ logic!syntax of|(}
Equivalent ways of inputting the four primitive kinds of term are shown in
the next table.
\bigskip
\begin{center}
\index{combinations, in HOL logic@combinations, in \HOL\ logic!quotation of}
\index{terms, in HOL logic@terms, in \HOL\ logic!primitive}
\index{terms, in HOL logic@terms, in \HOL\ logic!constructors for}
\index{quotation, in HOL logic@quotation, in \HOL\ logic!of primitive terms}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!symbol for}
\index{function application, in HOL logic@function application, in \HOL\ logic!constructor for}
\index{function application, in HOL logic@function application, in \HOL\ logic!syntax of}
\index{variables, in HOL logic@variables, in \HOL\ logic!constructor for}
\index{variables, in HOL logic@variables, in \HOL\ logic!syntax of}
\index{mk_var@\ml{mk\_var}}
\index{mk_const@\ml{mk\_const}}
\index{mk_comb@\ml{mk\_comb}}
\index{mk_abs@\ml{mk\_abs}}
\begin{tabular}{|l|l|l|} \hline
\multicolumn{3}{|c|}{ } \\
\multicolumn{3}{|c|}{\bf Primitive terms} \\
\multicolumn{3}{|c|}{ } \\
{\it Kind of term} & {\it \ML\ quotation} &
{\it Constructor expression} \\ \hline
& & \\
Variable & {\small\verb%"%}$var${\small\verb%:%}$\sigma${\small\verb%"%} &
{\small\verb%mk_var(`%}$var${\small\verb%`,":%}$\sigma${\small\verb%")%} \\ \hline
Constant & {\small\verb%"%}$const${\small\verb%:%}$\sigma${\small\verb%"%} &
{\small\verb%mk_const(`%}$const${\small\verb%`,":%}$\sigma${\small\verb%")%} \\ \hline
Combination & {\small\verb%"%}$t_1\ t_2${\small\verb%"%} &
{\small\verb%mk_comb("%}$t_1${\small\verb%","%}$t_2${\small\verb%")%} \\ \hline
Abstraction & {\small\verb%"\%}$x${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%mk_abs("%}$x${\small\verb%","%}$t${\small\verb%")%} \\ \hline
\end{tabular}
\end{center}\index{type checking, in HOL logic@type checking, in \HOL\ logic!of quotation syntax|)}
\subsection{Special syntactic forms}
\label{derived-terms}
\index{type checking, in HOL logic@type checking, in \HOL\ logic!special forms in|(}
\index{quotation, in HOL logic@quotation, in \HOL\ logic!of non-primitive terms|(}
The \HOL\ quotation parser\index{quotation, in HOL logic@quotation, in \HOL\ logic!parser for} can translate
various standard logical
notations\index{parsing, of HOL logic@parsing, of \HOL\ logic!of standard notations} into primitive terms. For example, if {\small\verb%+%} has been
declared an infix\index{infixes, in HOL logic@infixes, in \HOL\ logic} (as explained in Section~\ref{theoryfns}), then
{\small\verb%"x+1"%} is translated to {\small\verb%"$+ x 1"%}. The escape
character {\small\verb%$%}\index{ escape, in HOL logic parser@{\small\verb+$+} (escape, in \HOL\ logic parser)}\index{declared constants, in HOL logic@declared constants, in \HOL\ logic}\index{infixes, in HOL logic@infixes, in \HOL\ logic}
suppresses the infix behaviour of
{\small\verb%+%} and prevents the quotation parser getting confused. In
general, {\small\verb%$%} can be used to suppress any special syntactic
behaviour a constant name\index{constants, in HOL logic@constants, in \HOL\ logic!supressing parsing behaviour of} might have. This is illustrated in the table
below, in which the terms in the column headed `{\it \ML\ quotation}' are
translated by the quotation parser to the corresponding terms in the column
headed `{\it Primitive term\/}'. Conversely, the terms in the latter
column are always printed in the form shown in the former one.
\label{cond}The \ML\ constructor expressions in the rightmost column
evaluate to the same values (of type {\small\verb%term%}) as the other
quotations in the same row.
\bigskip
\begin{center}
\index{choice operator, in HOL logic@choice operator, in \HOL\ logic!syntax of}
\index{ negation, in HOL logic@{\small\verb+~+} (negation, in \HOL\ logic)}
\index{ disjunction, in HOL logic@{\small\verb+\/+} (disjunction, in \HOL\ logic)}
\index{ conjunction, in HOL logic@{\small\verb+/\+} (conjunction, in \HOL\ logic)}
\index{ implication, in HOL logic@{\small\verb+==>+} (implication, in \HOL\ logic)}
\index{ equality, in HOL logic@\ml{=} (equality, in \HOL\ logic)}
\index{ universal quantifier, in HOL logic@{\small\verb+"!+} (universal quantifier, in \HOL\ logic)}
\index{ existential quantifier, in HOL logic@{\small\verb+?+} (existential quantifier, in \HOL\ logic)}
\index{ choice function, in HOL logic@{\small\verb+"@+} (choice function, in \HOL\ logic)}
\index{terms, in HOL logic@terms, in \HOL\ logic!non-primitive}
\index{terms, in HOL logic@terms, in \HOL\ logic!constructors for}
\index{conditional predicate, in HOL logic@conditional predicate, in \HOL\ logic}
\index{conditionals, in HOL logic@conditionals, in \HOL\ logic}
\index{conjunction, in HOL logic@conjunction, in \HOL\ logic!constructor for}
\index{disjunction, in HOL logic@disjunction, in \HOL\ logic!constructor for}
\index{equality, in HOL logic@equality, in \HOL\ logic!syntax of}
\index{negation, in HOL logic@negation, in \HOL\ logic!syntax of}
\index{negation, in HOL logic@negation, in \HOL\ logic!constructor for}
\index{existential quantifier, in HOL logic@existential quantifier, in \HOL\ logic!syntax of}
\index{universal quantifier, in HOL logic@universal quantifier, in \HOL\ logic!syntax of}
\index{implication, in HOL logic@implication, in \HOL\ logic!syntax of}
\index{mk_neg@\ml{mk\_neg}}
\index{mk_disj@\ml{mk\_disj}}
\index{mk_conj@\ml{mk\_conj}}
\index{mk_imp@\ml{mk\_imp}}
\index{mk_eq@\ml{mk\_eq}}
\index{mk_forall@\ml{mk\_forall}}
\index{mk_exists@\ml{mk\_exists}}
\index{mk_select@\ml{mk\_select}}
\index{mk_cond@\ml{mk\_cond}}
\index{mk_let@\ml{mk\_let}}
\index{conjunction, in HOL logic@conjunction, in \HOL\ logic!syntax of}
\begin{tabular}{|l|l|l|l|} \hline
\multicolumn{4}{|c|}{ } \\
\multicolumn{4}{|c|}{\bf Non-primitive terms} \\
\multicolumn{4}{|c|}{ } \\
{\it Kind of term} & {\it \ML\ quotation} &
{\it Primitive term} &
{\it Constructor expression} \\ \hline
& & & \\
Negation & {\small\verb%"~%}$t${\small\verb%"%} & {\small\verb%"$~ %}$t${\small\verb%"%} & {\small\verb%mk_neg("%}$t${\small\verb%")%} \\ \hline
Disjunction & {\small\verb%"%}$t_1${\small\verb%\/%}$t_2${\small\verb%"%} & {\small\verb%"$\/ %}$t_1\ t_2${\small\verb%"%} &
{\small\verb%mk_disj("%}$t_1${\small\verb%","%}$t_2${\small\verb%")%} \\ \hline
Conjunction & {\small\verb%"%}$t_1${\small\verb%/\%}$t_2${\small\verb%"%} & {\small\verb%"$/\ %}$t_1\ t_2${\small\verb%"%} &
{\small\verb%mk_conj("%}$t_1${\small\verb%","%}$t_2${\small\verb%")%} \\ \hline
Implication & {\small\verb%"%}$t_1${\small\verb%==>%}$t_2${\small\verb%"%} & {\small\verb%"$==> %}$t_1\ t_2${\small\verb%"%} &
{\small\verb%mk_imp("%}$t_1${\small\verb%","%}$t_2${\small\verb%")%} \\ \hline
Equality & {\small\verb%"%}$t_1${\small\verb%=%}$t_2${\small\verb%"%} & {\small\verb%"$= %}$t_1\ t_2${\small\verb%"%} &
{\small\verb%mk_eq("%}$t_1${\small\verb%","%}$t_2${\small\verb%")%} \\ \hline
$\forall$-quantification & {\small\verb%"!%}$x${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%"$!(\%}$x${\small\verb%.%}$t${\small\verb%)"%} & {\small\verb%mk_forall("%}$x${\small\verb%","%}$t${\small\verb%")%} \\ \hline
$\exists$-quantification & {\small\verb%"?%}$x${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%"$?(\%}$x${\small\verb%.%}$t${\small\verb%)"%} & {\small\verb%mk_exists("%}$x${\small\verb%","%}$t${\small\verb%")%} \\ \hline
$\hilbert$-term & {\small\verb%"@%}$x${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%"$@(\%}$x${\small\verb%.%}$t${\small\verb%)"%} & {\small\verb%mk_select("%}$x${\small\verb%","%}$t${\small\verb%")%} \\ \hline
Conditional\index{COND@\ml{COND}} & {\small\verb%"(%}$t${\small\verb%=>%}$t_1${\small\verb%|%}$t_2${\small\verb%)"%} &
{\small\verb%"COND %}$t\ t_1\ t_2${\small\verb%"%} & {\small\verb%mk_cond("%}$t${\small\verb%","%}$t_1${\small\verb%","%}$t_2${\small\verb%")%}
\\ \hline
{\small\verb%let%}-expression & {\small\verb%"let %}$x${\small\verb%=%}$t_1${\small\verb% in %}$t_2${\small\verb%"%} &
{\small\verb%"LET(\%}$x${\small\verb%.%}$t_2${\small\verb%)%}$t_1${\small\verb%"%} &
{\small\verb%mk_let("\%}$x${\small\verb%.%}$t_1${\small\verb%","%}$t_2${\small\verb%")%} \\ \hline
\end{tabular}
\end{center}
\bigskip
There are constructors, destructors and indicators for all the
obvious constructs. (Indicators, \eg\ \ml{is\_neg}, return truth
values indicating whether or not a term belongs to the syntax
class in question.) In addition to the constructors listed in the table there
are constructors for pairs and lists, namely
\ml{mk\_pair}\index{mk_pair@\ml{mk\_pair}},
\ml{mk\_cons}\index{mk_cons@\ml{mk\_cons}} and
\ml{mk\_list}\index{mk_list@\ml{mk\_list}} (see \REFERENCE).
The constants {\small\verb%COND%}\index{COND@\ml{COND}} and {\small\verb%LET%} are explained in
Sections~\ref{conditionals} and \ref{let-exp}, respectively.
The constants {\small\verb%\/%}\index{disjunction, in HOL logic@disjunction, in \HOL\ logic!syntax of}, {\small\verb%/\%},
{\small\verb%==>%} and {\small\verb%=%} are examples of {\it infixes\/}
and represent $\vee$, $\wedge$, $\imp$ and equality, respectively. If
$c$ is declared to be an infix, then the \HOL\ parser will translate
{\small\verb%"%}$t_1\ c\ t_2${\small\verb%"%} to
{\small\verb%"$%}$c\ t_1\ t_2${\small\verb%"%}.
The constants {\small\verb%!%}, {\small\verb%?%} and {\small\verb%@%} are examples
of \label{binder} {\it binders\/}\index{binders, in HOL logic@binders, in \HOL\ logic}
and represent $\forall$, $\exists$ and $\hilbert$, respectively. If $c$
is declared to be a binder, then the
\HOL\ parser will translate {\small\verb%"%}$c\ x${\small\verb%.%}$t${\small\verb%"%} to the combination
{\small\verb%"$%}$c${\small\verb%(\%}$x${\small\verb%.%}$t${\small\verb%)"%}
(\ie\ the application of the constant $c$ to the representation of
the abstraction $\lquant{x}t$)\index{ function abstraction binder, in HOL logic@{\small\verb+\+} (function abstraction binder, in \HOL\ logic)}.
In addition to the kinds of terms in the tables above,
the parser also supports the following syntactic abbreviations.
\begin{center}
\index{variables, in HOL logic@variables, in \HOL\ logic!multiple bound}
\index{list_mk_comb@\ml{list\_mk\_comb}|pin}
\index{list_mk_abs@\ml{list\_mk\_abs}|pin}
\index{list_mk_forall@\ml{list\_mk\_forall}|pin}
\index{list_mk_exists@\ml{list\_mk\_exists}|pin}
\index{combinations, in HOL logic@combinations, in \HOL\ logic!abbreviation for multiple}
\index{existential quantifier, in HOL logic@existential quantifier, in \HOL\ logic!abbreviation for multiple}
\index{universal quantifier, in HOL logic@universal quantifier, in \HOL\ logic!abbreviation for multiple}
\begin{tabular}{|l|l|l|} \hline
\multicolumn{3}{|c|}{ } \\
\multicolumn{3}{|c|}{\bf Syntactic abbreviations} \\
\multicolumn{3}{|c|}{ } \\
{\it Abbreviated term} & {\it Meaning} &
{\it Constructor expression} \\ \hline
& & \\
{\small\verb%"%}$t\ t_1 \cdots t_n${\small\verb%"%} &
{\small\verb%"(%}$\cdots${\small\verb%(%}$t\ t_1${\small\verb%)%}$\cdots t_n${\small\verb%)"%} &
{\small\verb%list_mk_comb("%}$t${\small\verb%",["%}$t_1${\small\verb%"; %}$\ldots${\small\verb% ;"%}$t_n${\small\verb%"])%} \\ \hline
{\small\verb%"\%}$x_1\cdots x_n${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%"\%}$x_1${\small\verb%. %}$\cdots${\small\verb% \%}$x_n${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%list_mk_abs(["%}$x_1${\small\verb%"; %}$\ldots${\small\verb% ;"%}$x_n${\small\verb%"],"%}$t${\small\verb%")%}
\\ \hline
{\small\verb%"!%}$x_1\cdots x_n${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%"!%}$x_1${\small\verb%. %}$\cdots${\small\verb% !%}$x_n${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%list_mk_forall(["%}$x_1${\small\verb%"; %}$\ldots${\small\verb% ;"%}$x_n${\small\verb%"],"%}$t${\small\verb%")%}
\\ \hline
{\small\verb%"?%}$x_1\cdots x_n${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%"?%}$x_1${\small\verb%. %}$\cdots${\small\verb% ?%}$x_n${\small\verb%.%}$t${\small\verb%"%} &
{\small\verb%list_mk_exists(["%}$x_1${\small\verb%"; %}$\ldots${\small\verb% ;"%}$x_n${\small\verb%"],"%}$t${\small\verb%")%} \\
\hline
\end{tabular}
\end{center}
\noindent There are also constructors
\ml{list\_mk\_conj}\index{list_mk_conj@\ml{list\_mk\_conj}},
\ml{list\_mk\_disj}\index{list_mk_disj@\ml{list\_mk\_disj}},
\ml{list\_mk\_imp}\index{list_mk_imp@\ml{list\_mk\_imp}} and
\ml{list\_mk\_pair}\index{list_mk_pair@\ml{list\_mk\_pair}}
for conjunctions, disjunctions, implications and tuples respectively.
The corresponding destructor functions are called \ml{strip\_comb}, \etc,
except that there is no \ml{strip\_conj} or \ml{strip\_disj}. Instead there are
functions called \ml{conjuncts} and \ml{disjuncts}, but it should be noted
that these are not proper inverses of \ml{list\_mk\_conj} and
\ml{list\_mk\_disj}.
\index{term constructors, in HOL logic@term constructors, in \HOL\ logic|)}
\index{terms, in HOL logic@terms, in \HOL\ logic!constructors for|)}
\section{Syntax for restricted quantification}\label{res-quant}
\index{types, in HOL logic@types, in \HOL\ logic!dependent}
\index{dependent types in HOL logic@dependent types in \HOL\ logic}
\index{quantifiers!restricted}
Syntactic support for restricted quantification and abstraction is
provided. This follows a suggestion discussed at the Second \HOL\ Users
Meeting and implements a method of simulating subtypes and dependent
types with predicates.
Currently no derived rules are provided to support this notation, so
any inferences will need to work on the underlying semantic
representation.
The new syntax automatically translates as follows:
\begin{hol}
{\small\verb% \%}$v${\small\verb%::%}$P${\small\verb%.%}$B${\small\verb% <----> RES_ABSTRACT %}$P${\small\verb% (\%}$v${\small\verb%.%}$B${\small\verb%)%}\\
{\small\verb% !%}$v${\small\verb%::%}$P${\small\verb%.%}$B${\small\verb% <----> RES_FORALL %}$P${\small\verb% (\%}$v${\small\verb%.%}$B${\small\verb%)%}\\
{\small\verb% ?%}$v${\small\verb%::%}$P${\small\verb%.%}$B${\small\verb% <----> RES_EXISTS %}$P${\small\verb% (\%}$v${\small\verb%.%}$B${\small\verb%)%}\\
{\small\verb% @%}$v${\small\verb%::%}$P${\small\verb%.%}$B${\small\verb% <----> RES_SELECT %}$P${\small\verb% (\%}$v${\small\verb%.%}$B${\small\verb%)%}
\end{hol}
Anything can be written between the binder and `\ml{::}' that can be
written between the binder and `\ml{.}`. See the examples below.
The flag \ml{print\_restrict} has default \ml{true}, but if set to \ml{false}
will disable the pretty printing. This is useful for seeing what the semantics
of particular restricted abstractions are.
The constants \ml{RES\_ABSTRACT}, \ml{RES\_FORALL}, \ml{RES\_EXISTS} and
\ml{RES\_SELECT} are
defined in the theory \ml{bool} by:
\begin{hol}\index{RES_FORALL@\ml{RES\_FORALL}}
\index{RES_EXISTS@\ml{RES\_EXISTS}}
\index{RES_SELECT@\ml{RES\_SELECT}}
\index{RES_ABSTRACT@\ml{RES\_ABSTRACT}}\begin{verbatim}
RES_ABSTRACT P B = \x:*. (P x => B x | ARB:**)
RES_FORALL P B = !x:*. P x ==> B x
RES_EXISTS P B = ?x:*. P x /\ B x
RES_SELECT P B = @x:*. P x /\ B x
\end{verbatim}\end{hol}
\noindent where the constant \ml{ARB}\index{ARB@\ml{ARB}},
which is also defined in the theory \ml{bool}, has the definition:
\begin{hol}\begin{verbatim}
ARB = @x:*. T
\end{verbatim}\end{hol}
User-defined binders can also have restricted forms, which are set up
with the function:
\begin{boxed}\index{associate_restriction@\ml{associate\_restriction}|pin}
\begin{verbatim}
associate_restriction : (string # string) -> *
\end{verbatim}\end{boxed}
\noindent If \m{c} is the name
of a binder and \ml{RES\_}\m{c} is the name of a suitable constant (which
must be explicitly defined), then executing:
\begin{hol}
{\small\verb% associate_restriction(`%}$c${\small\verb%`, `RES_%}$c${\small\verb%`)%}
\end{hol}
\noindent will cause the parser and pretty-printer to support:
\begin{hol}
{\small\verb% %}$c$ $v${\small\verb%::%}$P${\small\verb%. %}$B${\small\verb% <----> RES_%}$c$ $P${\small\verb% (\%}$v${\small\verb%. %}$B${\small\verb%)%}
\end{hol}
\noindent Note that associations between user defined binders and their
restrictions are not stored in theory files, so they have to be set up
for each \HOL\ session (e.g. with a {\small\verb%hol-init.ml%}
initialization file -- see Section~\ref{hol-init}).
Here is an example session:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#"!x y::P. x<y";;
"!x y :: P. x < y" : term
#set_flag(`print_restrict`, false);;
true : bool
#"!x y::P. x<y";;
"RES_FORALL P(\x. RES_FORALL P(\y. x < y))" : term
#"?(x,y) p::(\(m,n).m<n). p=(x,y)";;
"RES_EXISTS
(\(m,n). m < n)
(\(x,y). RES_EXISTS(\(m,n). m < n)(\p. p = x,y))"
: term
#"\x y z::P.[0;x;y;z]";;
"RES_ABSTRACT P(\x. RES_ABSTRACT P(\y. RES_ABSTRACT P(\z. [0;x;y;z])))"
: term
\end{verbatim}\end{session}
A conversion that rewrites away the constants \ml{RES\_ABSTRACT},
\ml{RES\_FORALL}, \ml{RES\_EXISTS} and \ml{RES\_SELECT} is:
\begin{hol}\begin{verbatim}
let RESTRICT_CONV =
(PURE_REWRITE_CONV [definition `bool` `RES_ABSTRACT`;
definition `bool` `RES_FORALL`;
definition `bool` `RES_EXISTS`;
definition `bool` `RES_SELECT`])
THENC (DEPTH_CONV BETA_CONV)
\end{verbatim}\end{hol}
\noindent This is a bit unsatisfactory, as is shown by the artificial
example below:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#let t = "!x y::P.?f:num->num::Q. f(@n::R.T) = (x+y)";;
t = "!x y :: P. ?f :: Q. f(@n :: R. T) = x + y" : term
#RESTRICT_CONV t;;
|- (!x y :: P. ?f :: Q. f(@n :: R. T) = x + y) =
(!x. P x ==> (!x'. P x' ==> (?x. Q x /\ (x(@x. R x /\ T) = x + x'))))
\end{verbatim}\end{session}
The variable $x$ in the definitions of the constants
\ml{RES\_ABSTRACT}, \ml{RES\_FORALL}, \ml{RES\_EXISTS} and
\ml{RES\_SELECT} gets confused with the variable in the supplied term.
This can be avoided by changing \ml{RESTRICT\_CONV} to perform
explicit alpha-conversion. For example, by implementing a conversion:
\begin{hol}
{\small\verb% RES_FORALL %}$P${\small\verb% (\%}$v$\ml{.}$B$\ml{[}$v$\ml{]) ----> !}$v$\ml{. }$P$ $v$\ml{ ==> }$B$\ml{[}$v$\ml{]}
\end{hol}
\noindent Dealing with the case when
$v$ is a variable structure is also desirable. For example:
\begin{session}\begin{verbatim}
#let t1 = "!(m,n)::P. m<n";;
t1 = "!(m,n) :: P. m < n" : term
#RESTRICT_CONV t1;;
|- (!(m,n) :: P. m < n) = (!x. P x ==> (\(m,n). m < n)x)
\end{verbatim}\end{session}
\noindent If anyone writes the desired conversions please let us know!
Here is an example of a user-defined restriction:
\begin{session}\begin{verbatim}
#new_binder_definition(`DURING`, "DURING(p:num#num->bool) = $!p");;
|- !p. $DURING p = $! p
#"DURING x::(m,n). p x";;
no restriction constant associated with DURING
skipping: x " ;; parse failed
#new_definition
# (`RES_DURING`, "RES_DURING(m,n)p = !x. m<=x /\ x<=n ==> p x");;
|- !m n p. RES_DURING(m,n)p = (!x. m <= x /\ x <= n ==> p x)
#associate_restriction(`DURING`,`RES_DURING`);;
() : void
#"DURING x::(m,n). p x";;
"DURING x :: (m,n). p x" : term
#set_flag(`print_restrict`,false);;
true : bool
#"DURING x::(m,n). p x";;
"RES_DURING(m,n)(\x. p x)" : term
\end{verbatim}\end{session}
\subsection{Conditionals}
\label{conditionals}
A conditional\index{terms, in HOL logic@terms, in \HOL\ logic!conditional}\index{conditional predicate, in HOL logic@conditional predicate, in \HOL\ logic}\index{conditionals, in HOL logic@conditionals, in \HOL\ logic}
term \ml{"$t_1\ $=>$\ t_2\ $|$\ t_3$"} means
`if $t_1$ then $t_2$ else
$t_3$' and abbreviates the application
\ml{"COND\ $t_1\ t_2\ t_3$"}, where \ml{COND}\index{COND@\ml{COND}}\index{conditionals, in HOL logic@conditionals, in \HOL\ logic}
is a predefined
constant of the theory \ml{bool} (see Section~\ref{boolthy}).
An iterated conditional
\[
t_{11}\ \ml{=>}\ t_{12}\ \ml{|}\
t_{21}\ \ml{=>}\ t_{22}\ \ml{|}\
\ \ldots\ \ml{|}\
t_{n1}\ \ml{=>}\ t_{n2}\ \ml{|}\ t_{n3}
\]
\noindent translates\index{parsing, of HOL logic@parsing, of \HOL\ logic!of conditionals} to:
\[
t_{11}\ \ml{=>}\ t_{12}\ \ml{|}\
(t_{21}\ \ml{=>}\ t_{22}\ \ml{|}\
\ \ldots\ \ml{|}\
(t_{n1}\ \ml{=>}\ t_{n2}\ \ml{|}\ t_{n3})\ \ldots\ )
\]
\noindent which, in turn, abbreviates:
\[\ml{COND}\ t_{11}\ t_{12}\ \ml{(COND}\ t_{21}\ t_{22}\ \ldots\
\ml{(COND}\ t_{n1}\ t_{n2}\ t_{n3}\ml{)}\ \ldots\ \ml{)}\]
\subsection{Paired abstractions}
\label{HOL-varstruct}
\index{pairs, in HOL logic@pairs, in \HOL\ logic!in abstractions|(}
\index{UNCURRY@\ml{UNCURRY}|(}
\index{terms, in HOL logic@terms, in \HOL\ logic!pair|(}
\index{parsing, of HOL logic@parsing, of \HOL\ logic!of quotation syntax|(}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!paired|(}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!uncurrying, in paired|(}
The quotation parser\index{parsing, of HOL logic@parsing, of \HOL\ logic!of function abstractions}\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!abbreviation for multiple}\index{terms, in HOL logic@terms, in \HOL\ logic!function abstraction}
will convert
{\small\verb%"\(%}$x_1${\small\verb%,%}$x_2${\small\verb%).%}$t${\small\verb%"%}
to {\small\verb%"UNCURRY(\%}$x_1\ x_2${\small\verb%.%}$t${\small\verb%)"%},
where the constant {\small\verb%UNCURRY%}
is defined by:
\begin{hol}\begin{verbatim}
UNCURRY f (x,y) = f x y
\end{verbatim}\end{hol}
\noindent See Section~\ref{prod} for more details and an explanation
of pair terms \ml{($t_1$,$t_2$)}.
The transformation is done recursively so that, for example,
\begin{hol}\begin{alltt}
"\verb%\%(\m{x\sb{1}},\m{x\sb{2}},\m{x\sb{3}}).\m{t}"
\end{alltt}\end{hol}
\noindent is converted to
\begin{hol}\begin{alltt}
"UNCURRY \verb%\%\m{x\sb{1}}.UNCURRY(\verb%\%\m{x\sb{2}},\m{x\sb{3}}.\m{t}))"
\end{alltt}\end{hol}
\noindent More generally,
the quotation parser repeatedly applies the transformation:
\begin{hol}\begin{alltt}
"\verb%\%(\m{v\sb{1}},\m{v\sb{2}}).\m{t}"\m{\quad \leadsto\quad }"UNCURRY(\verb%\%\m{v\sb{1}}.\verb%\%\m{v\sb{2}}.\m{t})"
\end{alltt}\end{hol}
\noindent until no more variable structures remain. For example:
\begin{flushleft}
\begin{tabular}{@{}ll}
{\small\verb% "\(%}$x${\small\verb%,%}$y${\small\verb%).%}$t${\small\verb%"%}
&$\leadsto\ \ ${\small\verb%"UNCURRY(\%}$x\
y${\small\verb%.%}$t${\small\verb%)"%}\\
{\small\verb% "\(%}$x_1${\small\verb%,%}$x_2${\small\verb%,%}$\ldots${\small\verb%,%}$x_n${\small\verb%).%}$t${\small\verb%"%}
&$\leadsto\ \ ${\small\verb%"UNCURRY(\%}$x_1${\small\verb%.\(%}$x_2${\small\verb%,%}$\ldots${\small\verb%,%}$x_n${\small\verb%).%}$t${\small\verb%)"%}\\
{\small\verb% "\((%}$x_1${\small\verb%,%}$\ldots${\small\verb%,%}$x_n${\small\verb%),%}$y_1${\small\verb%,%}$\ldots${\small\verb%,%}$y_m${\small\verb%).%}t{\small\verb%"%}
&$\leadsto\ \ ${\small\verb%"UNCURRY(\(%}$x_1${\small\verb%,%}$\ldots${\small\verb%,%}$x_n${\small\verb%).\(%}$y_1${\small\verb%,%}$\ldots${\small\verb%,%}$y_m${\small\verb%).%}$t${\small\verb%)"%}\\
\end{tabular}
\end{flushleft}
\index{parsing, of HOL logic@parsing, of \HOL\ logic!of quotation syntax|)}
The \HOL\ top-level printer\index{printing, in HOL logic@printing, in \HOL\ logic!of function abstractions}
inverts these transformations if the
flag\footnote{See Section~\ref{flags} for details of \ML\ flags.}
\ml{print\_uncurry} is \ml{true}. For example:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#"\((a,b),(x,y)). (a+b) < (x*y)";;
"\((a,b),x,y). (a + b) < (x * y)" : term
#set_flag(`print_uncurry`,false);;
true : bool
#"\((a,b),(x,y)). (a+b) < (x*y)";;
"UNCURRY(UNCURRY(\a b. UNCURRY(\x y. (a + b) < (x * y))))" : term
\end{verbatim}\end{session}
Note that a variable structure like \ml{"(x,y)"} in
{\small\verb%"\(x,y).x+y"%}
is not a subterm
of the abstraction\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!subterms of} in which it occurs; it disappears on parsing\index{binders, in HOL logic@binders, in \HOL\ logic!parsing of}\index{parsing, of HOL logic@parsing, of \HOL\ logic!of binders}. This can
lead to unexpected errors (accompanied by obscure error messages).
For example:
\begin{session}\begin{verbatim}
#"\(x,y).x+y";;
"\(x,y). x + y" : term
#let p = "(x:num,y:num)";;
p = "x,y" : term
#"\^p.x+y";;
evaluation failed mk_abs in quotation
\end{verbatim}\end{session}
Furthermore, if the type checker complains, it may print out
diagnostic messages referring to the transformed term:
\begin{session}\begin{verbatim}
#"\(x,y). x+1";;
Indeterminate types:
"UNCURRY:(num -> (?1 -> num)) -> (num # ?2 -> num)"
evaluation failed types indeterminate in quotation
\end{verbatim}\end{session}
If $b$ is a binder, then
\ml{"}$b$\ml{(}$x_1${\small\verb%,%}$x_2${\small\verb%).%}$t${\small\verb%"%}
is parsed as
{\small\verb%"$%}$b${\small\verb%(\(%}$x_1${\small\verb%,%}$x_2${\small\verb%).%}$t${\small\verb%)"%}, and hence transformed as above.
For example, {\small\verb%"!(x,y).x>y"%} parses to
{\small\verb%"$!(UNCURRY(\x.\y.$> x y))"%} (where {\small{\tt >}} is an infixed
constant of the theory {\small\verb%num%} meaning `is greater than')\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!paired|)}.
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!uncurrying, in paired|)}\index{pairs, in HOL logic@pairs, in \HOL\ logic!in abstractions|)}\index{terms, in HOL logic@terms, in \HOL\ logic!pair|)}\index{UNCURRY@\ml{UNCURRY}|)}
%A good exercise for the reader would be to understand why this use
%of \ml{UNCURRY} supports the intuitive meaning suggested by the surface
%notation.
Applications of paired abstraction to tuples can be $\beta$-reduced using
\ml{PAIRED\_BETA\_CONV} (see Section~\ref{genbeta}).
\subsection{{\tt let}-terms}
\label{let-exp}
The quotation parser\index{parsing, of HOL logic@parsing, of \HOL\ logic!of let-terms@of \ml{let}-terms}
accepts \ml{let}-terms\index{terms, in HOL logic@terms, in \HOL\ logic!let-@\ml{let}-}\index{let-terms, in HOL logic@\ml{let}-terms, in \HOL\ logic!as abbreviations} superficially similar to those in
\ML. For example, the following terms are allowed:
\begin{hol}\begin{verbatim}
"let x = 1 and y = 2 in x+y"
"let f(x,y) = (x*x)+(y*y) and a = 20*20 and b = 50*49 in f(a,b)"
\end{verbatim}\end{hol}
As with paired abstractions, \ml{let}-terms are actually abbreviations for
ordinary terms which are specially supported by the parser and pretty printer.
The constant \ml{LET}\index{LET@\ml{LET}} is defined (in the theory \ml{bool}) by:
\begin{hol}\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!relation to let-terms@relation to \ml{let}-terms}
\begin{verbatim}
LET = (\f x. f x)
\end{verbatim}\end{hol}
\noindent and is used to encode \ml{let}-terms in the logic. The parser
repeatedly applies the transformations:
\bigskip
\noindent
{\small\begin{tabular}{@{}ll}
{\small\verb% "let %}$f\ v_1\ \ldots\ v_n${\small\verb% = %}$t_1${\small\verb% in
%}$t_2${\small\verb%"%}
&$\leadsto\ \ ${\small\verb%"LET(\%}$f${\small\verb%.%}$t_2$
{\small\verb%)(\%}$v_1\ \ldots\ v_n${\small\verb%.%}$t_1${\small\verb%)"%}\\
{\small\verb% "let (%}$v_1${\small\verb%,%}$\ldots${\small\verb%,%}$v_n${\small\verb%) =
%}$t_1${\small\verb% in %}$t_2${\small\verb%"%}
&$\leadsto\ \ ${\small\verb%"LET(\(%}$v_1${\small\verb%,%}$\ldots${\small\verb%,%}$v_n${\small\verb%).%}$t_2${\small\verb%)%}$t_1${\small\verb%"%}\\
{\small\verb% "let %}$v_1${\small\verb%=%}$t_1${\small\verb% and %}$\ldots${\small\verb% and %}$v_n${\small\verb%=%}$t_n${\small\verb% in
%}$t${\small\verb%"%}
&$\leadsto\ \ ${\small\verb%"LET(%}$\ldots${\small\verb%(LET(LET(\%}$v_1\ldots v_n${\small\verb%.%}$t${\small\verb%)%}$t_1${\small\verb%)%}$t_2${\small\verb%)%}$\ldots${\small\verb%)%}$t_n${\small\verb%"%}\\
\end{tabular}}
\bigskip
\noindent The printer\index{printing, in HOL logic@printing, in \HOL\ logic!of let-terms@of \ml{let}-terms} inverts these transformations if the flag
\ml{print\_let} is \ml{true}. For example:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#"let x = 1 and y = 2 in x+y";;
"let x = 1 and y = 2 in x + y" : term
#set_flag(`print_let`,false);;
true : bool
#"let x = 1 and y = 2 in x+y";;
"LET(LET(\x y. x + y)1)2"
#"let (x,y) = (1,2) in x+y";;
"LET(UNCURRY(\x y. x + y))(1,2)" : term
\end{verbatim}\end{session}
Note that, as with uncurried terms, the underlying representation in \HOL\ can
manifest itself in error messages. For example:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#"let x = y in z";;
Indeterminate types: "LET:(?1 -> ?2) -> (?3 -> ?4)"
evaluation failed types indeterminate in quotation
\end{verbatim}\end{session}
The reader is recommended to convince himself or herself that the
translations of \ml{let}-terms represent the intuitive meaning suggested by
the surface syntax.\index{quotation, in HOL logic@quotation, in \HOL\ logic|)}\index{quotation, in HOL logic@quotation, in \HOL\ logic!of non-primitive terms|)}\index{terms, in HOL logic@terms, in \HOL\ logic!syntax of|)}\index{type checking, in HOL logic@type checking, in \HOL\ logic!special forms in|)}
\ml{let}-terms can be simplified with \ml{let\_CONV} -- see Section~\ref{let-terms}.
\section{Syntax for sets}\index{set theory notation}
The special purpose set-theoretic notations
{\small\verb%"{%}$t_1,t_2,\ldots,t_n${\small\verb%}"%} and
{\small\verb%"{%}$t${\small\verb%|%}$p${\small\verb%}"%} are available.
The normal interpretation of the former is the finite set containing
$t_1,t_2,\ldots, t_n$ and the normal interpretation of the latter
is the set of all $t$s such that $p$. These interpretations are predefined for
the library \ml{sets}, but the user can use the syntax for other purposes if
he or she wishes, using the functions:
\begin{boxed}
\index{define_finite_set_syntax@\ml{define\_finite\_set\_syntax}|pin}
\index{define_set_abstraction_syntax@\ml{define\_set\_abstraction\_syntax}|pin}
\begin{alltt}
define_finite_set_syntax : (string # string) -> void
define_set_abstraction_syntax : string -> void
\end{alltt}\end{boxed}
\noindent Executing:
\begin{hol}\begin{alltt}
define_finite_set_syntax(`\(c\sb{1}\)`,`\(c\sb{2}\)`)
\end{alltt}\end{hol}
\noindent causes {\small\verb%"{%}$t_1,\ldots,t_n${\small\verb%}"%}
to parse to:
\begin{hol}\begin{alltt}
"\(c\sb{2}\) \(t\sb{1}\) (\(c\sb{2}\) \(t\sb{2}\) \(\cdots\) (\(c\sb{2}\) \(t\sb{n}\) \(c\sb{1}\)) \(\cdots\) ))"
\end{alltt}\end{hol}
\noindent with failure if either $c_1$ or $c_2$ is not the name of a constant.
In the library \ml{sets}, the empty set is \ml{EMPTY} and
the infixed function \ml{INSERT} adds an element to a set.
Executing:
\begin{hol}\begin{verbatim}
define_finite_set_syntax(`EMPTY`,`INSERT`)
\end{verbatim}\end{hol}
\noindent will cause
\begin{hol}\begin{verbatim}
"{1,2,3,4}"
\end{verbatim}\end{hol}
\noindent to parse to
\begin{hol}\begin{verbatim}
"1 INSERT (2 INSERT (3 INSERT (4 INSERT EMPTY)))"
\end{verbatim}\end{hol}
Executing:
\begin{hol}\begin{alltt}
define_set_abstraction_syntax `\(c\)`
\end{alltt}\end{hol}
\noindent causes {\small\verb%"{%}$t${\small\verb%|%}$p${\small\verb%}"%}
to parse to:
\medskip
\noindent{\small
{\verb% "%}}$c${\small{\verb%(\(%}$x_1${\verb%,%}$\ldots${\verb%,%}$x_n${\verb%).(%}$t${\verb%,%}$p${\verb%))"%}
}
\medskip
\noindent where $x_1$, $\ldots$ , $x_n$ are the free variables occurring in both $t$
and $p$. If there are no such free variables then an error results.
The order in which the variables are listed in the variable structure
of the paired abstraction is an unspecified function of the structure
of $t$ (it is approximately left to right). Failure if $c$ is not the
name of a constant.
For example, if the library \ml{sets} (i.e. what used to be \ml{all\_sets})
is loaded, then
\begin{hol}\begin{verbatim}
define_set_abstraction_syntax `GSPEC`
\end{verbatim}\end{hol}
\noindent will cause
\begin{hol}\begin{verbatim}
"{x+y | (x < y) /\ (y < z)}"
\end{verbatim}\end{hol}
\noindent to parse to:
\begin{hol}\begin{verbatim}
"GSPEC(\(x,y). ((x+y), (x < y) /\ (y < z)))"
\end{verbatim}\end{hol}
\noindent where \ml{GSPEC} is defined by:
\begin{hol}\begin{verbatim}
|- !f. GSPEC f = SPEC(\x. ?y. x,T = f y)
\end{verbatim}\end{hol}
\noindent and \ml{SPEC} abstracts a predicate to a set (it is the abstraction
bijection used in the definition of the type operator \ml{set}).
Other examples are:
\begin{hol}\begin{verbatim}
"{x+y+z | (x < y) /\ (y < z)}"
\end{verbatim}\end{hol}
\noindent will parse to:
\begin{hol}\begin{verbatim}
"GSPEC(\(x,y,z). (x+(y+z), (x < y /\ y < z)))"
\end{verbatim}\end{hol}
\noindent and
\begin{hol}\begin{verbatim}
"{x+y+w | (x < y) /\ (y < z)}"
\end{verbatim}\end{hol}
\noindent will parse to:
\begin{hol}\begin{verbatim}
"GSPEC(\(x,y). (x+(y+w), (x < y /\ y < z)))"
\end{verbatim}\end{hol}
Note that the precedence of comma is increased in the contexts
``{\small\verb%{%}$\cdots${\small\verb%}%}'' and
``{\small\verb%{%}$\cdots${\small\verb%|%}''.
Terms will be printed in set notation if the flag \ml{print\_set} is
\ml{true}.
Note that
\medskip
\ml{"}$c${\small\verb%(\(%}$x_1$\ml{,}$\ldots$\ml{,}$x_n$\ml{).(}$t$\ml{,}$p$\ml{))"}
\medskip
\noindent will only print as
{\small\verb%"{%}$t${\small\verb%|%}$p${\small\verb%}"%}
if the variables $x_1$, $\ldots$ ,
$x_n$ occur free in both $t$ and $p$ (and \ml{print\_set} is \ml{true}) .
\subsection{Antiquotation}
Within a quotation, expressions of the form
{\small\verb%^(%}$t${\small\verb%)%}\index{ antiquotation, in HOL logic@{\small\verb+^+} (antiquotation, in \HOL\ logic)} (where $t$ is an \ML\ expression of
type\index{type checking, in HOL logic@type checking, in \HOL\ logic!antiquotation in} {\small\verb%term%} or {\small\verb%type%}) are called {\it
antiquotations\/}\index{terms, in HOL logic@terms, in \HOL\ logic!antiquotation}\index{antiquotation, in HOL logic terms@antiquotation, in \HOL\ logic terms}.
An antiquotation {\small\verb%^(%}$t${\small\verb%)%}
evaluates to the \ML\ value of $t$. For example, {\small\verb%"x \/
^(mk_conj("y:bool","z:bool"))"%} evaluates to the same term as
{\small\verb%"x \/ (y /\ z)"%}. The most common use of antiquotation
is when the term $t$ is just an \ML\ variable $x$. In this case
{\small\verb%^(%}$x${\small\verb%)%} can be abbreviated by
{\small\verb%^%}$x$.
The following session illustrates antiquotation.
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#let y = "x+1";;
y = "x + 1" : term
#let z = "y = ^y";;
z = "y = x + 1" : term
#"!x:num.?y:num.^z";;
"!x. ?y. y = x + 1" : term
\end{verbatim}\end{session}
\subsection{User-programmable quotation typechecker}
\index{quotation, in HOL logic@quotation, in \HOL\ logic!typechecker for|(}
The typechecker for \HOL\ quotations contains a number of arbitrary
design decisions. Several people have suggested changes, e.g. that
full Hindley/Milner type inference be performed. Rather than try to
create a single new improved typechecker, a facility is now provided
that enables the user to write his or her own one and then to install
it in the system.
\index{preterms|(}
The \ML\ abstract type {\small\verb%preterm%} represents the parse trees of \HOL\
terms. A typechecker is a function of type {\small\verb%preterm->term%}. If the flag
\ml{preterm} is set to \ml{true} (the default is \ml{false}), then \HOL\ will use
whatever \ML\ function is currently bound to the name
\ml{preterm\_handler} as
the quotation typechecker. The way this works is that when
\ml{preterm} is true the parser produces a preterm rather than a term,
and then wraps a call of \ml{preterm\_handler}
around the quotation.\index{type checking, in HOL logic@type checking,
in \HOL\ logic!user programmed} Other uses of preterms are possible, for example
as patterns for describing terms.
The definition of the \ML\ type {\small\verb%preterm%} is:
\begin{hol}\index{preterm@\ml{preterm}!the type}\begin{alltt}
rectype preterm =
preterm_var of string \({\it Variables}\)
| preterm_const of string \({\it Constants}\)
| preterm_comb of preterm # preterm \({\it Combinations}\)
| preterm_abs of preterm # preterm \({\it Abstractions}\)
| preterm_typed of preterm # type \({\it Explicit typing}\)
| preterm_antiquot of term \({\it Antiquotation}\)
\end{alltt}\end{hol}
The function:
\begin{boxed}\index{preterm_to_term@\ml{preterm\_to\_term}|pin}
\begin{verbatim}
preterm_to_term : preterm -> term
\end{verbatim}\end{boxed}
\noindent invokes the standard \HOL\ typechecker on a preterm and returns the
resulting typechecked term (or causes the standard error message).\index{preterms|)}
The following is a rather contrived example:
\setcounter{sessioncount}{1}
\begin{session}\index{preterm_handler@\ml{preterm\_handler}|pin}
\begin{verbatim}
#letref p_reg = preterm_var `x`;;
p_reg = preterm_var `x` : preterm
#let preterm_handler p = p_reg:=p;
print_string `Typechecking ... `;
print_newline();
preterm_to_term p;;
preterm_handler = - : (preterm -> term)
\end{verbatim}\end{session}
\begin{session}
\begin{verbatim}
#set_flag(`preterm`,true);;
false : bool
#"x+y";;
Typechecking ...
"x + y" : term
#p_reg;;
preterm_comb((preterm_comb((preterm_const `+`), preterm_var `x`)),
preterm_var `y`)
: preterm
\end{verbatim}\end{session}
\noindent Different top-level typechecking can be defined by using a
different definition of the function
\ml{preterm\_handler}. Note that quotations and their typechecking
is purely a `user interface' feature, so changing the typechecker does
not compromise the logical soundness of \HOL.\index{quotation, in HOL logic@quotation, in \HOL\ logic!typechecker for|)}
\section{Theorems}
\label{avra_theorems}
% I have added this section in a hurry 9 Nov 89. Was missing!
In Chapter~\ref{logic}, the notion of deduction was introduced in terms
of {\it sequents\/}\index{sequents!in natural deduction}, where a sequent
is a pair whose second component is a formula being
asserted (a conclusion)\index{conclusions!of sequents},
and whose first component is a set of formulas (hypotheses)\index{hypotheses!of sequents}.
Based on this was the notion of a {\it deductive system\/}\index{natural deduction}\index{deductive systems}: a set of pairs,
whose second component is a sequent, and
whose first component is a sequent list\footnote{Note that these sequents
form a list, not a set; that is, are ordered.}.
The concept of a sequent {\it following from\/}\index{follows from, in natural deduction}
a set of sequents via a
deductive system was then defined: a sequent follows from a set of sequents if
the sequent
is the last element of some chain of sequents, each of whose
elements is either in the set, or itself follows from the set along with
earlier elements of the chain, via the deductive system.
A notation for `follows from' was then introduced.
That a
sequent $(\{t_1,\ldots,t_n\},\ t)$ follows from
a set of sequents $\Delta$, via a deductive system ${\cal D}$, is
denoted\index{turnstile notation|(} by: $t_1,\ldots,t_n\vdash_{{\cal D},\Delta} t$.
(It was noted that
where either ${\cal D}$ or $\Delta$ were clear by context, their mention
could be omitted; and where the set of hypotheses was empty,
its mention could be omitted.)
A sequent that follows from the empty set of sequents via
a deductive system is called a {\it theorem\/} of that deductive system.
That is, a theorem\index{theorems, in natural deduction} is the last element of a {\it proof\/}\index{proof!in natural deduction} (in the sense
of Chapter~\ref{logic}) from the empty
set of sequents. When a pair $(L,(\Gamma,t))$ belongs to a deductive system,
and the list $L$ is empty,
then the sequent $(\Gamma,t)$ is called an {\it axiom\/}\index{axioms!in
natural deduction}.
Any pair $(L,(\Gamma,t))$ belonging to
a deductive system is called a {\it primitive inference\/}\index{inference, in natural deduction}\index{primitive inference, in natural deduction}
of the system, with hypotheses\footnote{Note that
`hypotheses' and `conclusion' are also used for the components
of sequents.} $L$ and
conclusion $(\Gamma,t)$.
A formula\index{formulas as terms, in HOL logic@formulas as terms, in \HOL\ logic}
in the abstract is represented concretely in \HOL\ by
a term whose \HOL\ type is {\small\verb%":bool"%}.
Therefore, a term\index{terms, in HOL logic@terms, in \HOL\ logic!as logical formulas} of type {\small\verb%":bool"%} is used to represent
a member of the set of hypotheses of a sequent;
and likewise to represent the
conclusion of a sequent.
Sets in this context
are represented by lists, so the set of hypotheses of a sequent\index{sequents!representation of, in HOL logic@representation of, in \HOL\ logic}
is represented by a list of {\small\verb%":bool"%}-typed terms.
A theorem in the abstract is represented concretely in the \HOL\
system by a value with the \ML\ abstract type
{\small\verb%thm%}\index{thm@\ml{thm}}.
The type {\small\verb%thm%} has a primitive destructor function
\begin{boxed}
\index{dest_thm@\ml{dest\_thm}|pin}
\begin{verbatim}
dest_thm : thm -> (term list # term)
\end{verbatim}\end{boxed}
\noindent which returns a pair consisting of the hypothesis\index{hypotheses!of theorems} list and
the conclusion\index{conclusions!of theorems}, respectively, of a theorem.
From this, two destructor\index{theorems, in HOL logic@theorems, in \HOL\ logic!destructors for} functions are derived
\begin{boxed}
\index{hyp@\ml{hyp}|pin}
\index{concl@\ml{concl}|pin}
\begin{verbatim}
hyp : thm -> term list
concl : thm -> term
\end{verbatim}\end{boxed}
\noindent for extracting the hypothesis list and the conclusion, respectively,
of a theorem. The \ML\ type {\small\verb%thm%} does not have
a primitive constructor function. In this way, the \ML\ type system protects
the \HOL\ logic
from the arbitrary and unrecorded construction
of theorems, which would compromise
the consistency\index{consistency, of HOL logic@consistency, of \HOL\ logic} of the logic. (Functions which return theorems as values,
\eg\ functions representing primitive inferences,
are discussed first in Section~\ref{rules}, and further in
Chapter\ref{derived-rules}.)
It was mentioned in Chapter~\ref{logic} that the deductive system of \HOL\
includes five axioms\footnote{This is
a simplification:
%each inference rule corresponds to an infinite family of elements
%of the deductive system, and
the axioms are an extension
of the basic logic. See Sections~\ref{boolthy} and \ref{ind}.}.
In that Chapter, the axioms were presented in abstract form.
The concrete representation of the axioms in \HOL\ is given
in Section~\ref{HOL-theory}.
% and of the inference rules, in
%Section~\ref{rules}.
To anticipate, the axiom \ml{BOOL\_CASES\_AX}
mentioned in Chapter~\ref{logic} is printed in \HOL\ as follows
(where \ml{"T"} and \ml{"F"}
are the \HOL\ logic's constants representing truth and
falsity, respectively):
\begin{hol}
\index{F@\ml{F}!axiom for}
\begin{verbatim}
|- !t. (t = T) \/ (t = F)
\end{verbatim}\end{hol}
\noindent Note the special print format\index{printing, in HOL logic@printing, in \HOL\ logic!of theorems},
with the approximation
to the abstract $\vdash$ notation\index{theorem notation, in HOL logic@theorem notation, in \HOL\ logic|(}, \ml{|-}, used to indicate \ML\ type
{\small\verb%thm%} status;
the absence of \HOL\ quotation marks\index{ theorem marker, in HOL logic@\ml{"|-} (theorem marker, in \HOL\ logic)}
in the \ml{|-} context; and
the absence of type information following the printed term.
The session below illustrates
the use of the destructor functions:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#let th = BOOL_CASES_AX;;
th = |- !t. (t = T) \/ (t = F)
#hyp th;;
[] : term list
#concl th;;
"!t. (t = T) \/ (t = F)" : term
#type_of it;;
":bool" : type
\end{verbatim}\end{session}\index{turnstile notation|)}
\noindent In addition to the print conventions mentioned above,
the printing of theorems prints hypotheses\index{printing, in HOL logic@printing, in \HOL\ logic!of hypotheses of theorems}
as periods (\ie\ full stops or
dots). The function \ml{print\_all\_thm}\index{print_all_thm@\ml{print\_all\_thm}} prints theorems with
hypotheses shown in full. These points are illustrated with a
theorem inferred, for example purposes, from another axiom mentioned
in Chapter~\ref{logic}: \ml{SELECT\_AX}.
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
th = . |- P($@ P)
#print_all_thm th;;
P x |- P($@ P)() : void
\end{verbatim}\end{session}\index{theorem notation, in HOL logic@theorem notation, in \HOL\ logic|)}
\section{Theories}\index{theories, in HOL logic@theories, in \HOL\ logic!representation of|(}
\label{theoryfns}
It was mentioned in Chapter~\ref{logic} that a theory is a $4$-tuple
\[ {\cal T}\ =\ \langle{\sf Struc}_{\cal T},\
{\sf Sig}_{\cal T},\
{\sf Axioms}_{\cal T},\
{\sf Theorems}_{\cal T}\rangle \]
\noindent where
\begin{myenumerate}
\item ${\sf Struc}_{\cal T}$ is
the type structure of ${\cal T}$;
\item ${\sf Sig}_{\cal T}$ is
the signature of ${\cal T}$;
\item ${\sf Axioms}_{\cal T}$ is
the set of axioms of ${\cal T}$;
\item ${\sf Theorems}_{\cal T}$ is the set of
theorems of ${\cal T}$.
\end{myenumerate}
Such a theory is represented in the \HOL\ system as a collection of files,
called theory files\index{theory files|(}. Each file has a name of the form $name$\ml{.th}, where
$name$ is a string supplied by the user. Various additional pieces of
information are stored in the theory files, including the parsing status of the
constants (\ie\ whether they are infixes or binders), as well as several items
involving concepts not yet introduced: type abbreviations (see
Section~\ref{typeabbrev} for this); and which axioms are definitions, type
definitions or specifications (see Section~\ref{avra_definitional} for the last
three).
Theory files are structured hierarchically to represent sequences of
extensions of an initial theory (see Section~\ref{extensions}) called
\ml{HOL}\index{HOL@\ml{HOL}}. Each theory file making up a theory records some types, constants,
axioms and theorems, together with pointers to other theory files called its
{\it parents\/}\index{parents, of HOL theories@parents, of \HOL\ theories}. The theory represented by such a theory file is obtained by
taking the union of all the types, constants, axioms and theorems in the file,
together with the types, constants, axioms and theorems in all the theory
files reachable by following pointers to parents. This collection of reachable
files is called the {\it ancestry\/}\index{ancestry, of HOL system theories@ancestry, of \HOL\ system theories}\index{theories, in HOL logic@theories, in \HOL\ logic!hierarchies of}
of the theory file. Axioms (including
definitions and specifications) and theorems are named in the \HOL\ system by
two strings: the name of the theory file in which they are stored, together with
a name supplied by the user\index{theory files|)}.
The data stored in a single theory file is called a {\it theory segment\/}\index{theory segments};
this is not really a logical concept, but rather a concept of the
representation of theories in the \HOL\ system. It is necessary to distinguish
theories from their constituent theory segments because the naming of data
in theories is based on the names given to segments. Specifically, axioms,
definitions, specifications and theorems are named\index{theories, in HOL logic@theories, in \HOL\ logic!naming of}
by a pair of strings
$\langle thy,name \rangle$,
where $thy$ is the name of the theory segment current when the
item was declared and $name$ is a specific name supplied by the user (see the
functions \ml{new\_axiom}, \ml{new\_definition}, below). Different items
can have the same specific name if the associated segment is different.
A typical\index{HOL system@\HOL\ system!typical work in} piece of work with the \HOL\ system consists in a number of
sessions\index{sessions with HOL system@sessions, with \HOL\ system}.
In the first of these, a new theory, ${\cal T}$ say, is created by
extending existing theories with a number of definitions. The concrete result
of the session will be a theory file ${\cal T}$\ml{.th} whose contents is the
segment created during the session and whose ancestry represents the desired
logical theory. In subsequent sessions this theory is extended by proving new
theorems that will be stored in the file ${\cal T}$\ml{.th}. The logical
meaning of these sessions is that a new extension to ${\cal T}$ is created
which replaces the old version. Subsequent pieces of work can build on (\ie\
extend) the definitions and theorems of ${\cal T}$ by making it a parent of
new theories.
There are two modes of working with \HOL: {\it draft mode\/}\index{draft mode, in HOL system@draft mode, in \HOL\ system} and {\it proof
mode\/}\index{proof mode, in HOL system@proof mode, in \HOL\ system}.
In the former, the sets ${\sf Struc}_{\cal T}$, ${\sf Sig}_{\cal T}$
and ${\sf Axioms}_{\cal T}$ can be extended; in the latter only ${\sf
Theorems}_{\cal T}$ can be changed. In draft mode, inconsistencies can be
introduced by asserting inconsistent axioms, but in proof mode only
consistency-preserving actions (namely valid proof) can be evaluated. Draft mode is
analogous to `super user mode' in Unix, in that it gives access to dangerous
facilities. Everything that can be done in proof mode can be done in draft
mode, but not vice versa.
There is always a {\it current theory\/} which is the theory represented by
the current theory segment together with its ancestry. The name of the current
theory is returned by the \ML\ function:
\begin{boxed}\index{current_theory@\ml{current\_theory}|pin}
\begin{verbatim}
current_theory : void -> string
\end{verbatim}\end{boxed}
Initially \HOL\ is in proof mode with current
theory called \ml{HOL}, which is described in Section~\ref{HOL-theory}\index{theories, in HOL logic@theories, in \HOL\ logic!representation of|)}.
\subsection{Primitive ML functions for creating theories}
\label{theoryprims}
The \ML\ functions for creating theories\index{theories, in HOL logic@theories, in \HOL\ logic!creation of|(} are listed below.
\begin{boxed}
\index{new_theory@\ml{new\_theory}|pin}
\begin{verbatim}
new_theory : string -> void
\end{verbatim}\end{boxed}
\noindent \ml{new\_theory `$thy$`} can be done in both
proof\index{proof mode, in HOL system@proof mode, in \HOL\ system} and
draft\index{draft mode, in HOL system@draft mode, in \HOL\ system} modes. It
switches into draft mode for a new theory with name $thy$ and it fails if
there already exists a file $thy$\ml{.th} in the current search path. The
current theory becomes a new parent of $thy$.
\begin{boxed}
\index{new_parent@\ml{new\_parent}|pin}
\begin{verbatim}
new_parent : string -> void
\end{verbatim}\end{boxed}
\noindent Executing \ml{new\_parent}\ $thy$ makes $thy$ into
a parent
of the current theory. Failure if:
\begin{myenumerate}
\item not in draft mode;
\item $thy$ is not a theory on the current search path;
\item there is a type in $thy$ with the same
name as a type in the current theory;
\item there is a constant in $thy$ with the same
name as a constant in the current theory.
\end{myenumerate}
\begin{boxed}
\index{new_type@\ml{new\_type}|pin}
\begin{verbatim}
new_type : int -> string -> void
\end{verbatim}\end{boxed}
\noindent Executing \ml{new\_type}$\ n\ \ml{`\ty{op}`}$ makes \ty{op}
a new $n$-ary type operator\index{type operators, in HOL logic@type operators, in \HOL\ logic!declaration} in the current theory.
Failure if:
\begin{myenumerate}
\item not in draft mode;
\item there already exists a type operator named $\ty{op}$ in the current
theory.
\end{myenumerate}
\begin{boxed}
\index{new_constant@\ml{new\_constant}|pin}
\begin{verbatim}
new_constant : (string # type) -> void
\end{verbatim}\end{boxed}
\noindent Executing {\small\verb%new_constant(`%}$c${\small\verb%`,%}$\sigma${\small\verb%)%} makes
$c_{\sigma'}$ a new constant\index{constants, in HOL logic@constants, in \HOL\ logic!declaration of} of the current theory,
for all $c_{\sigma'}$ where $\sigma'$ is an instance of $\sigma$.
The type $\sigma$ is
called the {\it generic type\/}\index{generic types, in HOL logic@generic types, in \HOL\ logic} of $c$. Failure if:
\begin{myenumerate}
\item not in draft mode;
\item there already exists a constant named $c$ in the current
theory.
\end{myenumerate}
\begin{boxed}
\index{new_infix@\ml{new\_infix}|pin}
\begin{verbatim}
new_infix : (string # type) -> void
\end{verbatim}\end{boxed}
\noindent Executing \ml{new\_infix(`}$ix$\ml{`,}$\sigma$\ml{)}
declares $ix$ to be a new constant with generic type $\sigma$ and
infix status.
Failure if:
\begin{myenumerate}
\item not in draft mode;
\item there already exists a constant named $ix$ in the current theory;
\item $\sigma$ not of the form \ml{$\sigma_1$->$\sigma_2$->$\sigma_3$}.
\end{myenumerate}
\begin{boxed}
\index{new_binder@\ml{new\_binder}|pin}
\begin{verbatim}
new_binder : (string # type) -> void
\end{verbatim}\end{boxed}
\noindent Executing \ml{new\_binder(`}$b$\ml{`,}$\sigma$\ml{)}\index{binders, in HOL logic@binders, in \HOL\ logic!declaration of}
declares $b$ to be a new constant with generic type $\sigma$ and
binder status.
Failure if:
\begin{myenumerate}
\item not in draft mode;
\item there already exists a constant named $b$ in the current theory;
\item $\sigma$ not of the form \ml{($\sigma_1$->$\sigma_2$)->$\sigma_3$}.
\end{myenumerate}
\begin{boxed}
\index{new_axiom@\ml{new\_axiom}|pin}
\begin{verbatim}
new_axiom : (string # term) -> thm
\end{verbatim}\end{boxed}
\noindent Executing \ml{new\_axiom(`}$name$\ml{`,}$t$\ml{)} declares the
sequent
\ml{(\{\},$t$)} to be an axiom\index{axioms!declaration of, in HOL logic@declaration of, in \HOL\ logic} of the current theory with name $name$.
Failure if:
\begin{myenumerate}
\item not in draft mode;
\item there is already an axiom, definition or specification
named $name$ in the current theory segment.
\end{myenumerate}
Once a theorem has been proved, it can be saved with the function
\begin{boxed}
\index{save_thm@\ml{save\_thm}|pin}
\begin{verbatim}
save_thm : (string # thm) -> thm
\end{verbatim}\end{boxed}
\noindent
Evaluating \ml{save\_thm(`}$name$\ml{`,}$th$\ml{)} will save the theorem\index{theorems, in HOL logic@theorems, in \HOL\ logic!saving of}\index{saving theorems}
$th$ with name $name$ in the current theory segment.
The following function is used to finish a session in draft mode\index{draft mode, in HOL system@draft mode, in \HOL\ system} and save the
current theory segment in a theory file on disk.
\begin{boxed}
\index{close_theory@\ml{close\_theory}|pin}
\begin{verbatim}
close_theory : void -> void
\end{verbatim}\end{boxed}
\noindent {\bf Warning:} quitting \HOL\ without\index{exiting of HOL system@exiting of \HOL\ system} closing the session with
\ml{close\_theory} may result in the theory segment created during the session
being lost (\ie\ not saved in a theory file)!\index{theories, in HOL logic@theories, in \HOL\ logic!creation of|)}
\subsection{Functions for creating definitional extensions}\index{extension, of HOL logic@extension, of \HOL\ logic!definitional}\index{definitional extension, of HOL logic@definitional extension, of \HOL\ logic}\index{theories, in HOL logic@theories, in \HOL\ logic!extension of|(}
\label{avra_definitional}
There are three kinds of definitional extensions:
constant definitions, constant specifications and type definitions.
\subsubsection{Constant definitions}
In Section~\ref{defs} a constant definition\index{extension, of HOL logic@extension, of \HOL\ logic!by constant definition}\index{constant definition extension, of HOL logic@constant definition extension, of \HOL\ logic!ML function for@\ML\ function for|(}
over a signature $\Sigma_{\Omega}$ is defined to be
an equation, \ie\ a formula of the form $c_{\sigma}=t_{\sigma}$,
such that:
\begin{myenumerate}
\item $c$ is not the name of any constant in $\Sigma_{\Omega}$;
\item $t_{\sigma}$ is a closed term in ${\sf Terms}_{\Sigma_{\Omega}}$;
\item all the type variables occurring in $t_{\sigma}$ occur in $\sigma$.
\end{myenumerate}
In \HOL, definitions can be slightly more general than this, in that
an equation:
\[ c\ v_1\ \cdots\ v_n\ =\ t \]
\noindent is allowed to be a definition where $v_1$, $\dots$, $v_n$ are
variable structures (\ie\ tuples of distinct variables). Such an equation is
logically equivalent to:
\[ c\ =\ \lambda v_1\ \cdots\ v_n.\ t \]
\noindent which is a definition in the sense of Section~\ref{defs} if (i),
(ii) and (iii) hold.
The following \ML\ function creates\index{defining mechanisms, for HOL logic@defining mechanisms, for \HOL\ logic} a new definition in
the current theory.
\begin{boxed}
\index{new_definition@\ml{new\_definition}|pin}
\begin{verbatim}
new_definition : (string # term) -> thm
\end{verbatim}\end{boxed}
\noindent Evaluating
\ml{new\_definition(`}$name$\ml{`,\ "}$c\ v_1\ \cdots\ v_n\ =\ t$\ml{")},
where $c$ is not already a constant, declares the sequent
\ml{(\{\},$\lambda v_1\ \cdots\ v_n.\ t$)} to be a constant definition\index{definitions, adding to HOL logic@definitions, adding to \HOL\ logic}
of the current theory. The name associated with the definition in
this theory is $name$.
Failure if:
\begin{myenumerate}
\item not in draft mode;
\item there is already an axiom, definition or specification
named $name$ in the current theory segment;
\item $c$ is already a constant in the current theory;
\item $t$ contains free variables that are not in any of
the variable structures $v_1$, $\dots$, $v_n$ (this is equivalent
to requiring $\lambda v_1\ \cdots\ v_n.\ t$ to be a closed term);
\item there is a type variable in $v_1$, $\dots$, $v_n$ or $t$
that does not occur in the type of $c$.
\end{myenumerate}
The following two functions declare new constants that have infix\index{infixes, in HOL logic@infixes, in \HOL\ logic!declaration of}\index{infixes, in HOL logic@infixes, in \HOL\ logic} or binder
status. The failure conditions are the same as for \ml{new\_definition},
with the
additional conditions that the constants being declared must be types of
the appropriate form (\ml{$\sigma_1$->$\sigma_2$->$\sigma_3$} for infixes and
\ml{($\sigma_1$->$\sigma_2$)->$\sigma_3$} for binders).
\begin{boxed}
\index{new_infix_definition@\ml{new\_infix\_definition}|pin}
\index{new_binder_definition@\ml{new\_binder\_definition}|pin}
\begin{verbatim}
new_infix_definition : (string # term) -> thm
new_binder_definition : (string # term) -> thm
\end{verbatim}\end{boxed}
\noindent Note that until an infix or binder declaration has been processed the
constant being defined will not have its special status.\index{parsing, of HOL logic@parsing, of \HOL\ logic!of constants, before definition} It is therefore
necessary to use
the constant in normal prefix position when making the definition\index{defining mechanisms, for HOL logic@defining mechanisms, for \HOL\ logic}. For example,
\begin{hol}
{\small\verb% new_infix_definition(`%}$ix${\small\verb%_DEF`, "%}$m$ $ix$ $n${\small\verb% = ... ")%}
\end{hol}
\noindent will not work, as at the time when the quotation is parsed, \ml{ix}
does not have infix status and hence \ml{m ix n} will parse with \ml{m} as the
function. The definition must thus have the form:
\begin{hol}
{\small\verb% new_infix_definition(`%}$ix${\small\verb%_DEF`, "%}$ix$ $m$ $n${\small\verb% = ... ")%}
\end{hol}
\noindent Only after this has been processed will $ix$ be an infix. It is a
common practice among \HOL\ users to write a {\small\verb%$%}\index{ escape, in HOL logic parser@{\small\verb+$+} (escape, in \HOL\ logic parser)}\index{declared constants, in HOL logic@declared constants, in \HOL\ logic}
before
the constant being defined as an infix or binder
to indicate that after the definition is made, it will have a special
syntactic status; \ie\ to write:
\begin{hol}
{\small\verb% new_infix_definition(`%}$ix${\small\verb%_DEF`, "$%}$ix$ $m$ $n${\small\verb% = ... ")%}
\end{hol}
\noindent and similarly with \ml{new\_binder\_definition}. This use of
{\small\verb%$%} is not necessary; but after the definition has been
made {\small\verb%$%} must, of course,
be used if the syntactic status needs to be suppressed.
\index{constant definition extension, of HOL logic@constant definition extension, of \HOL\ logic!ML function for@\ML\ function for|)}
\subsubsection{Constant specifications}
\label{conspec}
\index{specification of constants, in HOL logic@specification of constants, in \HOL\ logic|(}
\index{extension, of HOL logic@extension, of \HOL\ logic!by constant specification}
In Section~\ref{specs} a constant specification\index{constant specification extension, of HOL logic@constant specification extension, of \HOL\ logic!ML function for@\ML\ function for} for a theory ${\cal T}$
is defined to be a pair:
\[ \langle(c_1,\ldots,c_n),\ \lquant{{x_1}_{\sigma_1}
\cdots {x_n}_{\sigma_n}}t_{\ty{bool}}\rangle \]
\noindent such that:
\begin{myenumerate}
\item $c_1$, $\dots$, $c_n$ are distinct names that
are not the names of any constants in ${\sf Sig}_{\cal T}$.
\item $\lquant{{x_1}_{\sigma_1}
\cdots {x_n}_{\sigma_n}}t_{\ty{bool}}\ \in\ {\sf Terms}_{\cal T}$.
\item $tyvars(\lquant{{x_1}_{\sigma_1}
\cdots {x_n}_{\sigma_n}}t_{\ty{bool}})\ \subseteq\ tyvars(\sigma_i)$ for
$1\leq i\leq n$.
\item $\equant{{x_1}_{\sigma_1}\ \cdots\ {x_n}_{\sigma_n}}t
\ \in\ {\sf Theorems}_{\cal T}$.
\end{myenumerate}
The following \ML\ function is used to make constant specifications in
the \HOL\ system.
\begin{boxed}
\index{new_specification@\ml{new\_specification}|pin}
\begin{verbatim}
new_specification : string -> ((string#string)list) -> thm -> thm
\end{verbatim}\end{boxed}
Evaluating:
\medskip
\begin{tabular}{l}
\ml{new\_specification}\\
\ \ml{`}$name$\ml{`}\\
\ \ml{[`}$flag_1$\ml{`,`}$c_1$\ml{`;\ }$\ldots$\ml{\ ;\ `}$flag_n$\ml{`,`}$c_n$\ml{`]}\\
\ \ml{|-\ ?}$x_1\ \cdots\ x_n$\ml{.}\ $t$\ml{[}$x_1$\ml{,}$\ \ldots\
$\ml{,}$x_n$\ml{]}\\
\end{tabular}
\medskip
\noindent simultaneously introduces new constants named $c_1$, $\dots$,
$c_n$ satisfying the property:
\[ \ml{|- }t\ml{[}c_1\ml{,}\ \ldots\ \ml{,}c_n\ml{]} \]
\noindent If \ml{`}$flag_i$\ml{`} is \ml{`constant`}
then $c_i$ is declared an ordinary constant, if it is
\ml{`infix`} then $c_i$ is declared an infix and if it is
\ml{`binder`}\index{binders, in HOL logic@binders, in \HOL\ logic} then $\ml{c}_i$ is declared
a binder. Any other value of flag causes an error. This theorem is stored,
with name $name$, as a definition in the current theory segment. A call to
\ml{new\_specification} fails if:
\begin{myenumerate}
\item not in draft mode;
\item there is already an axiom, definition or specification
named $name$ in the current theory segment;
\item the theorem argument has a non-empty assumption list;
\item there are free variables in the theorem argument;
\item $c_1$, $\dots$, $c_n$ are not distinct variables;
\item some $c_i$ is already a constant in the current theory;
\item some $c_i$ is not an allowed name for a constant;
\item some $flag_i$ is not either \ml{constant}, \ml{infix}
or \ml{binder};
\item the type of $c_i$ is not suitable for a constant with the syntactic
status specified by $flag_i$;
\item the type of some $c_i$ does not contain all the type
variables which occur in the term
{\small\verb%\%}$x_1\ \cdots\ x_n$\ml{.}\ $t$\ml{[}$x_1$\ml{,}$\ \ldots\
$\ml{,}$x_n$\ml{]}.
\end{myenumerate}
% =====================================================================
% Following section deleted [TFM 90.12.01]
% Specifications with assumptions\index{constant specifications, in HOL
% logic@constant specifications, in \HOL\ logic!with
% assumptions|(}\index{assumptions!in constant specifications} are sometimes
% convenient. Rather than generalize the primitive mechanism to support this,
% \HOL\ achieves the same effect by providing a way of encoding specifications
% with assumptions as specifications without them. This encoding uses the
% infix constant
% \ml{IS\_ASSUMPTION\_OF}\index{IS_ASSUMPTION_OF@\ml{IS\_ASSUMPTION\_OF}|(},
% which has type \ml{bool->bool->bool} and is
% defined (in the theory \ml{bool})
% to be equal to the primitive constant \ml{==>}. A theorem of the form
% $t_1$\ml{,}$t_2$\ml{,}$\ldots$\ml{,}$t_n$\ml{\ |-\ }$t$ is logically
% equivalent to the following theorem without assumptions:
% \[\ml{|-\ } \begin{array}[t]{@{}l}
% t_1\ \ml{IS\_ASSUMPTION\_OF}\\
% t_2\ \ml{IS\_ASSUMPTION\_OF}\\
% \qquad\qquad \vdots\\
% t_n\ \ml{IS\_ASSUMPTION\_OF}\ t\\
% \end{array} \]
% If the flag \ml{undisch\_defs} is \ml{true} (the default), then a
% specification that encodes a theorem with assumptions using
% \ml{IS\_ASSUMPTION\_OF} will be returned by the \ML\ definition retrieving
% functions (\ie\ \ml{definition} and \ml{definitions}) as a theorem with
% assumptions. For example, specifying \ml{c} by:
% \begin{hol}\begin{verbatim}
% |- ?x. (?x.t[x]) IS_ASSUMPTION_OF t[x]
% \end{verbatim}\end{hol}
% \noindent will result in \ml{c} being defined\index{defining mechanisms, for
% HOL logic@defining mechanisms, for \HOL\ logic} by:
% \begin{hol}\begin{verbatim}
% ?x.t[x] |- t[c]
% \end{verbatim}\end{hol}
% \noindent(although, in fact, \ml{|- (?x.t[x]) IS\_ASSUMPTION\_OF t[c]}, is
% what is actually stored). Note that the constant \ml{==>} could not be used
% instead of \ml{IS\_ASSUMPTION\_OF}, because there would then be no way of
% preventing the specification:
% \begin{hol}\begin{verbatim}
% |- ?x.t[x] ==> t[c]
% \end{verbatim}\end{hol}
% \noindent being interpreted as the specification:
% \begin{hol}\begin{verbatim}
% ?x.t[x] |- t[c]
% \end{verbatim}\end{hol}
% \noindent These two specifications are logically equivalent, but there may be
% pragmatic reasons for wanting one form or the other. \index{constant
% specifications, in HOL logic@constant specifications, in \HOL\ logic!with
% assumptions|)} \index{extension, of HOL logic@extension, of \HOL\ logic!by
% constant specification|)}\index{constant specification extension, of HOL
% logic@constant specification extension, of \HOL\ logic!ML function for@\ML\
% function for|)} \index{IS_ASSUMPTION_OF@\ml{IS\_ASSUMPTION\_OF}|)}
\subsubsection{Type definitions}\index{extension, of HOL logic@extension, of \HOL\ logic!by type definition|(}
\label{type-defs}\index{type definitions, in HOL logic@type definitions, in \HOL\ logic|(}
In Section~\ref{tydefs} it is explained that
defining\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!introduction of}\index{type definition extension, in HOL logic@type definition extension, in \HOL\ logic!ML function for@\ML\ function for|(}
a new type $(\alpha_1,\ldots,\alpha_n)\ty{op}$ in a theory ${\cal T}$ consists
of introducing $\ty{op}$ as a new $n$-ary type operator and
\[\turn \equant{f_{(\alpha_1,\ldots,\alpha_n)\ty{op}\fun\sigma}}\TyDef\ p\ f\]
\noindent as a new axiom, where $p$ is a predicate
characterizing\index{characteristic predicate, of type definitions} a
non-empty subset of an existing type $\sigma$. Formally, a type definition
for a theory ${\cal T}$ is a $3$-tuple
\[ \langle \sigma,\ (\alpha_1,\ldots,\alpha_n)\ty{op},
\ p_{\sigma\fun\ty{bool}}\rangle \]
\noindent where:
\begin{myenumerate}
\item $\sigma\in{\sf Types}_{\cal T}$ and
$tyvars(\sigma)\in\{\alpha_1, \ldots , \alpha_n\}$.
\item \ty{op} is not the name of a type constant in ${\sf Struc}_{\cal T}$.
\item $p\in{\sf Terms}_{\cal T}$ is a closed term of
type $\sigma\fun\ty{bool}$ and
$tyvars(p)\subseteq\{\alpha_1, \ldots , \alpha_n\}$.
\item $\equant{x_{\sigma}}p\ x \ \subseteq\ {\sf Theorems}_{\cal T}$.
\end{myenumerate}
The following \ML\ function makes a type definition in the \HOL\ system.
\begin{boxed}
\index{new_type_definition@\ml{new\_type\_definition}|pin}
\begin{verbatim}
new_type_definition : (string # term # thm) -> thm
\end{verbatim}\end{boxed}
\noindent If $t$ is a term of type
$\sigma$\ml{->bool} containing $n$ distinct type variables, then
evaluating:
{\def\op{{\normalsize\sl op}}
\begin{hol}\begin{alltt}
new_type_definition(`{\op}`, \m{t}, |- ?\m{x}.\m{\:t \;x})
\end{alltt}\end{hol}}
\noindent results in \ty{op} being declared as a new $n$-ary type operator
characterized by the definitional\index{definitional axioms}\index{type operators, in HOL logic@type operators, in \HOL\ logic!definitional axioms for} axiom:
\begin{hol}\begin{alltt}
|- ?rep. TYPE\_DEFINITION \m{t} rep
\end{alltt}\end{hol}
\noindent which is stored as a definition with the automatically
generated name
\ty{op}\ml{\_TY\_DEF}.\index{TY_DEF@$\ldots$\ml{\_TY\_DEF}}\footnote{In
previous versions of HOL, type definitions
were stored as axioms rather than definitions.} The constant
\ml{TYPE\_DEFINITION}\index{TYPE_DEFINITION@\ml{TYPE\_DEFINITION}}
is defined in the theory \ml{bool} by:
\begin{hol}\begin{verbatim}
|- TYPE_DEFINITION (P:*->bool) (rep:**->*) =
(!x' x''. (rep x' = rep x'') ==> (x' = x'')) /\
(!x. P x = (?x'. x = rep x'))
\end{verbatim}\end{hol}
\noindent Executing \ml{new\_type\_definition(`\ty{op}`,\ }$t$\ml{,\
|- ?}$x$\ml{.}\ $t\ x$\ml{)} fails if:
\begin{myenumerate}
\item not in draft mode;
\item $\ty{op}$ is already the name of a type or type operator
in the current theory;
\item there already exists a constant definition, constant specification,
type definition or axiom named \ty{op}\ml{\_TY\_DEF} in the current theory;
\item $t$ does not have a type of the form $\sigma$\ml{->bool}.
\end{myenumerate}
\index{extension, of HOL logic@extension, of \HOL\ logic!by type definition|)}
\index{theories, in HOL logic@theories, in \HOL\ logic!extension of|)}\index{type definition extension, in HOL logic@type definition extension, in \HOL\ logic!ML function for@\ML\ function for|)}\index{type definitions, in HOL logic@type definitions, in \HOL\ logic|)}
\subsubsection{Defining bijections}
\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!defining bijections for|(}
The result of a type definition using \ml{new\_type\_definition} is a theorem
which asserts only the {\it existence\/} of a
bijection\index{bijection of types, in HOL logic@bijection of types, in \HOL\ logic}
from the type it defines to the corresponding subset of an existing type. To
introduce constants that in fact denote such a bijection and its inverse, the
following \ML\ function is provided:
\begin{boxed}
\index{define_new_type_bijections@\ml{define\_new\_type\_bijections}|pin}
\begin{verbatim}
define_new_type_bijections : string -> string -> string -> thm -> thm
\end{verbatim}\end{boxed}
\noindent This function takes three string arguments and a theorem argument.
The theorem argument must be a definitional axiom of the form returned by
\ml{new\_type\_definition}. The first string argument is the name under which
the constant definition (a constant specification, in fact) made by
{\small\verb!define_new_type_bijections!} will be stored in the current theory
segment, and the second and third string arguments are user-specified names for
the two constants that are to be defined. These constants are defined so as to
denote mutually inverse bijections between the defined type, whose definition
is given by the supplied theorem, and the representing type of this defined
type.
Evaluating:
\medskip
{\def\op{{\normalsize\sl op}}
\begin{hol}\begin{alltt}
define\_new\_type\_bijections `\m{name}` `\m{abs}` `\m{rep}`
|- ?rep:newty->ty. TYPE\_DEFINITION \m{P} rep
\end{alltt}\end{hol}}
\medskip
\noindent automatically defines two new constants
\m{abs}{\small\verb!:ty->newty!} and \m{rep}{\small\verb!:ty->newty!}
such that:
{\def\bk{\char'134}
\begin{hol}\begin{alltt}
|- (!a. \m{abs}(\m{rep} a) = a) /\bk (!r. \m{P} r = (\m{rep}(\m{abs} r) = r))
\end{alltt}\end{hol}}
\noindent This theorem, which is the defining property for the constants
\m{abs} and \m{rep}, is stored under the name `\m{name}` in the current theory
segment. It is also the value returned by \ml{define\_new\_type\_bijections}.
The theorem states that \m{abs} is the left inverse of \m{rep} and---for
values satisfying \m{P}---that \m{rep} is the left inverse of \m{abs}.
A call to
\ml{define\_new\_type\_bijections \m{name} \m{abs} \m{rep} \m{th}}
fails if:
\begin{myenumerate}
\item not in draft mode;
\item either $abs$ or $rep$ is already the name of a constant in
the current theory;
\item there already exists a constant definition, constant specification,
type definition or axiom named \m{name} in the current theory;
\item $th$ is not a theorem of the form returned by
\ml{new\_type\_definition}.
\end{myenumerate}%
\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!defining bijections for|)}
\subsubsection{Properties of type bijections}
\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!properties of bijections for|(}
The following \ML\ functions are provided for proving that the bijections
introduced by \ml{define\_new\_type\_isomorphisms} are injective (one-to-one)
and surjective (onto):
\begin{boxed}
\index{prove_rep_fn_one_one@\ml{prove\_rep\_fn\_one\_one}|pin}
\index{prove_rep_fn_onto@\ml{prove\_rep\_fn\_onto}|pin}
\index{prove_abs_fn_one_one@\ml{prove\_abs\_fn\_one\_one}|pin}
\index{prove_abs_fn_onto@\ml{prove\_abs\_fn\_onto}|pin}
\begin{verbatim}
prove_rep_fn_one_one : thm -> thm
prove_rep_fn_onto : thm -> thm
prove_abs_fn_one_one : thm -> thm
prove_abs_fn_onto : thm -> thm
\end{verbatim}\end{boxed}
\noindent The theorem argument to each of these functions must be a theorem
of the form returned by \ml{define\_new\_type\_bijections}:
{\def\bk{\char'134}
\begin{hol}\begin{alltt}
|- (!a. \m{abs}(\m{rep} a) = a) /\bk (!r. \m{P} r = (\m{rep}(\m{abs} r) = r))
\end{alltt}\end{hol}}
\noindent If \m{th} is a theorem of this form, then evaluating
\ml{prove\_rep\_fn\_one\_one \m{th}} proves that the function \m{rep} is
one-to-one, and returns the theorem:
\begin{hol}\begin{alltt}
|- !a a'. (\m{rep} a = \m{rep} a') = (a = a')
\end{alltt}\end{hol}
\noindent Likewise, \ml{prove\_rep\_fn\_onto \m{th}} proves that \m{rep} is
onto the set of values that satisfy \m{P}:
{\def\bk{\char'134}
\begin{hol}\begin{alltt}
|- !r. \m{P} r = (?a. r = \m{rep} a)
\end{alltt}\end{hol}}
\noindent Evaluating \ml{prove\_abs\_fn\_one\_one \m{th}} proves that \m{abs}
is one-to-one for values that satisfy \m{P}, and returns the theorem:
{\def\bk{\char'134}
\begin{hol}\begin{alltt}
|- !r r'. \m{P} r ==> \m{P} r' ==> ((\m{abs} r = \m{abs} r') = (r = r'))
\end{alltt}\end{hol}}
\noindent And evaluating \ml{prove\_abs\_fn\_onto \m{th}} proves that \m{abs}
is onto, returning the theorem:
{\def\bk{\char'134}
\begin{hol}\begin{alltt}
|- !a. ?r. (a = \m{abs} r) /\bk \m{P} r
\end{alltt}\end{hol}}
\noindent All four functions will fail if applied to any theorem that does not
have the form of a theorem returned by \ml{define\_new\_type\_bijections}.
None of these functions saves anything on the current theory file. In fact, it
should usually be unnecessary to save the results proved by these functions,
since they can be generated quickly whenever required from the theorem returned
by \ml{define\_new\_type\_bijections}, which is itself saved. Of course,
within any given session, one would bind results to \ML\ identifiers.
\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!properties of bijections for|)}
\subsection{Primitive ML function for accessing theories}
\index{theories, in HOL logic@theories, in \HOL\ logic!functions for accessing|(}
\index{axioms!retrieval of, in HOL system@retrieval of, in \HOL\ system|(}
The arguments of \ML\ type {\small\verb%string%} to {\small\verb%new_axiom%},
{\small\verb%new_definition%}
\etc\ are the names of the corresponding axioms and definitions. These
names are used when accessing theories with the functions
{\small\verb%axiom%}, {\small\verb%definition%}, \etc, described below.
%The various functions for setting up theories are illustrated in the
%example session in Section~\ref{example}.
A theory with no descendants\index{theories, in HOL logic@theories, in \HOL\ logic!hierarchies of}
can be extended by adding new parents, types,
constants, axioms and definitions. Theories that are already the parents of
other theories cannot be extended in this way.\footnote{It
would be difficult
to implement the necessary checks to ensure that added types,
constants \etc\ did not invalidate declarations in the descendant theories.}
When a new theory is being created or an existing one extended it is necessary
to be in draft mode.\index{draft mode, in HOL system@draft mode, in \HOL\ system}
In proof mode\index{proof mode, in HOL system@proof mode, in \HOL\ system} the
functions with prefix `{\small\verb%new_%}'\index{new_@\ml{new\_}$\ldots$}
listed above are not available.
The functions for entering an already existing theory in either draft mode
or proof mode are, respectively:
\begin{boxed}\index{extend_theory@\ml{extend\_theory}|pin}
\index{load_theory@\ml{load\_theory}|pin}
\begin{verbatim}
extend_theory : string -> void
load_theory : string -> void
\end{verbatim}\end{boxed}
The function \ml{close\_theory}\index{close_theory@\ml{close\_theory}}
(see Section~\ref{theoryprims}) is used
to finish a session and write all new declarations to the theory file.
There are various functions for loading the contents of theory files:
\begin{boxed}
\index{parents@\ml{parents}|pin}
\index{types@\ml{types}|pin}
\index{constants@\ml{constants}|pin}
\index{infixes@\ml{infixes}|pin}
\index{binders@\ml{binders}|pin}
\index{axioms@\ml{axioms}|pin}
\index{definitions@\ml{definitions}|pin}
\index{theorems@\ml{theorems}|pin}
\begin{verbatim}
parents : string -> string list
types : string -> (int # string) list
constants : string -> term list
infixes : string -> term list
binders : string -> term list
axioms : string -> (string # thm) list
definitions : string -> (string # thm) list
theorems : string -> (string # thm) list
\end{verbatim}\end{boxed}
\noindent The first argument is the name of a theory (which must be in the
ancestry of the current theory segment); the result is a list of the
components of the theory. The name of the current theory can be abbreviated by
\ml{`-`}.\index{ abbreviation, of HOL theory part names@\ml{-}
(abbreviation, of \HOL\ theory part names)} For example, \ml{parents `-`} returns the parents of the current
theory.
In the case of \ml{types} a list of arity-name pairs is returned; in the
case of \ml{axioms}, \ml{definitions} or \ml{theorems} a list
of string-theorem
pairs is returned, where the string is the name of the theorem representing the
axiom, definition or theorem that was supplied by the user. Note that constant
specifications and type definitions are both retrieved using the function
\ml{definitions}.
Individual axioms, definitions and theorems can be read (from the current or
ancestor theories) using the following \ML\ functions:
\begin{boxed}
\index{axiom@\ml{axiom}|pin}
\index{definition@\ml{definition}|pin}
\index{theorem@\ml{theorem}|pin}
\begin{verbatim}
axiom : string -> string -> thm
definition : string -> string -> thm
theorem : string -> string -> thm
\end{verbatim}\end{boxed}
\noindent The first argument is the theory (\ml{`-`} can be used for the
current theory); the second argument is the user supplied name of the axiom,
definition or theorem in the theory.
Theories can be printed using the function
{\small\verb%print_theory%}\index{printing, in HOL logic@printing, in \HOL\ logic!of theories}\index{print_theory@\ml{print\_theory}},
which takes a theory name and then
prints out the named theory in a readable format.\index{axioms!retrieval of, in HOL system@retrieval of, in \HOL\ system|)}\index{theories, in HOL logic@theories, in \HOL\ logic!functions for accessing|)}
\subsection{The theory {\tt HOL}}
\label{HOL-theory}
%The types and constants in the built-in theories are listed here. The axioms,
%definitions and pre-proved theorems are not listed; they can be found in
%Section~\ref{preproved-theories}.
\index{axioms!primitive, of HOL logic@primitive, of \HOL\ logic|(}
At start-up, the initial theory for users of the \HOL\ system is called
\ml{HOL}\index{HOL@\ml{HOL}}, which is constructed when the \HOL\ system is made. The ancestry of
this theory is quite complicated and reflects, to some extent, the history of
\HOL\ as it evolved from \LCF.\index{LCF@\LCF} This ancestry, which
is described in detail in
Section~\ref{HOL-ancestry}, contains two important theories: \ml{bool}\index{bool, the HOL theory@\ml{bool}, the \HOL\ theory} and
\ml{ind}. These define the primitive logical basis of the \HOL\ logic.
\subsubsection{The theory {\tt bool}}
\label{boolthy}
The theory {\small\verb%bool%} introduces the type
{\small\verb%bool%} and
contains four of the five axioms\index{axioms!in bool theory@in \ml{bool} theory}
for higher order logic (the fifth axiom is
in the theory {\small\verb%ind%}). These axioms, together with the rules
of inference described later in Section~\ref{rules}, constitute the core of the
\HOL\ logic. Because of the way the \HOL\ system evolved from
\LCF,\index{LCF@\LCF}\footnote{To simplify the porting of the LCF theorem-proving
tools to the HOL system, the HOL logic was made as like PP$\lambda$ (the logic
built-in to LCF) as possible.} the particular axiomatization\index{axioms!non-primitive, of HOL logic@non-primitive, of \HOL\ logic} of
higher order logic it uses differs from the classical
axiomatization due to Church\index{Church, A.} \cite{Church}. The biggest difference is that
in Church's formulation type variables\index{type variables, in HOL logic@type variables, in \HOL\ logic!differences from classical} are in the meta-language, whereas
in the \HOL\ logic they are part of the object language.
There are three primitive constants\index{constants, in HOL logic@constants, in \HOL\ logic!primitive logical}\index{primitive constants, of HOL logic@primitive constants, of \HOL\ logic}
in the theory {\small\verb%bool%}\index{bool, the type in HOL logic@\ml{bool}, the type in \HOL\ logic}:
{\small\verb%=%}\index{ equality, in HOL logic@\ml{=} (equality, in \HOL\ logic)}\index{equality, in HOL logic@equality, in \HOL\ logic}
(equality, an infix), {\small\verb%==>%}\index{ implication, in HOL logic@{\small\verb+==>+} (implication, in \HOL\ logic)} (implication, an
infix) and {\small\verb%@%}\index{ choice function, in HOL logic@{\small\verb+"@+} (choice function, in \HOL\ logic)}\index{choice operator, in HOL logic@choice operator, in \HOL\ logic} (choice, a binder). Equality\index{equality, in HOL logic@equality, in \HOL\ logic}\index{implication, in HOL logic@implication, in \HOL\ logic}
and implication
are standard predicate calculus notions, but choice is more exotic:
if $t$ is a term having type $\sigma${\small\verb%->bool%},
then {\small\verb%@x.%}$t${\small\verb% x%} (or, equivalently,
{\small\verb%$@%}$t$) denotes {\it some\/} member of the set whose
characteristic\index{characteristic predicate, of type definitions}
function is $t$. If the set is empty, then
{\small\verb%@x.%}$t${\small\verb% x%} denotes an arbitrary member of the
set denoted by $\sigma$. The constant {\small\verb%@%} is a higher order
version of Hilbert's\index{Hilbert, D.}\index{epsilon operator}
$\hilbert$-operator; it is related to the constant
$\iota$ in Church's formulation of higher order logic. For more details,
see Church's\index{Church, A.} original paper \cite{Church}, Leisenring's\index{Leisenring, A.} book
on Hilbert's $\hilbert$-symbol \cite{Leisenring}, or
Andrews' textbook on type theory \cite{Andrews}.
The logical constants\index{logical constants, in HOL logic@logical constants, in \HOL\ logic} {\small\verb%T%}\index{truth values, in HOL logic@truth values, in \HOL\ logic!constants for}\index{T@\ml{T}!defined in terms of primitives} (truth), {\small\verb%F%}\index{F@\ml{F}!defined in terms of primitives} (falsity),
{\small\verb%~%} (negation)\index{ negation, in HOL logic@{\small\verb+~+} (negation, in \HOL\ logic)}, {\small\verb%/\%} (conjunction)\index{ conjunction, in HOL logic@{\small\verb+/\+} (conjunction, in \HOL\ logic)}\index{conjunction, in HOL logic@conjunction, in \HOL\ logic!defined in terms of primitives},
{\small\verb%\/%} (disjunction)\index{ disjunction, in HOL logic@{\small\verb+\/+} (disjunction, in \HOL\ logic)}\index{disjunction, in HOL logic@disjunction, in \HOL\ logic!defined in terms of primitives}, {\small\verb%!%} (universal
quantification)\index{ universal quantifier, in HOL logic@{\small\verb+"!+} (universal quantifier, in \HOL\ logic)}\index{universal quantifier, in HOL logic@universal quantifier, in \HOL\ logic!defined in terms of primitives}, {\small\verb%?%} (existential quantification)\index{ existential quantifier, in HOL logic@{\small\verb+?+} (existential quantifier, in \HOL\ logic)}\index{existential quantifier, in HOL logic@existential quantifier, in \HOL\ logic!defined in terms of primitives}
and {\small\verb%?!%} (unique existence quantifier)\index{ exists unique, in HOL logic@{\small\verb+?"!+} (exists unique, in \HOL\ logic)}\index{exists unique, in HOL logic@exists unique, in \HOL\ logic!defined in terms of primitives}
can all
be defined in terms of equality\index{equality, in HOL logic@equality, in \HOL\ logic}, implication and choice. The definitions
listed below are fairly standard; each one is preceded by its \ML\ name.
(Later definitions sometimes use earlier ones.)
\begin{hol}
\index{truth values, in HOL logic@truth values, in \HOL\ logic!definition of}
\index{T_DEF@\ml{T\_DEF}}
\index{T@\ml{T}!definitional axiom for}
\index{disjunction, in HOL logic@disjunction, in \HOL\ logic!definitional axiom for}
\index{conjunction, in HOL logic@conjunction, in \HOL\ logic!definitional axiom for}
\index{iff, in HOL logic@iff, in \HOL\ logic!definitional axiom for}
\index{negation, in HOL logic@negation, in \HOL\ logic!definitional axiom for}
\index{exists unique, in HOL logic@exists unique, in \HOL\ logic}
\index{F@\ml{F}!axiom for}
\index{F@\ml{F}!definitional axiom for}
\index{ exists unique, in HOL logic@{\small\verb+?"!+} (exists unique, in \HOL\ logic)}
\index{T_DEF@\ml{T\_DEF}}
\index{FORALL_DEF@\ml{FORALL\_DEF}}
\index{EXISTS_DEF@\ml{EXISTS\_DEF}}
\index{AND_DEF@\ml{AND\_DEF}}
\index{OR_DEF@\ml{OR\_DEF}}
\index{F_DEF@\ml{F\_DEF}}
\index{NOT_DEF@\ml{NOT\_DEF}}
\index{EXISTS_UNIQUE_DEF@\ml{EXISTS\_UNIQUE\_DEF}}
\index{conjunction, in HOL logic@conjunction, in \HOL\ logic!definitional axiom for}
\index{disjunction, in HOL logic@disjunction, in \HOL\ logic!definitional axiom for}
\index{equality, in HOL logic@equality, in \HOL\ logic!primitive axiom for}
\index{existential quantifier, in HOL logic@existential quantifier, in \HOL\ logic!definitional axiom for}
\index{universal quantifier, in HOL logic@universal quantifier, in \HOL\ logic!definitional axiom for}
\index{exists unique, in HOL logic@exists unique, in \HOL\ logic!definitional axiom for}
\begin{verbatim}
T_DEF |- T = ((\x:bool. x)=(\x. x))
FORALL_DEF |- $! = \P:*->bool. P=(\x. T)
EXISTS_DEF |- $? = \P:*->bool. P($@ P)
AND_DEF |- $/\ = \t1 t2. !t. (t1 ==> t2 ==> t) ==> t
OR_DEF |- $\/ = \t1 t2. !t. (t1 ==> t) ==> (t2 ==> t) ==> t
F_DEF |- F = !t. t
NOT_DEF |- $~ = \t. t ==> F
EXISTS_UNIQUE_DEF |- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y)))
\end{verbatim}\end{hol}
There are four\index{universal quantifier, in HOL logic@universal quantifier, in \HOL\ logic!in four primitive axioms} axioms in the theory {\small\verb%bool%}\index{bool, the HOL theory@\ml{bool}, the \HOL\ theory}:
\begin{hol}
\index{BOOL_CASES_AX@\ml{BOOL\_CASES\_AX}}
\index{IMP_ANTISYM_AX@\ml{IMP\_ANTISYM\_AX}}
\index{ETA_AX@\ml{ETA\_AX}}
\index{SELECT_AX@\ml{SELECT\_AX}}
\index{implication, in HOL logic@implication, in \HOL\ logic!primitive axiom for}
\index{ choice function, in HOL logic@{\small\verb+"@+} (choice function, in \HOL\ logic)}
\index{choice axiom}
\index{choice operator, in HOL logic@choice operator, in \HOL\ logic!primitive axiom for}
\begin{verbatim}
BOOL_CASES_AX |- !t. (t = T) \/ (t = F)
IMP_ANTISYM_AX |- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)
ETA_AX |- !t. (\x. t x) = t
SELECT_AX |- !P:*->bool x. P x ==> P($@ P)
\end{verbatim}\end{hol}
\noindent
The fifth and last axiom of the \HOL\ logic is the Axiom of
Infinity;\index{axiom of infinity} this
is in the theory {\small\verb%ind%} described in Section~\ref{ind}.
The theory {\small\verb%bool%} also supplies the definitions of a number of
useful constants. The constant {\small\verb%LET%}\index{let-terms, in HOL logic@\ml{let}-terms, in \HOL\ logic!constant for} is used in representing terms
containing local variable bindings (\ie\
{\small\verb%let%}-terms\index{let-terms, in HOL logic@\ml{let}-terms, in \HOL\ logic!definitional axiom for}, as discussed in Section~\ref{let}), and the
constant {\small\verb%COND%} is used in representing conditionals. Both
constants are defined in the theory \ml{bool}, and have the following
definitions:
\begin{hol}
\index{LET_DEF@\ml{LET\_DEF}}
\index{COND_DEF@\ml{COND\_DEF}}
\index{COND@\ml{COND}}
\index{LET@\ml{LET}}
\index{conditional predicate, in HOL logic@conditional predicate, in \HOL\ logic!definitional axiom for}
\index{conditionals, in HOL logic@conditionals, in \HOL\ logic}
\begin{verbatim}
LET_DEF |- LET = \f x. f x
COND_DEF |- COND = \t t1 t2.@x.((t=T)==>(x=t1))/\((t=F)==>(x=t2))
\end{verbatim}\end{hol}
\noindent The theory \ml{bool} also contains the definitions of the constants
{\small\verb!RES_FORALL!}, {\small\verb!RES_EXISTS!},
{\small\verb!RES_SELECT!}, {\small\verb!ARB!} and {\small\verb!RES_ABSTRACT!},
which are used to support restricted
quantification\index{quantifiers!restricted} in the \HOL\ logic (see
Section~\ref{res-quant}). The definitions are:
\begin{hol}
\index{RES_FORALL@\ml{RES\_FORALL}}
\index{RES_EXISTS@\ml{RES\_EXISTS}}
\index{RES_SELECT@\ml{RES\_SELECT}}
\index{RES_ABSTRACT@\ml{RES\_ABSTRACT}}
\index{ARB@\ml{ARB}}
\begin{verbatim}
RES_FORALL |- !P B. RES_FORALL P B = (!x. P x ==> B x)
RES_EXISTS |- !P B. RES_EXISTS P B = (?x. P x /\ B x)
RES_SELECT |- !P B. RES_SELECT P B = (@x. P x /\ B x)
ARB |- ARB = (@x. T)
RES_ABSTRACT |- !P B. RES_ABSTRACT P B = (\x. (P x => B x | ARB))
\end{verbatim}\end{hol}
\noindent The theory \ml{bool} also contains the definitions of
the constants {\small\verb%ONE_ONE%} and
{\small\verb%ONTO%}, which are used in stating the Axiom of Infinity\index{axioms!non-primitive, of HOL logic@non-primitive, of \HOL\ logic}\index{axiom of infinity} (see Section~\ref{ind})\index{specification of constants, in HOL logic@specification of constants, in \HOL\ logic|)}. The definitions are:
\begin{hol}
\index{ONE_ONE_DEF@\ml{ONE\_ONE\_DEF}}
\index{ONTO_DEF@\ml{ONTO\_DEF}}
\index{one-to-one predicate, in HOL logic@one-to-one predicate, in \HOL\ logic!definitional axiom for}
\index{onto predicate, in HOL logic@onto predicate, in \HOL\ logic!definitional axiom for}
\begin{verbatim}
ONE_ONE_DEF |- ONE_ONE f = (!x1 x2. (f x1 = f x2) ==> (x1 = x2))
ONTO_DEF |- ONTO f = (!y. ?x. y = f x)
\end{verbatim}\end{hol}
\noindent For further discussion of the
theory \ml{bool} see Section~\ref{boolfull}.
\subsubsection{The theory {\tt ind}}
\label{ind}
The theory {\small\verb%ind%}\index{ind, the theory@\ml{ind}, the theory} introduces the type {\small\verb%ind%}\index{ind, the type@\ml{ind}, the type} of
{\it individuals\/}\index{individuals}
and the {\it Axiom of Infinity\/}\index{axiom of infinity}. This axiom states
that the set denoted by {\small\verb%ind%} is infinite. The four axioms of
the theory {\small\verb%bool%}, the rules of inference in
Section~\ref{rules} and the Axiom of Infinity are, together, sufficient for
developing all of standard mathematics. Thus, in principle, the user of the
\HOL\ system should never need to make a non-definitional\index{axioms!dispensibility of adding}\index{definitional theories} theory. In
practice, it is often very tempting to take the risk of introducing new
axioms because deriving them from definitions can be tedious---proving that
`axioms' follow from definitions amounts to proving their consistency.
The Axiom of Infinity\index{axioms!in ind theory@in \ml{ind} theory} is
{\begin{hol}
\index{INFINITY_AX@\ml{INFINITY\_AX}}
\index{axiom of infinity}
\index{existential quantifier, in HOL logic@existential quantifier, in \HOL\ logic!in infinity axiom}
\begin{verbatim}
INFINITY_AX |- ?f:ind->ind. ONE_ONE f /\ ~(ONTO f)
\end{verbatim}\end{hol}}
\noindent
This asserts that there exists a one-to-one map from {\small\verb%ind%} to
itself that is not onto. This implies that the type {\small\verb%ind%}
denotes an infinite set.\index{axioms!primitive, of HOL logic@primitive, of \HOL\ logic|)}
\subsection{Primitive rules of inference of the HOL Logic}
\label{rules}
\index{inference rules, of HOL logic@inference rules, of \HOL\ logic!primitive|(}
The primitive rules of inference of the logic were described abstractly
in Section~\ref{HOLrules}. The descriptions relied on meta-variables
$t$, $t_1$, $t_2$, and so on.
%In Section~\ref{avra_theorems}, a primitive inference was defined as
%a pair $(L,(\Gamma,t))$ belonging to
%a deductive system.
In the \HOL\ logic, infinite families of primitive
inferences are grouped together and thought of as single primitive inference
schemes.\index{families of inferences, in HOL logic@families of inferences, in \HOL\ logic} Each family contains all the concrete instances of one
particular inference `pattern'. These can be produced, in
abstract form, by instantiating the meta-variables in Section~\ref{HOLrules}
to concrete terms.
In \HOL, primitive inference schemes are represented
by \ML\ functions that return theorems as values.
That is, for particular \HOL\ terms, the \ML\ functions return
the instance of the theorem at those terms. The \ML\ functions
are part of the \ML\ abstract type
\ml{thm}\index{thm@\ml{thm}}:
although \ml{thm} has no primitive constructors, it has (eight)
operations which return theorems as values: \ml{ASSUME}, \ml{REFL},
\ml{BETA\_CONV}, \ml{SUBST}, \ml{ABS}, \ml{INST\_TYPE},
\ml{DISCH} and \ml{MP}.\index{inference schemes, in HOL logic@inference schemes, in \HOL\ logic}
The \ML\ functions that implement the primitive inference
schemes in the \HOL\
system are described below.
The same notation\index{notation!for specification of rules}\index{inferences, in HOL logic@inferences, in \HOL\ logic!notation for}
is used here as in Section~\ref{HOLrules}:
hypotheses above a horizontal line and conclusion\index{conclusions!of inference rules} beneath.
The machine-readable {\small ASCII}
notation is used for the logical constants.
\subsubsection{Assumption introduction}\index{assumption introduction, in HOL logic@assumption introduction, in \HOL\ logic!ML function for@\ML\ function for}
\begin{boxed}
\index{ASSUME@\ml{ASSUME}|pin}
\begin{verbatim}
ASSUME : term -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
\\ \hline
$t${\small\verb% |- %}$t$ \\
\end{tabular}
\end{center}
\noindent
{\small\verb%ASSUME %}$t${\small\verb%%} evaluates to $t${\small\verb%|- %}$t$.
Failure if $t$ is not of type \ml{bool}.
\bigskip
\subsubsection{Reflexivity}\index{reflexivity, in HOL logic@reflexivity, in \HOL\ logic!ML function for@\ML\ function for}
\begin{boxed}\index{REFL@\ml{REFL}|pin}
\begin{verbatim}
REFL : term -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
\\ \hline
{\small\verb% |- %}$t${\small\verb% = %}$t$ \\
\end{tabular}
\end{center}
\noindent {\small\verb%REFL %}$t${\small\verb%%} evaluates to {\small\verb%|-
%}$t${\small\verb% = %}$t$. A call to \ml{REFL} never fails.
\bigskip
\subsubsection{Beta-conversion}\index{beta-conversion, in HOL logic@beta-conversion, in \HOL\ logic!ML function for@\ML\ function for}
\begin{boxed}\index{BETA_CONV@\ml{BETA\_CONV}|pin}
\begin{verbatim}
BETA_CONV : term -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
\\ \hline
{\small\verb% |- (\%}$x${\small\verb%.%}$t_1${\small\verb%)%}$t_2${\small\verb% = %}$t_1[t_2/x]$
\end{tabular}
\end{center}
\begin{itemize}
\item where $t_1[t_2/x]$ denotes the result of substituting $t_2$ for $x$
in $t_1$, with suitable renaming of variables to prevent free variables
in $t_2$ becoming bound after substitution. The substitution
$t_1[t_2/x]$ is always defined.
\end{itemize}
\noindent {\small\verb%BETA_CONV (\%}$x${\small\verb%.%}$t_1${\small\verb%)%}$t_2${\small\verb%%} evaluates to the
theorem {\small\verb%|-
(\%}$x${\small\verb%.%}$t_1${\small\verb%)%}$t_2${\small\verb% = %}$t_1[t_2/x]$.
Failure if the argument to \ml{BETA\_CONV} is not a $\beta$-redex (\ie\ is not
of the form {\small\verb%(\%}$x${\small\verb%.%}$t_1${\small\verb%)%}$t_2${\small\verb%%}).
\bigskip
\subsubsection{Substitution}\index{substitution rule, in HOL logic@substitution rule, in \HOL\ logic!ML function for@\ML\ function for|(}\index{SUBST@\ml{SUBST}|(}
\begin{boxed}
\begin{verbatim}
SUBST : (thm # term)list -> term -> thm -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
$\Gamma_1${\small\verb% |- %} $t_1${\small\verb%=%}$t'_1$ {\small\verb% %} $\cdots$ {\small\verb% %}
$\Gamma_n${\small\verb% |- %} $t_n${\small\verb%=%}$t'_n$ {\small\verb% %}
$\Gamma${\small\verb% |- %} $t[t_1,\ldots,t_n]$ \\ \hline
$\Gamma_1 \cup \cdots
\cup \Gamma_n \cup \Gamma${\small\verb% |- %} $t[t'_1,\ldots,t'_n]$ \\
\end{tabular}
\end{center}
\bigskip
\begin{itemize}
\item where $t[t_1,\ldots,t_n]$ denotes a term $t$ with some free
occurrences of the terms $t_1$, $\dots$, $t_n$ singled out and
$t[t'_1,\ldots,t'_n]$ denotes the result of simultaneously replacing each
such occurrences of $t_i$ by $t'_i$ (for $1{\leq}i {\leq} n$),
with suitable renaming of variables to prevent free variables
in $t_i'$ becoming bound after substitution.
\end{itemize}
\noindent
The first argument to {\small\verb%SUBST%} is a list
{\small\verb%[(|-%}$t_1${\small\verb%=%}$t'_1${\small\verb%, %}$x_1${\small\verb%);%}$\:\ldots\:${\small\verb%;(|-%}$t_n${\small\verb%=%}
$t'_n${\small\verb%, %}$x_n${\small\verb%)]%}. The second argument is a
template term $t[x_1,\ldots,x_n]$ in which occurrences of the variable
$x_i$ (where $1 \leq i\leq n$) are used to mark the places where
substitutions with {\small\verb%|- %}$t_i${\small\verb%=%}$t'_i$ are to be
done. Thus
\bigskip
{\small\verb%SUBST [(|-%}$t_1${\small\verb%=%}$t'_1${\small\verb%, %}$x_1${\small\verb%);%}$\ldots${\small\verb%;(|-%}$t_n${\small\verb%=%}
$t'_n${\small\verb%, %}$x_n${\small\verb%)] %}$t[x_1,\ldots,x_n]${\small\verb% %}
$\Gamma${\small\verb% |- %}$t[t_1,\ldots,t_n]$
\bigskip
\noindent returns $\Gamma${\small\verb% |- %}$t[t'_1,\ldots,t'_n]$.
Failure if:
\begin{myenumerate}
\item any of the arguments are of the wrong form;
\item the type of $x_i$ is not equal to the type of $t_i$ for some
$1\leq i\leq n$.
\end{myenumerate}\index{SUBST@\ml{SUBST}|)}\index{substitution rule, in HOL logic@substitution rule, in \HOL\ logic!ML function for@\ML\ function for|)}
\subsubsection{Abstraction}\index{abstraction rule, in HOL logic@abstraction rule, in \HOL\ logic!ML function for@\ML\ function for}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!inference rules for}
\begin{boxed}\index{ABS@\ml{ABS}|pin}
\begin{verbatim}
ABS : term -> thm -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
$\Gamma${\small\verb% |- %}$t_1${\small\verb% = %}$t_2$ \\ \hline
$\Gamma${\small\verb% |- (\%}$x${\small\verb%.%}$t_1${\small\verb%) = (\%}$x${\small\verb%.%}$t_2${\small\verb%)%} \\
\end{tabular}
\end{center}
\begin{itemize}
\item where $x$ is not free in $\Gamma$.
\end{itemize}
\noindent
{\small\verb%ABS %}$x${\small\verb% %}$\Gamma${\small\verb% |- %}$t_1${\small\verb%=%}$t_2$ returns the theorem
$\Gamma${\small\verb% |- (\%}$x${\small\verb%.%}$t_1${\small\verb%) = (\%}$x${\small\verb%.%}$t_2${\small\verb%)%}.
Failure if $x$ is not a variable, or $x$
occurs free in any assumption in $\Gamma$.
\bigskip
\subsubsection{Type instantiation}\index{type instantiation, in HOL logic@type instantiation, in \HOL\ logic!ML function for@\ML\ function for}\index{types, in HOL logic@types, in \HOL\ logic!instantiation of}
\begin{boxed}\index{INST_TYPE@\ml{INST\_TYPE}|pin}
\begin{verbatim}
INST_TYPE : (type#type) list -> thm -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
$\Gamma${\small\verb% |- %}$t$ \\ \hline
$\Gamma${\small\verb% |- %}$t[\sigma_1,\ \ldots\ ,\sigma_n/\alpha_1,\ \ldots\ ,\alpha_n]$
\end{tabular}
\end{center}
\bigskip
\begin{itemize}
\item $t[\sigma_1,\ \ldots\ ,\sigma_n/\alpha_1,\ \ldots\ ,\alpha_n]$
denotes the result of substituting (in parallel) the types $\sigma_1$,
$\ldots$\ , $\sigma_n$ for the type variables $\alpha_1$, $\ldots$\ ,
$\alpha_n$ in $t$, with the restriction that none of $\alpha_1$, $\ldots$\
, $\alpha_n$ occur in $\Gamma$.
\end{itemize}
\noindent
{\small\verb%INST_TYPE[(%}$\sigma_1${\small\verb%,%}$\alpha_1${\small\verb%);%}$\ldots${\small\verb%;(%}$\sigma_n${\small\verb%,%}$\alpha_n${\small\verb%)] %}$th$
returns the result of instantiating each occurrence of $\alpha_i$ in the
theorem $th$ to $\sigma_i$ (for $1 \leq i \leq n$). Failure if:
\begin{myenumerate}
\item arguments of the wrong form (\eg\ an $\alpha_i$ is not a type variable);
\item $\alpha_i$
(for $1\leq i\leq n$) occurs in any assumption in $\Gamma$.
\end{myenumerate}
\bigskip
\subsubsection{Discharging an assumption}\index{discharging assumptions, in HOL logic@discharging assumptions, in \HOL\ logic!ML function for@\ML\ function for}
\begin{boxed}\index{DISCH@\ml{DISCH}|pin}
\begin{verbatim}
DISCH : term -> thm -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
$\Gamma${\small\verb% |- %} $t_2$ \\ \hline
$\Gamma{-}\{t_1\}${\small\verb% |- %} $t_1${\small\verb% ==> %}$t_2$
\end{tabular}
\end{center}
\begin{itemize}
\item $\Gamma{-}\{t_1\}$ denotes the set obtained by removing $t_1$
from $\Gamma$ (note that $t_1$ need not occur in $\Gamma$; in this case
$\Gamma{-}\{t_1\} = \Gamma$).
\end{itemize}
\noindent
{\small\verb%DISCH %}$t_1${\small\verb% %}$\Gamma${\small\verb% |- %}$t_2$
evaluates to the theorem
$\Gamma{-}\{t_1\}${\small\verb% |- %}$t_1${\small\verb% ==> %}$t_2$.
\ml{DISCH} fails if the term given as its first argument is not of
type \ml{bool}.
\bigskip
\subsubsection{Modus Ponens}\index{Modus Ponens, in HOL logic@Modus Ponens, in \HOL\ logic!ML function for@\ML\ function for}
\begin{boxed}\index{MP@\ml{MP}|pin}
\begin{verbatim}
MP : thm -> thm -> thm
\end{verbatim}\end{boxed}
\begin{center}
\begin{tabular}{c}
$\Gamma_1${\small\verb% |- %}$t_1${\small\verb% ==> %}$t_2$ {\small\verb% %} $\Gamma_2${\small\verb% |- %}$t_1$ \\
\hline
$\Gamma_1 \cup \Gamma_2${\small\verb% |- %}$t_2$ \\
\end{tabular}
\end{center}
\noindent
{\small\verb%MP%} takes two theorems (in the order shown above) and returns
the result of applying Modus Ponens; it fails if the arguments are not of the
right form.
\index{inference rules, of HOL logic@inference rules, of \HOL\ logic!primitive|)}
\subsection{Type abbreviations}\label{typeabbrev}\index{types, in HOL logic@types, in \HOL\ logic!abbreviation of}\index{type abbreviations!in HOL logic@in \HOL\ logic}\index{abbreviation of types, in HOL logic@abbreviation of types, in \HOL\ logic|(}
It is possible to introduce an abbreviation for a monomorphic type using the
function:
\begin{boxed}\index{new_type_abbrev@\ml{new\_type\_abbrev}|pin}
\begin{verbatim}
new_type_abbrev : (string # type) -> void
\end{verbatim}\end{boxed}
\noindent Evaluating \ml{new\_type\_abbrev(`}$name$\ml{`,":}$\sigma$\ml{")}
enables $name$ to be used in quotations instead of $\sigma$. The evaluation
fails
if $\sigma$ is polymorphic. Type abbreviations
are recorded in theory files, so that
when a theory is loaded, any type abbreviations made are
activated. The list of currently active abbreviations in a theory
is given by the function:
\begin{boxed}\index{type_abbrevs@\ml{type\_abbrevs}|pin}
\begin{verbatim}
type_abbrevs : string -> (string # type) list
\end{verbatim}\end{boxed}
Note that abbreviation can also be made using antiquotation\index{antiquotation, in HOL logic terms@antiquotation, in \HOL\ logic terms}, without the
restriction to monomorphic types. Such \ML\ abbreviations are not, of course,
stored in theory files and so do not persist beyond a single session.
The following session illustrates various ways of
abbreviating types:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#new_theory `numpair`;;
() : void
#new_type_abbrev(`numpair`, ":num#num");;
() : void
#let t1 = "x:numpair";;
t1 = "x" : term
#type_of t1;;
":num # num" : type
#":numpair" = ":num#num";;
true : bool
\end{verbatim}\end{session}
\noindent The alternative to introducing a type abbreviation is
to give an \ML\ name to the type, and then to use this name via antiquotation.
Continuing the session:\index{abbreviation of types, in HOL logic@abbreviation of types, in \HOL\ logic|)}
\begin{session}\begin{verbatim}
#let ty = ":num#num";;
ty = ":num # num" : type
#let t2 = "x:^ty";;
t2 = "x" : term
#t1 = t2;;
true : bool
\end{verbatim}\end{session}
\pagebreak[2]
\noindent The type abbreviation is stored in the theory file and so
persists across sessions. This can be seen by the result of printing
the theory \ml{numpair}:
\begin{session}\begin{verbatim}
#print_theory`numpair`;;
The Theory numpair
Parents -- HOL
Type Abbreviations -- numpair ":num # num"
******************** numpair ********************
() : void
\end{verbatim}\end{session}
\noindent If the session is then ended:
\begin{session}\begin{verbatim}
#close_theory();;
() : void
#quit();;
\end{verbatim}\end{session}
\noindent and a new session is started in which the theory \ml{numpair} is
loaded:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#load_theory`numpair`;;
Theory numpair loaded
() : void
#"x:numpair";;
"x" : term
#type_abbrevs `-`;;
[(`numpair`, ":num # num")] : (string # type) list
\end{verbatim}\end{session}
\noindent then the type abbreviation persists.
Type abbreviations tend to be little used in practice; the antiquotation
method is usually sufficient.
\section{The ancestry of the theory {\tt HOL}}
\label{HOL-ancestry}
\index{theories, in HOL logic@theories, in \HOL\ logic!hierarchies of}
The ancestry\index{ancestry, of HOL system theories@ancestry, of \HOL\ system theories}
of the theory \ml{HOL}\index{HOL@\ml{HOL}} is:
\begin{center}\index{BASIC-HOL@\ml{BASIC-HOL}}\index{bool, the HOL theory@\ml{bool}, the \HOL\ theory}\index{ind, the theory@\ml{ind}, the theory}
\begin{picture}(65,115)
\thicklines
% -----------------------------------------------------------
% Lines in theory hierarchy graph
% -----------------------------------------------------------
\put(40,5){\line(-4,1){20}} % HOL --> tydefs
\put(40,5){\line(0,1){5}} % HOL --> sum
\put(40,5){\line(4,1){20}} % HOL --> one
\put(20,15){\line(0,1){5}} % tydefs --> ltree
\put(40,15){\line(-2,3){10}} % sum --> combin
\put(20,25){\line(-2,1){10}} % ltree --> tree
\put(20,25){\line(2,1){10}} % ltree --> combin
\put(10,35){\line(0,1){5}} % tree --> list
\put(10,45){\line(0,1){5}} % list --> arithmetic
\put(10,55){\line(0,1){5}} % arithmetics --> prim_rec
\put(10,65){\line(0,1){5}} % prim_rec --> num
\put(10,75){\line(4,1){20}} % num --> BASIC-HOL
\put(30,85){\line(0,1){5}} % BASIC-HOL --> ind
\put(30,95){\line(0,1){5}} % ind --> bool
\put(30,105){\line(0,1){5}} % bool --> PPLAMB
\put(30,35){\line(0,1){45}} % combin --> BASIC-HOL
\put(60,20){\line(-1,2){30}} % one --> BASIC-HOL
\put(60,15){\line(0,1){5}} % one --> BASIC-HOL
% -----------------------------------------------------------
% Theory names:
% -----------------------------------------------------------
\put(40,2.5){\makebox(0,0){\verb!HOL!}}
\put(20,12.5){\makebox(0,0){\verb!tydefs!}}
\put(40,12.5){\makebox(0,0){\verb!sum!}}
\put(60,12.5){\makebox(0,0){\verb!one!}}
\put(20,22.5){\makebox(0,0){\verb!ltree!}}
\put(30,32.5){\makebox(0,0){\verb!combin!}}
\put(10,32.5){\makebox(0,0){\verb!tree!}}
\put(10,42.5){\makebox(0,0){\verb!list!}}
\put(10,52.5){\makebox(0,0){\verb!arithmetic!}}
\put(10,62.5){\makebox(0,0){\verb!prim\_rec!}}
\put(10,72.5){\makebox(0,0){\verb!num!}}
\put(30,82.5){\makebox(0,0){\verb!BASIC-HOL!}}
\put(30,92.5){\makebox(0,0){\verb!ind!}}
\put(30,102.5){\makebox(0,0){\verb!bool!}}
\put(30,112.5){\makebox(0,0){\verb!PPLAMB!}}
\end{picture}
\end{center}
\noindent In the rest of this section, each of the theories in the ancestry of
\ml{HOL} is briefly described. A complete list of all the definitions and
theorems in each theory is not given here; the sections that follow provide
only an overview of the contents of each theory. For a complete list of
all the built-in axioms, definitions and theorems in \HOL, see \REFERENCE.
\subsection{The theory {\tt PPLAMB}}
The most primitive theory is called \ml{PPLAMB}\index{PPLAMB@\ml{PPLAMB}} and is a stripped down
version of the theory underlying \LCF.\index{LCF@\LCF} The \HOL\ theory \ml{PPLAMB}
does not represent any logical principles but is an interface between the \HOL\
and \LCF\ systems (it contains the declaration of the primitive
type operator \ml{->}).\index{ function type operator, in HOL logic@\ml{->} (function type operator, in \HOL\ logic)}
For a while the two systems developed in parallel, upgrades in \LCF\ from
Gerard Huet\index{Huet, G.} of {\small INRIA} or Larry Paulson\index{Paulson, L.} of Cambridge resulting in
upgrades in \HOL.
\subsection{The theory {\tt bool}}\label{boolfull}
The theory \ml{bool}\index{bool, the HOL theory@\ml{bool}, the \HOL\ theory|(} has already been partly described in
Section~\ref{boolthy}.
It contains the definitions of several sorts of constants:
\begin{myenumerate}
\item logical constants:\index{primitive constants, of HOL logic@primitive constants, of \HOL\ logic}\index{truth values, in HOL logic@truth values, in \HOL\ logic}\index{logical constants, in HOL logic@logical constants, in \HOL\ logic}\index{ implication, in HOL logic@{\small\verb+==>+} (implication, in \HOL\ logic)}\index{conjunction, in HOL logic@conjunction, in \HOL\ logic}\index{disjunction, in HOL logic@disjunction, in \HOL\ logic}%
\index{constants, in HOL logic@constants, in \HOL\ logic!logical}\index{ universal quantifier, in HOL logic@{\small\verb+"!+} (universal quantifier, in \HOL\ logic)}%
\index{ existential quantifier, in HOL logic@{\small\verb+?+} (existential quantifier, in \HOL\ logic)}%
\index{ conjunction, in HOL logic@{\small\verb+/\+} (conjunction, in \HOL\ logic)}%
\index{ disjunction, in HOL logic@{\small\verb+\/+} (disjunction, in \HOL\ logic)}%
\index{F@\ml{F}}\index{T@\ml{T}}%
\index{existential quantifier, in HOL logic@existential quantifier, in \HOL\ logic}%
\index{universal quantifier, in HOL logic@universal quantifier, in \HOL\ logic}
\index{ negation, in HOL logic@{\small\verb+~+} (negation, in \HOL\ logic)}
\index{ exists unique, in HOL logic@{\small\verb+?"!+} (exists unique, in \HOL\ logic)}%
\index{ choice function, in HOL logic@{\small\verb+"@+} (choice function, in \HOL\ logic)}%
\index{choice operator, in HOL logic@choice operator, in \HOL\ logic}%
\index{equality, in HOL logic@equality, in \HOL\ logic}%
\index{iff, in HOL logic@iff, in \HOL\ logic}%
\index{implication, in HOL logic@implication, in \HOL\ logic}%
\index{one-to-one predicate, in HOL logic@one-to-one predicate, in \HOL\ logic!in bool theory@in \ml{bool} theory}%
\index{onto predicate, in HOL logic@onto predicate, in \HOL\ logic!in bool theory@in \ml{bool} theory} \ml{T}, \ml{F}, {\small\verb!~!},
{\small\verb%/\%}, {\small\verb%\/%}, \ml{==>},
\ml{=}, \ml{!}, \ml{?}, \ml{?!} and \ml{@}.
\item system constants\index{constants, in HOL logic@constants, in \HOL\ logic!system}, which are used in coding \HOL\ theories as
\LCF\index{LCF@\LCF}\ theories. These constants are \ml{HOL\_DEFINITION}\index{HOL_DEFINITION@\ml{HOL\_DEFINITION}} and
\ml{BINDERS}\index{BINDERS@\ml{BINDERS}}. They have no logical significance
and are part of the internal workings of the \HOL\ system.
\item miscellaneous constants\index{constants, in HOL logic@constants, in \HOL\ logic!abbreviational}%
\index{COND@\ml{COND}}%
\index{FCOND@\ml{FCOND}}%
\index{LET@\ml{LET}}%
\index{CURRY@\ml{CURRY}}%
\index{UNCURRY@\ml{UNCURRY}}%
\index{RES_FORALL@\ml{RES\_FORALL}}%
\index{RES_EXISTS@\ml{RES\_EXISTS}}%
\index{RES_SELECT@\ml{RES\_SELECT}}%
\index{RES_ABSTRACT@\ml{RES\_ABSTRACT}}%
\index{ARB@\ml{ARB}}, which support various special syntactic forms:
\ml{COND} (for conditionals, see Section~\ref{conditionals});
\ml{LET} (for \ml{let}-terms\index{let-terms, in HOL logic@\ml{let}-terms, in \HOL\ logic!constant for}, see Section~\ref{let-exp});
\ml{CURRY} and \ml{UNCURRY} (for paired abstractions,
see Section~\ref{HOL-varstruct}); and
\ml{RES\_FORALL},
\ml{RES\_EXISTS},
\ml{RES\_SELECT},
\ml{RES\_ABSTRACT}
and \ml{ARB} (for restricted quantification,
see Section~\ref{res-quant}).
\item the constant \ml{TYPE\_DEFINITION}\index{TYPE_DEFINITION@\ml{TYPE\_DEFINITION}}, which is used by the type definition mechanism\index{constants, in HOL logic@constants, in \HOL\ logic!for type definitions} (see Section~\ref{type-defs}).
\item constants associated with pairs:\index{constants, in HOL logic@constants, in \HOL\ logic!for pairs}
\index{MK_PAIR@\ml{MK\_PAIR}}
\index{IS_PAIR@\ml{IS\_PAIR}}
\ml{,} (\ie\ the comma symbol),
\ml{MK\_PAIR}, \ml{IS\_PAIR}, \ml{REP\_prod}, \ml{FST} and \ml{SND}
(see Section~\ref{prod} below).
\end{myenumerate}
\subsubsection{Pairs and the type {\tt prod}}
\label{prod}
\index{representing types, in HOL logic@representing types, in \HOL\ logic!pair example of|(}
\index{pairs, in HOL logic@pairs, in \HOL\ logic|(}
\index{product types!in HOL logic@in \HOL\ logic|(}
The Cartesian product type operator\index{type operators, in HOL logic@type operators, in \HOL\ logic!for pairs} \ml{prod}\index{prod@\ml{prod}} is defined in the theory \ml{bool}, although logically it should really be in a separate theory. The
reason for its definition early on is that certain syntactic forms (\eg\
paired abstractions) presuppose pairs.
Values of type
{\small\verb%(%}$\sigma_1${\small\verb%,%}$\sigma_2${\small\verb%)prod%} are
ordered pairs whose first component has type $\sigma_1$ and whose second
component has type $\sigma_2$. The \HOL\ parser\index{parsing, of HOL logic@parsing, of \HOL\ logic!of pairs}
converts
type expressions of the
form \ml{":}$\sigma_1${\small\verb%#%}$\sigma_2$\ml{"}\index{ product type operator, in HOL logic@{\small\verb+#+} (product
type operator, in \HOL\ logic)} into
\ml{(}$\sigma_1$\ml{,}$\sigma_2$\ml{)prod}\index{ pair constructor, in HOL
logic@\ml{,} (pair constructor, in \HOL\ logic)}, and the printer
inverts this transformation. Pairs\index{pairing constructor, in HOL
logic@pairing constructor, in \HOL\ logic} are constructed with an infixed
comma symbol
\begin{hol}\begin{verbatim}
$, : * -> ** -> *#**
\end{verbatim}\end{hol}
\noindent so, for example, if $t_1$ and $t_2$ have types $\sigma_1$ and
$\sigma_2$
respectively, then \ml{"}$t_1$\ml{,}$t_2$\ml{"} is a term with type
$\sigma_1${\small\verb%#%}$\sigma_2$. It is usual, but not necessary, to write
pairs within brackets:
\ml{"(}$t_1$\ml{,}$t_2$\ml{)"}. The comma symbol associates\index{pairing constructor, in HOL logic@pairing constructor, in \HOL\ logic!associativity of} to the right, so
that
\ml{"(}$t_1$\ml{,}$t_2$\ml{,}$\ldots$\ml{,}$t_n$\ml{)"}
means
\ml{"(}$t_1$\ml{,(}$t_2$\ml{,}$\ldots$\ml{,}$t_n$\ml{))"}.
The constants
\begin{hol}
\index{FST, the constant in HOL logic@\ml{FST}, the constant in \HOL\ logic}
\index{SND, the constant in HOL logic@\ml{SND}, the constant in \HOL\ logic}
\begin{verbatim}
FST : * # ** -> *
SND : * # ** -> **
\end{verbatim}\end{hol}
\noindent select the first and second components of pairs.
Cartesian products are defined by representing a pair
{\small\verb%(%}$t_1${\small\verb%,%}$t_2${\small\verb%)%} by the function
\begin{hol}\begin{alltt}
\verb!\!a b. (a=\m{t\sb{1}}) /\verb!\! (b=\m{t\sb{2}})
\end{alltt}\end{hol}
\noindent The
representing type of $\sigma_1${\small\verb%#%}$\sigma_2$ is thus
$\sigma_1${\small\verb%->%}$\sigma_2${\small\verb%->bool%}. To define
pairs this way, the constants \ml{MK\_PAIR} and
\ml{IS\_PAIR}\index{IS_PAIR@\ml{IS\_PAIR}} are first defined.
\begin{hol}
\index{MK_PAIR_DEF@\ml{MK\_PAIR\_DEF}}
\index{IS_PAIR_DEF@\ml{IS\_PAIR\_DEF}}
\begin{verbatim}
MK_PAIR_DEF |- !x y. MK_PAIR x y = (\a b. (a = x) /\ (b = y))
IS_PAIR_DEF |- !p. IS_PAIR p = (?x y. p = MK_PAIR x y)
\end{verbatim}\end{hol}
\noindent From these two definitions it is easy to prove that:
\begin{hol}\begin{verbatim}
|- ?p:*->**->bool. IS_PAIR p
\end{verbatim}\end{hol}
\noindent since {\small\verb%|- IS_PAIR(MK_PAIR x y)%} follows easily from the
definition of \ml{IS\_PAIR}. The existence theorem shown above is called
{\small\verb%PAIR_EXISTS%}\index{PAIR_EXISTS@\ml{PAIR\_EXISTS}}.
Given this theorem, the type operator
{\small\verb%prod%} is defined by evaluating:
\begin{hol}\begin{verbatim}
new_type_definition(`prod`, "IS_PAIR:(*->**->bool)->bool", PAIR_EXISTS)
\end{verbatim}\end{hol}
\noindent which results in the definitional axiom\index{axioms!non-primitive, of HOL logic@non-primitive, of \HOL\ logic}\index{axioms!in bool theory@in \ml{bool} theory} \ml{prod\_TY\_DEF} shown
below being asserted in the theory \ml{bool}.
\begin{hol}\begin{verbatim}
prod_TY_DEF |- ?rep. TYPE_DEFINITION IS_PAIR rep
\end{verbatim}\end{hol}
Next, a new constant {\small\verb%REP_prod%} is defined, which
maps a pair to its representation as a function:
\begin{hol}
\index{REP_prod@\ml{REP\_prod}}
\begin{verbatim}
REP_prod |- REP_prod =
(@rep : * # ** -> (* -> (** -> bool)).
(!p' p''. (rep p' = rep p'') ==> (p' = p'')) /\
(!p. IS_PAIR p = (?p'. p = rep p')))
\end{verbatim}\end{hol}
The infix constructor `{\small\verb%,%}'
and the selectors
{\small\verb%FST:*#**->*%} and {\small\verb%SND:*#**->**%} are then
defined by the equations shown below.
\begin{hol}\index{COMMA_DEF@\ml{COMMA\_DEF}}
\index{FST_DEF@\ml{FST\_DEF}}
\index{SND_DEF@\ml{SND\_DEF}}
\index{pairing constructor, in HOL logic@pairing constructor, in \HOL\ logic!definition of}
\index{FST, the constant in HOL logic@\ml{FST}, the constant in \HOL\ logic!definition of}
\index{selectors, in HOL logic@selectors, in \HOL\ logic}
\begin{verbatim}
COMMA_DEF |- !x y. x,y = (@p. REP_prod p = MK_PAIR x y)
FST_DEF |- !p. FST p = (@x. ?y. MK_PAIR x y = REP_prod p)
SND_DEF |- !p. SND p = (@y. ?x. MK_PAIR x y = REP_prod p)
\end{verbatim}\end{hol}
The following standard theorems about pairs follow easily from these
definitions and the axiom \ml{prod\_TY\_DEF}. Although these theorems could
be derived by formal proof, they are (for implementation reasons) asserted as
axioms in the theory \ml{bool} .
\begin{hol}
\index{PAIR@\ml{PAIR}}
\index{FST, the axiom in HOL logic@\ml{FST}, the axiom in \HOL\ logic}
\index{SND, the axiom in HOL logic@\ml{SND}, the axiom in \HOL\ logic}
\index{PAIR_EQ@\ml{PAIR\_EQ}}
\begin{verbatim}
PAIR |- !x. (FST x,SND x) = x
FST |- !x y. FST(x,y) = x
SND |- !x y. SND(x,y) = y
PAIR_EQ |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b)
\end{verbatim}\end{hol}
\index{pairs, in HOL logic@pairs, in \HOL\ logic|)}
\index{product types!in HOL logic@in \HOL\ logic|)}
\index{representing types, in HOL logic@representing types, in \HOL\ logic!pair example of|)}
\index{bool, the HOL theory@\ml{bool}, the \HOL\ theory|)}
\subsection{The theory {\tt BASIC-HOL}}
The theory \ml{BASIC-HOL}\index{BASIC-HOL@\ml{BASIC-HOL}} roughly corresponds to the theory
\theory{INIT}\index{initial theory, of HOL logic@initial theory, of \HOL\ logic}\index{INIT@\ml{INIT}!as BASIC_HOL@as \ml{BASIC\_HOL}} described in Section~\ref{INIT}. It consists of the data
in the theories \ml{bool} and \ml{ind}, together with one pre-proved theorem
called \ml{ABS\_REP\_THM}\index{ABS_REP_THM@\ml{ABS\_REP\_THM}}, which establishes various standard properties
of isomorphisms\index{isomorphism of types, in HOL logic@isomorphism of types, in \HOL\ logic} and is used for deriving consequences of type definitions (see
Section~\ref{type-defs}).
The descendents of \ml{BASIC-HOL} are obtained by definitional extension.
There are, however, a few impurities in these extensions, with the result that
not all of them could be built purely by using the definitional mechanisms of
\HOL. The theory \ml{num}, for example, contains an infinite family of
constants \ml{0}, \ml{1}, \ml{2} \etc, but there is currently no
mechanism that allows users to define such infinite families.
\subsection{The theory {\tt num}}
The theory \ml{num}\index{num, the theory in HOL logic@\ml{num}, the theory in \HOL\ logic}
defines the type \ml{num} of natural numbers to be
isomorphic to a countable subset of the primitive type \ml{ind}. In this
theory, the constants \ml{0}\index{ zero, in HOL logic@\ml{0} ( zero, in \HOL\ logic)}
and \ml{SUC} (the successor function) are defined
and Peano's axioms\index{axioms!in num theory@in \ml{num} theory}\index{Peano's axioms}\index{axioms!non-primitive, of HOL logic@non-primitive, of \HOL\ logic} pre-proved in the form:
\begin{hol}
\index{NOT_SUC@\ml{NOT\_SUC}}
\index{INV_SUC@\ml{INV\_SUC}}
\index{INDUCTION@\ml{INDUCTION}}
\begin{verbatim}
NOT_SUC |- !n. ~(SUC n = 0)
INV_SUC |- !m n. (SUC m = SUC n) ==> (m = n)
INDUCTION |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n)
\end{verbatim}\end{hol}
In higher order logic, Peano's axioms are sufficient for developing number
theory because addition and multiplication can be defined. In first order
logic these must be taken as primitive. Note also that
{\small\verb%INDUCTION%}\index{induction rule!for numbers, in HOL logic@for numbers, in \HOL\ logic} could not be stated as a single axiom in
first order logic because predicates (\eg\ {\small\verb%P%}) cannot be
quantified.
Uses of the theorem \ml{INDUCTION} are supported by the built-in derived
inference rule \ml{INDUCT}\index{INDUCT@\ml{INDUCT}}
and the built-in
tactic \ml{INDUCT\_TAC}\index{INDUCT_TAC@\ml{INDUCT\_TAC}}
(see the documentation on these functions in \REFERENCE\ for details).
\subsubsection{Numerals}
Associated with the theory \ml{num} are the numerals of type
\ml{:num}\index{num, the type in HOL logic@\ml{num}, the type in \HOL\ logic},
an infinite family of constants: \ml{1}, \ml{2}, \ml{3}, etc. These can
be regarded logically as an infinite collection of defined
constants, introduced by the infinite series of definitional axioms:
\begin{hol}\begin{alltt}
|- 1 = SUC 0{\rm , } |- 2 = SUC 1{\rm , } |- 3 = SUC 2{\rm ,\normalsize etc.}
\end{alltt}\end{hol}
\noindent This infinite list of theorems cannot, of course, actually be
stored in the theory \ml{num}. \HOL\ therefore provides the \ML\ function:
\begin{boxed}
\index{num_CONV@\ml{num\_CONV}|pin}
\begin{verbatim}
num_CONV : term -> thm
\end{verbatim}\end{boxed}
\noindent which can be used to generate the defining equation for any
constant number of type \ml{num}. For example:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#let thm1 = num_CONV "1";;
thm1 = |- 1 = SUC 0
#let thm2 = num_CONV "2";;
thm2 = |- 2 = SUC 1
#let thm3 = num_CONV "3141592653";;
thm3 = |- 3141592653 = SUC 3141592652
\end{verbatim}\end{session}
\noindent The defining equation for any numeral of type \ml{num} can likewise
be obtained using \ml{num\_CONV}.
\subsection{The theory {\tt prim\_rec}}
\label{prim_rec}
\index{primitive recursive definitions, in HOL logic@primitive recursive definitions, in \HOL\ logic!automated|(}
\index{primitive recursion theorem!for numbers|(}
\index{prim_rec@\ml{prim\_rec}|(}
In classical logic, unlike domain theory logics such as \PPL\index{PPlambda (same as PPLAMBDA), of LCF system@\ml{PP}$\lambda$ (same as \ml{PPLAMBDA}), of \ml{LCF} system},
arbitrary recursive definitions\index{recursive definitions, in classical logics} are not allowed. For example, there is no
function $f$ (of type \ml{num->num}) such that
\begin{hol}
{\small\verb% !%}$x${\small\verb%. %}$f$ $x${\small\verb% = (%}$f$ $x${\small\verb%) + 1%}
\end{hol}
\noindent Certain restricted forms of recursive\index{primitive recursive
functions}
definition do, however, uniquely
define functions. An important example are the {\it primitive recursive\/}
functions.\footnote{In higher order logic, primitive recursion
is much more powerful than in first order logic;
for example, Ackermann's function can be defined
by primitive recursion in higher order logic.} For
any $x$ and $f$ the {\it primitive
recursion theorem\/} tells us that there is a unique function
{\small\verb%fn%} such that:
\begin{hol}
{\small\verb% %}\ml{fn}{\small\verb% 0 = %}$x${\small\verb%) /\ (!%}$n${\small\verb%.%}\ml{fn}{\small\verb%(%}\ml{SUC} $n${\small\verb%) = %}$f${\small\verb% (%}\ml{fn} $n${\small\verb%)%} $n${\small\verb%)%}
\end{hol}
The primitive recursion
theorem follows from Peano's\index{Peano's axioms}
axioms. When the \HOL\
system is built, the following theorem is proved and stored in the theory
{\small\verb%prim_rec%}:
\begin{hol}\index{num_Axiom@\ml{num\_Axiom}}
\index{characterizing theorem!for numbers}
\begin{verbatim}
num_Axiom |- !x f. ?!fn. (fn 0 = x) /\ (!n. fn(SUC n) = f (fn n) n)
\end{verbatim}\end{hol}
\noindent The theorem states the validity of primitive recursive
definitions on the natural numbers: for any \ml{x} and \ml{f} there exists a
corresponding total function \ml{fn} which satisfies
the primitive recursive definition whose form is determined by \ml{x} and
\ml{f}.
\subsubsection{Primitive recursive definitions}\label{num-prim-rec}
\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!primitive recursive|(}
\index{recursive definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated, for numbers|(}
\index{primitive recursion theorem!automated use of, in HOL system@automated use of, in \HOL\ system|(}
The primitive\index{primitive recursive definitions, in HOL logic@primitive recursive definitions, in \HOL\ logic!justification of} recursion theorem
can be used to justify any definition of a
function on the natural numbers by primitive recursion. For example, a
primitive recursive definition in higher order
logic of the form
\begin{hol}\begin{alltt}
fun 0 x\(\sb{1}\) \m{\dots} x\(\sb{i}\) = \m{f\sb{1}[}x\(\sb{1}\)\m{,\ldots,\,} x\(\sb{i}]\)
fun (SUC n) x\(\sb{1}\) \m{\dots} x\(\sb{i}\) = \m{f\sb{2}[}fun n \m{t\sb{1} \dots t\sb{i},} n\m{,} x\(\sb{1}\)\m{,\ldots,\,}x\(\sb{i}]\)
\end{alltt}\end{hol}
\noindent where all the free variables in the terms $t_1$,
\dots, $t_i$ are contained in $\{$\ml{n}, $\ml{x}_1$, \dots, $\ml{x}_i\}$,
is logically equivalent to:
\begin{hol}\begin{alltt}
fun 0 = \verb!\!x\(\sb{1}\) \m{\dots} x\(\sb{i}\).\m{f\sb{1}[}x\(\sb{1}\)\m{,\ldots,\,}x\(\sb{i}]\)
fun (SUC n) = \verb!\!x\(\sb{1}\) \m{\dots} x\(\sb{i}\).\m{f\sb{2}[}fun n \m{t\sb{1} \dots t\sb{i},} n\m{,}x\(\sb{1}\)\m{,\ldots,\,}x\(\sb{i}]\)
= (\verb!\!f n x\(\sb{1}\) \m{\dots} x\(\sb{i}\).\m{f\sb{2}[}f \m{t\sb{1} \dots t\sb{i},} n\m{,} x\(\sb{1}\)\m{,\ldots,\,}x\(\sb{i}]\)) (fun n) n
\end{alltt}\end{hol}
The existence of a recursive function \ml{fun} which satisfies these two
equations follows directly from the primitive recursion theorem
\ml{num\_Axiom} shown above. Specializing the quantified variables \verb!x!
and \verb!f! in a suitably type-instantiated version of \ml{num\_Axiom} so
that
\begin{hol}\begin{alltt}
x\m{=}\verb!\!x\(\sb{1}\) \(\dots\) x\(\sb{i}\).\m{f\sb{1}[}x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\) {\rm and} f\(=\)\verb!\!f n x\(\sb{1}\) \(\dots\) x\(\sb{i}\).\m{f\sb{2}[}f \m{t\sb{1} \dots t\sb{i},} n\(,\) x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\))
\end{alltt}\end{hol}
\noindent yields (ignoring the uniqueness of \ml{fn})
the existence theorem shown below:
\begin{hol}\begin{alltt}
|- ?fn. fn 0 = \verb!\!x\(\sb{1}\) \(\dots\) x\(\sb{i}\).\m{f\sb{1}[}x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\) /\verb!\!
fn (SUC n) = (\verb!\!f n x\(\sb{1}\) \(\dots\) x\(\sb{i}\).\m{f\sb{2}[}f \m{t\sb{1} \dots t\sb{i},} n\(,\) x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\)) (fn n) n
\end{alltt}\end{hol}
\noindent This theorem allows a constant \ml{fun} to be introduced (via the
definitional mechanism of constant specifications---see Section~\ref{conspec})
to denote the recursive function that satisfies the two equations in the body
of the theorem. Introducing a constant \ml{fun} to name the function asserted
to exist by the theorem shown above, and simplifying using $\beta$-reduction,
yields the following theorem:
\begin{hol}\begin{alltt}
|- fun 0 = \verb!\!x\(\sb{1}\) \(\dots\) x\(\sb{i}\).\m{f\sb{1}[}x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\) /\verb!\!
fun (SUC n) = \verb!\!x\(\sb{1}\) \(\dots\) x\(\sb{i}\).\m{f\sb{2}[}fun n \m{t\sb{1} \dots t\sb{i},} n\(,\) x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\)
\end{alltt}\end{hol}
\noindent It follows immediately from this theorem that the constant \ml{fun}
satisfies the primitive recursive defining equations given by the theorem shown
below:
\begin{hol}\begin{alltt}
|- fun 0 x\(\sb{1}\) \(\dots\) x\(\sb{i}\) = \m{f\sb{1}[}x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\)
fun (SUC n) x\(\sb{1}\) \(\dots\) x\(\sb{i}\) = \m{f\sb{2}[}fun n \m{t\sb{1} \dots t\sb{i},} n\(,\) x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\)
\end{alltt}\end{hol}
To automate the use of the primitive recursion theorem in deriving recursive
definitions of this kind, the \HOL\ system provides two functions which,
together, first do automatic proofs of the existence of primitive recursive
functions and then make constant specifications to introduce constants that
denote such functions:
\begin{boxed}
\index{new_prim_rec_definition@\ml{new\_prim\_rec\_definition}|pin}
\index{new_infix_prim_rec_definition@\ml{new\_infix\_prim\_rec\_definition}|pin}
\begin{verbatim}
new_prim_rec_definition : (string # term) -> thm
new_infix_prim_rec_definition : (string # term) -> thm
\end{verbatim}\end{boxed}
\noindent Evaluating
\begin{hol}\begin{alltt}
new_prim_rec_definition
(`fun_DEF`,
"(fun 0 x\(\sb{1}\) \(\dots\) x\(\sb{i}\) = \m{f\sb{1}[}x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\) /\verb!\!
(fun (SUC n) x\(\sb{1}\) \(\dots\) x\(\sb{i}\) = \m{f\sb{2}[}fun n \m{t\sb{1} \dots t\sb{i},} n\(,\) x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\))");;
\end{alltt}\end{hol}
\noindent automatically proves the theorem:
\begin{hol}\begin{alltt}
|- ?fun. !x\(\sb{1}\) \(\dots\) x\(\sb{i}\). fun 0 x\(\sb{1}\) \(\dots\) x\(\sb{i}\) = \m{f\sb{1}[}x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\) /\verb!\!
!x\(\sb{1}\) \(\dots\) x\(\sb{i}\). fun (SUC n) x\(\sb{1}\) \(\dots\) x\(\sb{i}\) = \m{f\sb{2}[}fun n \m{t\sb{1} \dots t\sb{i},} n\(,\) x\(\sb{1}\)\(,\ldots,\,\)x\(\sb{i}]\)
\end{alltt}\end{hol}
\noindent and then declares a new constant \ml{fun} with this property as its
specification. This constant specification is returned as a theorem by
\ml{new\_prim\_rec\_definition} and is saved with name \ml{fun\_DEF}\index{DEF@$\ldots$\ml{\_DEF}}
in the current theory segment. Failure occurs if:
\begin{myenumerate}
\item \HOL\ cannot prove there is a function satisfying the specification
(\ie\ if the term supplied to \ml{new\_prim\_rec\_definition}
is not a well-formed primitive recursive definition);
\item any other condition for making a constant specification is violated
(see the failure conditions for \ml{new\_specification} in
Section~\ref{conspec}).
\end{myenumerate}
The \ML\ function \ml{new\_prim\_rec\_definition} is, in fact, slightly more
general than is indicated by the example application shown above. In
particular, a curried\index{currying, in ML@currying, in \ML!in primitive recursive definitions}
primitive recursive function defined using this \ML\
function can be defined by primitive recursion on any one of its arguments.
For example, a curried addition function \ml{plus:num->num->num} can be
defined by primitive recursion on its first argument:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#let PLUS = new_prim_rec_definition
# (`PLUS`,
# "(plus 0 n = n) /\
# (plus (SUC m) n = SUC(plus m n))");;
PLUS = |- (!n. plus 0 n = n) /\ (!m n. plus(SUC m)n = SUC(plus m n))
\end{verbatim}\end{session}
\noindent or by primitive recursion on its second argument:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#let PLUS = new_prim_rec_definition
# (`PLUS`,
# "(plus m 0 = m) /\
# (plus m (SUC n) = SUC(plus m n))");;
PLUS = |- (!m. plus m 0 = m) /\ (!m n. plus m(SUC n) = SUC(plus m n))
\end{verbatim}\end{session}
The \ML\ function \ml{new\_prim\_rec\_definition} also allows the user to
partially specify the value of a function defined (possibly recursively) on the
natural numbers by giving its value for only one of \ml{0} or \ml{SUC n}. For
example, a decrement function \ml{DEC}, whose value is specified for only
positive natural numbers, can be defined using \ml{new\_prim\_rec\_definition}
as follows
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#let DEC = new_prim_rec_definition
# (`DEC`, "DEC (SUC n) = n");;
DEC = |- !n. DEC(SUC n) = n
\end{verbatim}\end{session}
\noindent This definition specifies the value of the function \ml{DEC} only for
positive natural numbers. In particular, the value of \ml{DEC 0} is left
unspecified, and the only non-trivial property that can be proved to hold of
the constant \ml{DEC} is the property stated by the theorem returned by the
call to \ml{new\_prim\_rec\_definition} shown in the session above.
The function \ml{new\_infix\_prim\_rec\_definition}\index{new_infix_prim_rec_definition@\ml{new\_infix\_prim\_rec\_definition}}
can be used to define an
infixed\index{infixes, in HOL logic@infixes, in \HOL\ logic!primitive recursive definitions}
function by primitive recursion on the natural numbers. It takes its
arguments in the same form as \ml{new\_prim\_rec\_definition} and has similar
failure conditions; the only difference is that the resulting function constant
has infix status. Here, for example, is the recursive definition of the
constant \ml{+} used by the system:
\begin{hol}\begin{verbatim}
new_infix_prim_rec_definition
(`ADD`,
"($+ 0 n = n) /\
($+ (SUC m) n = SUC($+ m n))")
\end{verbatim}\end{hol}
\noindent The {\small\verb%$%}'s are there (as documentation)
to indicate that the constant
{\small\verb%+%}\index{ addition, in HOL logic@\ml{+} (addition, in \HOL\ logic)}
is being declared to be an infix. Evaluating this \ML\
expression will create the following constant specification in the current
theory:
\begin{hol}\index{ADD@\ml{ADD}}
\begin{verbatim}
ADD |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n))
\end{verbatim}\end{hol}
For further details about recursive definitions, see
Section~\ref{prim-rec-defs}, or the \REFERENCE\ documentation
on
\ml{new\_prim\_rec\_definition} and \ml{new\_infix\_prim\_rec\_definition}.
\index{prim_rec@\ml{prim\_rec}|)}
\index{primitive recursion theorem!automated use of, in HOL system@automated use of, in \HOL\ system|)}
\index{primitive recursion theorem!for numbers|)}
\index{primitive recursive definitions, in HOL logic@primitive recursive definitions, in \HOL\ logic!automated|)}
\index{recursive definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated, for numbers|)}
\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!primitive recursive|)}
\subsubsection{The less-than relation}
The less-than relation `{\small{\tt\verb+<+}}'\index{ less than, in HOL logic@\ml{<} (less than, in \HOL\ logic)}
is most naturally defined by
primitive recursion. However, it is needed for
the proof of the primitive recursion theorem,
so it must be defined
before definition by primitive recursion is available.
The theory \ml{prim\_rec} therefore contains the following
non-recursive definition\index{less than, in HOL logic@less than, in \HOL\ logic} of \ml{<}:
\begin{hol}
\index{LESS@\ml{LESS}}
\begin{verbatim}
LESS |- !m n. m < n = (?P. (!n'. P(SUC n') ==> P n') /\ P m /\ ~P n)
\end{verbatim}\end{hol}
\noindent
This definition says that {\small\verb%"m < n%"} if there exists a set (with
characteristic function {\small\verb%P%}) that is downward
closed\footnote{A set of numbers is {\it downward closed\/} if whenever it
contains the successor of a number, it also contains the number.} and
contains {\small\verb%m%} but not {\small\verb%n%}.
\subsection{The theory {\tt arithmetic}}
The built-in theory {\small\verb%arithmetic%}\index{number theory, in HOL logic@number theory, in \HOL\ logic}
\index{arithmetic@\ml{arithmetic}} contains primitive recursive
definitions of following standard arithmetic operators.
\begin{hol}
\index{ADD@\ml{ADD}}
\index{SUB@\ml{SUB}}
\index{MULT@\ml{MULT}}
\index{EXP@\ml{EXP}}
\index{ subtraction, in HOL logic@\ml{-} (subtraction, in \HOL\ logic)}
\index{ multiplication, in HOL logic@\ml{*} (multiplication, in \HOL\ logic)}
\begin{verbatim}
ADD |- (!n. 0 + n = n) /\
(!m n. (SUC m) + n = SUC(m + n))
SUB |- (!m. 0 - m = 0) /\
(!m n. (SUC m) - n = (m < n => 0 | SUC(m - n)))
MULT |- (!n. 0 * n = 0) /\
(!m n. (SUC m) * n = (m * n) + n)
EXP |- (!m. m EXP 0 = 1) /\
(!m n. m EXP (SUC n) = m * (m EXP n))
\end{verbatim}\end{hol}
\noindent It also contains the following non-recursive definitions.
\begin{hol}
\index{arithmetic, in HOL logic@arithmetic, in \HOL\ logic}
\index{ greater than, in HOL logic@\ml{>} (greater than, in \HOL\ logic)}
\index{ less or equal, in HOL logic@\ml{<=} (less or equal, in \HOL\ logic)}
\index{ greater or equal, in HOL logic@\ml{>=} (greater or equal, in \HOL\ logic)}
\index{MOD@\ml{MOD}}
\index{DIV@\ml{DIV}}
\begin{verbatim}
GREATER |- !m n. m > n = n < m
LESS_OR_EQ |- !m n. m <= n = m < n \/ (m = n)
GREATER_OR_EQ |- !m n. m >= n = m > n \/ (m = n)
DIVISION |- !n. 0 < n ==> (!k. (k = ((k DIV n) * n) + (k MOD n)) /\
(k MOD n) < n)
\end{verbatim}\end{hol}
An \adhoc\ but useful collection of over a hundred elementary theorems of
arithmetic are pre-proved when \HOL\ is built and stored in the theory
{\small\verb%arithmetic%}. Each theorem will be autoloaded when its name is
first mentioned during any \HOL\ session. For a complete list of available
theorems, see \REFERENCE.
\subsection{The theory {\tt list}}\label{avra_list}\index{list, the type operator in HOL logic@\ml{list}, the type operator in \HOL\ logic}
\index{recursive definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated for lists|(}
\index{types, in HOL logic@types, in \HOL\ logic!tools for construction of}
\index{lists, in HOL logic@lists, in \HOL\ logic|(}
\index{list theory, in HOL logic@\ml{list} theory, in \HOL\ logic|(}
\index{ lists, in HOL logic@\ml{[} $\cdots$ \ml{;} $\cdots$ \ml{]} (lists, in \HOL\ logic)|(}
The theory \ml{list} introduces the unary type operator \ml{list} by a type
definition.\footnote{For details of the definition,
see~\cite{HOL-paper,Melham-banff}.} The standard list processing functions
are then defined on this type:
\begin{hol}
\index{NIL@\ml{NIL}}
\index{CONS@\ml{CONS}}
\index{HD, the constant in HOL logic@\ml{HD}, the constant in \HOL\ logic}
\index{TL, the constant in HOL logic@\ml{TL}, the constant in \HOL\ logic}
\index{NULL, the constant in HOL logic@\ml{NULL}, the constant in \HOL\ logic}
\begin{verbatim}
NIL : (*)list
CONS : * -> (*)list -> (*)list
HD : (*)list -> *
TL : (*)list -> (*)list
NULL : (*)list -> bool
\end{verbatim}\end{hol}
The \HOL\ parser\index{parsing, of HOL logic@parsing, of \HOL\ logic!of list expressions} has been specially modified to parse the expression
{\small\verb%[]%} into
{\small\verb%NIL%} and to parse the expression
{\small\verb%[%}$t_1${\small\verb%;%}$t_2${\small\verb%;%}$\ldots${\small\verb%;%}$t_n${\small\verb%]%}
into {\small\verb%CONS %}$t_1${\small\verb% (CONS %}$t_2 \cdots\
${\small\verb%(CONS %}$t_n${\small\verb% NIL)%}$\ \cdots\ ${\small\verb%)%}.
The \HOL\ printer\index{printing, in HOL logic@printing, in \HOL\ logic!of list expressions}
reverses these transformations.
The functions \ml{NIL} and \ml{CONS} are defined in terms of the representing
type of lists. From their definitions, the following fundamental theorems about
lists\index{list theorems, in HOL logic@list theorems, in \HOL\ logic|(}
are proved and stored in the theory \ml{list}.
\begin{hol}
\index{list_Axiom@\ml{list\_Axiom}}
\index{axioms!non-primitive, of HOL logic@non-primitive, of \HOL\ logic}
\index{axioms!in list theory@in \ml{list} theory}
\index{list_INDUCT@\ml{list\_INDUCT}}
\index{list_CASES@\ml{list\_CASES}}
\index{CONS_11@\ml{CONS\_{11}}}
\index{NOT_NIL_CONS@\ml{NOT\_NIL\_CONS}}
\index{NOT_CONS_NIL@\ml{NOT\_CONS\_NIL}}
\index{characterizing theorem!for lists}
\begin{verbatim}
list_Axiom |- !x f. ?!fn.(fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t)
list_INDUCT |- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l)
list_CASES |- !l. (l = []) \/ (?t h. l = CONS h t)
CONS_11 |- !h t h' t'. (CONS h t = CONS h' t') = (h = h') /\ (t = t')
NOT_NIL_CONS |- !h t. ~([] = CONS h t)
NOT_CONS_NIL |- !h t. ~(CONS h t = [])
\end{verbatim}\end{hol}
A derived rule\index{induction rule!for lists, in HOL logic@for lists, in \HOL\ logic}
of structural induction called \ml{LIST\_INDUCT}\index{LIST_INDUCT@\ml{LIST\_INDUCT}}\index{LIST_INDUCT_TAC@\ml{LIST\_INDUCT\_TAC}} is provided,
together with an associated structural induction tactic \ml{LIST\_INDUCT\_TAC}.
These automate the use of the theorem \ml{list\_INDUCT}. See the \REFERENCE\
documentation on these two functions for details.
The theorem \ml{list\_Axiom} shown above is analogous to the primitive
recursion theorem\index{primitive recursion theorem!for lists} on the
natural numbers discussed above in
Section~\ref{num-prim-rec}. It states the validity of primitive recursive
definitions on lists, and can be used to justify any such definition. The \ML\
functions
\begin{boxed}
\index{new_list_rec_definition@\ml{new\_list\_rec\_definition}|pin}
\index{new_infix_list_rec_definition@\ml{new\_infix\_list\_rec\_definition}}
\begin{verbatim}
new_list_rec_definition : (string # term) -> thm
new_infix_list_rec_definition : (string # term) -> thm
\end{verbatim}\end{boxed}
\noindent use this theorem to do automatic\index{primitive recursion theorem!automated use of, in HOL system@automated use of, in \HOL\ system}
proofs of the existence of primitive
recursive functions on lists and then make constant specifications to introduce
constants that denote such functions. They are
analogous to the corresponding functions
\ml{new\_prim\_rec\_definition} and \ml{new\_infix\_prim\_rec\_definition}
discussed in Section~\ref{num-prim-rec}. For example, the \HOL\ system defines
a length function, \ml{LENGTH}, on lists by
the primitive recursive definition on lists
shown below:
\begin{hol}\begin{verbatim}
new_list_rec_definition
(`LENGTH`,
"(LENGTH NIL = 0) /\
(!h:*. !t. LENGTH (CONS h t) = SUC (LENGTH t))")
\end{verbatim}\end{hol}
\noindent When this \ML\
expression is evaluated, \HOL\ uses \ml{list\_Axiom} to prove existence
of a function that satisfies the given primitive recursive definition,
introduces a constant to name this function using a constant specification, and
stores the resulting theorem:
\begin{hol}\begin{verbatim}
LENGTH |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t))
\end{verbatim}\end{hol}
\noindent in the current theory (in this case, the theory \ml{list}).
Using \ml{new\_list\_rec\_definition}, the predicate \ml{NULL} and the
selectors \ml{HD} and \ml{TL} are defined\index{list definitions, in HOL logic@list definitions, in \HOL\ logic}
in the theory \ml{list} by the
specifications:
\begin{hol}
\index{NULL, the definition in HOL logic@\ml{NULL}, the definition in \HOL\ logic}
\index{HD, the definition in HOL logic@\ml{HD}, the definition in \HOL\ logic}
\index{TL, the definition in HOL logic@\ml{TL}, the definition in \HOL\ logic}
\begin{verbatim}
NULL |- NULL[] /\ (!h t. ~NULL(CONS h t))
HD |- !(h:*) t. HD(CONS h t) = h
TL |- !(h:*) t. TL(CONS h t) = t
\end{verbatim}\end{hol}
\noindent The following primitive recursive definitions of functions on lists
are also made in the theory \ml{list}:
\begin{hol}
\index{SUM, the theorem in HOL logic@\ml{SUM}, the theorem in \HOL\ logic}
\index{APPEND, the theorem in HOL logic@\ml{APPEND}, the theorem in \HOL\ logic}
\index{concatenation, of lists!in HOL logic@in \HOL\ logic}
\index{FLAT, the theorem in HOL logic@\ml{FLAT}, the theorem in \HOL\ logic}
\index{LENGTH, the theorem in HOL logic@\ml{LENGTH}, the theorem in \HOL\ logic}
\index{MAP, the theorem in HOL logic@\ml{MAP}, the theorem in \HOL\ logic}
\index{EL, the theorem in HOL logic@\ml{EL}, the theorem in \HOL\ logic}
\index{SUM, the constant in HOL logic@\ml{SUM}, the constant in \HOL\ logic}
\index{APPEND, the constant in HOL logic@\ml{APPEND}, the constant in \HOL\ logic}
\index{FLAT, the constant in HOL logic@\ml{FLAT}, the constant in \HOL\ logic}
\index{LENGTH, the constant in HOL logic@\ml{LENGTH}, the constant in \HOL\ logic}
\index{MAP, the constant in HOL logic@\ml{MAP}, the constant in \HOL\ logic}
\index{EL, the constant in HOL logic@\ml{EL}, the constant in \HOL\ logic}
\index{EVERY, the HOL constant@\ml{EVERY}, the \HOL\ constant}
\index{EVERY_DEF@\ml{EVERY\_DEF}}
\begin{verbatim}
SUM |- (SUM[] = 0) /\ (!h t. SUM(CONS h t) = h + (SUM t))
APPEND |- (!l. APPEND[]l = l) /\
(!l1 l2 h. APPEND(CONS h l1)l2 = CONS h(APPEND l1 l2))
FLAT |- (FLAT[] = []) /\ (!h t. FLAT(CONS h t) = APPEND h(FLAT t))
LENGTH |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t))
MAP |- (!f. MAP f[] = []) /\
(!f h t. MAP f(CONS h t) = CONS(f h)(MAP f t))
EL |- (!l. EL 0 l = HD l) /\ (!l n. EL(SUC n)l = EL n(TL l))
EVERY_DEF |- (!P. EVERY P[] = T) /\
(!P h t. EVERY P(CONS h t) = P h /\ EVERY P t)
\end{verbatim}\end{hol}
\noindent There is also a selection of pre-proved theorems about lists stored
in the theory \ml{list}. These are autoloaded when their names are first
mentioned during any \HOL\ session. For a complete list of available theorems,
see \REFERENCE.
\index{list theorems, in HOL logic@list theorems, in \HOL\ logic|)} \index{
lists, in HOL logic@\ml{[} $\cdots$ \ml{;} $\cdots$ \ml{]} (lists, in \HOL\
logic)|)} \index{list theory, in HOL logic@\ml{list} theory, in \HOL\ logic|)}
\index{lists, in HOL logic@lists, in \HOL\ logic|)} \index{recursive
definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated for
lists|)}
\subsection{The theory {\tt combin}}
\index{function composition, in HOL logic@function composition, in \HOL\
logic|(}
The theory \ml{combin}\index{combin@\ml{combin}}\index{combinators, in HOL
logic@combinators, in \HOL\ logic} contains the definitions of function
composition (infixed \ml{o})\index{ function composition operator, in HOL
logic@\ml{o} (function composition operator, in \HOL\ logic)|(}
and the combinators \ml{S}\index{S, constant in HOL logic@\ml{S}, constant in
\HOL\ logic}, \ml{K}\index{K, the constant in HOL logic@\ml{K}, the constant in
\HOL\ logic}
and \ml{I}\index{I, constant in HOL logic@\ml{I}, constant in \HOL\ logic}.
\begin{hol} \index{K_DEF@\ml{K\_DEF}} \index{S_DEF@\ml{S\_DEF}}
\index{I_DEF@\ml{I\_DEF}} \begin{verbatim}
o_DEF |- !f g. f o g = (\x. f(g x))
K_DEF |- K = (\x y. x)
S_DEF |- S = (\f g x. f x(g x))
I_DEF |- I = S K K \end{verbatim}\end{hol}
\noindent The following elementary properties are pre-proved in the theory
\ml{combin}:
\begin{hol} \index{K_THM@\ml{K\_THM}} \index{S_THM@\ml{S\_THM}}
\index{I_THM@\ml{I\_THM}} \index{I_o_ID@\ml{I\_o\_ID}} \begin{verbatim}
o_THM |- !f g x. (f o g)x = f(g x)
o_ASSOC |- !f g h. f o (g o h) = (f o g) o h
K_THM |- !x y. K x y = x
S_THM |- !f g x. S f g x = f x(g x)
I_THM |- !x. I x = x
I_o_ID |- !f. (I o f = f) /\ (f o I = f) \end{verbatim}\end{hol}
Having the symbols \ml{o}, \ml{S}, \ml{K} and \ml{I} as built-in
constants\index{variables, in HOL logic@variables, in \HOL\ logic!with constant
names} is sometimes inconvenient because they are often wanted as mnemonic
names for variables (\eg\ \ml{S} to range over sets and \ml{o} to range over
outputs). These names may therefore be changed in future releases of the
system, or the theory \ml{combin} may be made into a library. But variables
(though not constants) with these names can be used in the current system if
\ml{o}, \ml{S}, \ml{K} and \ml{I} are first hidden (see Section~\ref{hidden}).
\index{ function composition operator, in HOL logic@\ml{o} (function
composition operator, in \HOL\ logic)|)} \index{function composition, in HOL
logic@function composition, in \HOL\ logic|)}
\subsection{The theories {\tt tree} and {\tt ltree}} \index{recursive
definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated, for
trees|(}
\index{labelled tree theory, in HOL logic@labelled \ml{tree} theory, in \HOL\
logic|(} The theories \ml{tree}\index{tree, the HOL theory@\ml{tree}, the \HOL\
theory}
and \ml{ltree}\index{ltree, the HOL theory@\ml{ltree}, the \HOL\ theory|(}
contain the definitions of two structurally-isomorphic types of
finitely-branching ordered trees. The types defined in these theories are used
by Tom Melham's\index{Melham, T.} type definition package (see
Section~\ref{types-package}) to construct representations for arbitrary
concrete recursive types. They are not intended for general use, and the
theorems stored in these two built-in theories are therefore not loaded into
the system at start-up. The following is a summary of the main theorems which
are available in the theories \ml{tree} and \ml{ltree}, and which may be of use
in certain specialized applications. For full details of the logical basis for
these two theories, see~\cite{Melham-banff}.
\subsubsection{The theory {\tt tree}}
In the theory \ml{tree}, a type \ml{tree}\index{tree, the HOL type@\ml{tree},
the \HOL\ type} is defined to denote the set of all ordered trees whose nodes
can branch any (finite) number of times. A constructor function
\index{node@\ml{node}} \begin{hol}\begin{verbatim}
node : (tree)list -> tree \end{verbatim}\end{hol}
\noindent is then defined in the theory \ml{tree}. This function can be used
to construct any tree-structured value of type \ml{tree}. The expression
\ml{"node []"} denotes the tree consisting of a single leaf node with no
subtrees. If $tl\ml{:(tree)list}$ is a non-empty list of trees, then the term
$\ml{"node }tl\ml{"}$ denotes the tree whose immediate subtrees are the trees
in the list $tl$. Using \ml{node}, it is possible to construct a tree of any
shape. For example, the tree
\begin{center}
{\setlength{\unitlength}{0.75mm}
\begin{picture}(60,25)
\thicklines
\put(10,10){\makebox(0,0){$\bullet$}}
\put(30,10){\makebox(0,0){$\bullet$}}
\put(50,10){\makebox(0,0){$\bullet$}}
\put(30,20){\makebox(0,0){$\bullet$}}
\put(44,0){\makebox(0,0){$\bullet$}}
\put(56,0){\makebox(0,0){$\bullet$}}
\put(30,20){\line(0,-1){10}}
\put(30,20){\line(2,-1){20}}
\put(30,20){\line(-2,-1){20}}
\put(50,10){\line(3,-5){6}}
\put(50,10){\line(-3,-5){6}}
\end{picture}}
\end{center}
\noindent is denoted by the term
\ml{"node[node[]; node[]; node[node[]; node[]]"}.
The next two theorems follow from the formal definition of \ml{node} and
are stored in the theory \ml{tree}:
\begin{hol}
\index{node_11@\ml{node\_{11}}}
\index{tree_Induct@\ml{tree\_Induct}}
\index{induction rule!for trees, in HOL logic@for \ml{trees}, in \HOL\ logic}
\begin{verbatim}
node_11 |- !tl1 tl2. (node tl1 = node tl2) = (tl1 = tl2)
tree_Induct |- !P. (!tl. EVERY P tl ==> P(node tl)) ==> (!t. P t)
\end{verbatim}\end{hol}
\noindent These two theorems are analogous to the Peano\index{Peano's axioms} postulates for the
natural numbers, and are used to prove the following abstract characterization
of the defined type \ml{tree}.
\begin{hol}
\index{tree_Axiom@\ml{tree\_Axiom}}
\index{characterizing theorem!for finitely-branching ordered trees}
\begin{verbatim}
tree_Axiom |- !f. ?! fn. !tl. fn(node tl) = f(MAP fn tl)tl
\end{verbatim}\end{hol}
\noindent This theorem states the validity of general `primitive recursive'
definitions of functions over finitely-branching ordered trees.
\subsubsection{The theory {\tt ltree}}
In the theory \ml{ltree}\index{ltree@$\ldots$\ml{ltree}}, a type of {\it
labelled\/} trees (called \ml{(*)ltree}) is defined. Labelled trees have the
same sort of structure as values of the defined type \ml{tree} discussed above.
The only difference is that a tree of type \ml{(*)ltree} has a value or `label'
of type \ml{*} associated with each of its nodes. A constructor
\begin{hol}
\index{Node@\ml{Node}}
\begin{verbatim}
Node : * -> (*)ltree -> (*)ltree
\end{verbatim}\end{hol}
\noindent is defined in the theory \ml{ltree}. The function \ml{Node}
constructs labelled trees by mapping a label of type \ml{*} and a list of
labelled subtrees to a labelled tree of type \ml{(*)ltree}.
The following theorems
about labelled trees are pre-proved and stored in the
theory \ml{ltree}.
\begin{hol}
\index{Node_11@\ml{Node\_{11}}}
\index{ltree_Induct@\ml{ltree\_Induct}}
\index{ltree_Axiom@\ml{ltree\_Axiom}}
\begin{verbatim}
Node_11 |- !v1 v2 trl1 trl2.
(Node v1 trl1 = Node v2 trl2) = (v1 = v2) /\ (trl1 = trl2)
ltree_Induct |- !P. (!t. EVERY P t ==> (!h. P(Node h t))) ==> (!l. P l)
ltree_Axiom |- !f. ?! fn. !v tl. fn(Node v tl) = f(MAP fn tl)v tl
\end{verbatim}\end{hol}
\noindent These theorems are analogous to their counterparts in the theory
\ml{tree} discussed above. The theorems \ml{Node\_{11}}
and \ml{ltree\_Induct} amount to a Peano-type characterization of labelled
trees, and the theorem \ml{ltree\_Axiom} is a primitive recursion theorem for
labelled trees.
\index{labelled tree theory, in HOL logic@labelled \ml{tree} theory, in \HOL\ logic|)}
\index{ltree, the HOL theory@\ml{ltree}, the \HOL\ theory|)}
\index{recursive definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated, for trees|)}
\subsection{The theory {\tt tydefs}}
The theory \ml{tydefs}\index{tydefs@\ml{tydefs}}
is a technical theory used
to support the type definition package described in
Section~\ref{types-package}. The main result proved in \ml{tydefs} is a
theorem called \ml{TY\_DEF\_THM}\index{TY_DEF_THM@\ml{TY\_DEF\_THM}},
which is used by the type definition package
to derive automatically abstract characterizations for
arbitrary concrete recursive types. The interested reader can find the
details of the derivation of \ml{TY\_DEF\_THM} in~\cite{Melham-banff}.
\subsection{The theory {\tt sum}}
\label{sum}
The theory \ml{sum}\index{sum@\ml{sum}}
defines the binary disjoint union\index{disjoint union theory, in HOL
logic@disjoint union theory, in \HOL\ logic|(} type operator \ml{sum}.
A type {\small\verb%(%}$\sigma_1${\small\verb%,%}$\sigma_2${\small\verb%)sum%}
denotes the disjoint union of types $\sigma_1$ and $\sigma_2$. The type
operator {\small\verb%sum%} can be defined just as {\small\verb%prod%} was, but
the details are omitted here.\footnote{The definition of disjoint unions in
the
HOL system is due to Tom Melham. The technical details of this definition can
be found in~\cite{Melham-banff}.} The \HOL\ parser\index{parsing, of HOL logic@parsing, of \HOL\ logic!of sum types}
converts
\ml{":}$\sigma_1${\small\verb%+%}$\sigma_2$\ml{"}\index{ disjoint union
type operator, in HOL logic@\ml{+} (disjoint union
type operator, in HOL logic)} into
\ml{(}$\sigma_1$\ml{,}$\sigma_2$\ml{)sum}, and the printer inverts this.
The standard operations on sums are:
\begin{hol}
\index{disjoint union theory, in HOL logic@disjoint union theory, in \HOL\ logic|)}
\index{INL, the constant in HOL logic@\ml{INL}, the constant in \HOL\ logic}
\index{INR, the constant in HOL logic@\ml{INR}, the constant in \HOL\ logic}
\index{ISL, the constant in HOL logic@\ml{ISL}, the constant in \HOL\ logic}
\index{ISR, the constant in HOL logic@\ml{ISR}, the constant in \HOL\ logic}
\index{OUTL, the constant in HOL logic@\ml{OUTL}, the constant in \HOL\ logic}
\index{OUTR, the constant in HOL logic@\ml{OUTR}, the constant in \HOL\ logic}
\begin{verbatim}
INL : * -> * + **
INR : ** -> * + **
ISL : * + ** -> bool
ISR : * + ** -> bool
OUTL : * + ** -> *
OUTR : * + ** -> **
\end{verbatim}\end{hol}
\noindent These are all defined as constants in the theory \ml{sum}. The
constants \ml{INL} and \ml{INR} inject into the left and right summands,
respectively. The constants \ml{ISL} and \ml{ISR} test for membership of the
left and right summands, respectively. The constants \ml{OUTL} and \ml{OUTR}
project from a sum to the left and right summands, respectively.
The following two theorems, which are minor variants of each other, are
pre-proved in the built-in theory \ml{sum}. Each one, on its own, provides a
complete and abstract characterization of the disjoint sum type.
\begin{hol}
\index{sum_Axiom@\ml{sum\_Axiom}}
\index{sum_axiom@\ml{sum\_axiom}}
\begin{verbatim}
sum_axiom |- !f g. ?! h. (h o INL = f) /\ (h o INR = g)
sum_Axiom = |- !f g. ?! h. (!x. h(INL x) = f x) /\ (!x. h(INR x) = g x)
\end{verbatim}\end{hol}
\noindent Also provided as built-in, are the following theorems having to
do with the discriminator functions \ml{ISL} and \ml{ISR}:
\begin{hol}
\index{ISL, the theorem in HOL logic@\ml{ISL}, the theorem in \HOL\ logic}
\index{ISR, the theorem in HOL logic@\ml{ISR}, the theorem in \HOL\ logic}
\index{ISL_OR_ISR@\ml{ISL\_OR\_ISR}}
\begin{verbatim}
ISL |- (!x. ISL(INL x)) /\ (!y. ~ISL(INR y))
ISR |- (!x. ISR(INR x)) /\ (!y. ~ISR(INL y))
ISL_OR_ISR |- !x. ISL x \/ ISR x
\end{verbatim}\end{hol}
\noindent The \ml{sum} theory also provides the following built-in theorems:
\begin{hol}
\index{OUTL, the theorem in HOL logic@\ml{OUTL}, the theorem in \HOL\ logic}
\index{OUTR, the theorem in HOL logic@\ml{OUTR}, the theorem in \HOL\ logic}
\index{INL, the theorem in HOL logic@\ml{INL}, the theorem in \HOL\ logic}
\index{INR, the theorem in HOL logic@\ml{INR}, the theorem in \HOL\ logic}
\begin{verbatim}
OUTL |- !x. OUTL(INL x) = x
OUTR |- !x. OUTR(INR x) = x
INL |- !x. ISL x ==> (INL(OUTL x) = x)
INR |- !x. ISR x ==> (INR(OUTR x) = x)
\end{verbatim}\end{hol}
\noindent which describe the projection functions \ml{OUTL} and \ml{OUTR}.
\subsection{The theory {\tt one}}%
\index{one, the HOL theory@\ml{one}, the \HOL\ theory}%
\index{one, the HOL type@\ml{one}, the \HOL\ type}%
The theory \ml{one} defines the type \ml{":one"} which contains one element.
The constant \ml{one} is specified to denote this element. The pre-proved
theorems in the theory \ml{one} are:
\begin{hol}
\index{one_axiom@\ml{one\_axiom}}
\index{one, the HOL theorem@\ml{one}, the \HOL\ theorem}
\index{one_Axiom@\ml{one\_Axiom}}
\begin{verbatim}
one_axiom |- !(f:* -> one) (g:* -> one). f = g
one |- !(v:one). v = one
one_Axiom |- !(e:*). ?!(fn:one->*). fn one = e
\end{verbatim}\end{hol}
\noindent These three theorems are equivalent characterizations of the type
with only one value.
\section{The type definition package}\label{types-package}\index{extension, of HOL logic@extension, of \HOL\ logic!by type definition|(}
\index{type definition package, in HOL system@type definition package, in \HOL\ system|(}
In the \HOL\ system, new types and type operators can be introduced\index{extension, of HOL logic@extension, of \HOL\ logic}
using the consistency-preserving definitional mechanism of
type definitions\index{type definition extension, in HOL logic@type definition extension, in \HOL\ logic|(} (see Sections~\ref{tydefs} and~\ref{type-defs}). The \ML\
rule for introducing a new type is:
\begin{hol}
\index{new_type_definition@\ml{new\_type\_definition}}
\begin{verbatim}
new_type_definition : (string # term # thm) -> thm
\end{verbatim}\end{hol}
\noindent This rule allows
axioms of a restricted form to be added to the primitive basis of the logic.
These axioms are analogous to definitional axioms for new constants: they
define new types in terms of other type expressions already present in the
logic. Like the rule \ml{new\_definition} for making constant definitions,
the rule \ml{new\_type\_definition}
for type definitions
ensures that adding a new syntactic entity (in this case, a type or
type operator) is a conservative extension of the logic.
The basic idea behind \ml{new\_type\_definition} is that a type definition is
made by adding an axiom to the logic which asserts that the set of values
denoted by a new type is isomorphic\index{isomorphism of types, in HOL logic@isomorphism of types, in \HOL\ logic} to an appropriate subset of the values
denoted by a type expression already present in the logic. A definitional
axiom\index{definitional axioms} of this form merely states
that a new type is isomorphic to a particular
subset of an existing type. From such type definition axioms, it is usual to
prove theorems that characterize newly-defined types more abstractly. The idea
is to prove a collection of theorems that state the essential properties of a
new type without reference to how it is defined. These theorems then
constitute a derived `abstract axiomatization' of the new type, and
once they have been proved they
become the basis for all further reasoning about it.
With this approach, introducing a new type (or type operator) in \HOL\
involves two distinct steps:
\setcounter{myenumi}{1}
\begin{list}{\arabic{myenumi}.}{\usecounter{myenumi}
\setlength{\leftmargin}{10mm}
\setlength{\rightmargin}{5mm}
\setlength{\labelwidth}{3mm}
\setlength{\labelsep}{2mm}
\setlength{\listparindent}{0mm}
\setlength{\itemsep}{8pt plus1pt minus2pt}
\setlength{\topsep}{3mm}
\setlength{\parsep}{0mm}}
\setlength{\abovedisplayshortskip}{8pt plus1pt minus1pt}
\setlength{\belowdisplayshortskip}{8pt plus1pt minus1pt}
\item Finding an appropriate representation for the new type, and making a type \mbox{definition} using \ml{new\_type\_definition} based
on this representation.
\item Using the axiomatic definition of the new type and the properties of its
representation to prove a set of theorems that abstractly characterizes it.
\end{list}
Defining a new type using this approach can be hard work. But a set of tools
is provided in the system which---for a certain class of commonly-used {\it
concrete recursive types\/}\index{types, in HOL logic@types, in \HOL\
logic!tools for construction of}\index{concrete recursive types, in HOL
logic@concrete recursive types, in \HOL\ logic}---automatically carries out all
the formal proofs necessary to define these types and derive abstract
characterizations from their definitions. This section provides a user-level
overview of these tools. Details of the formal proofs carried out by these
tools are discussed in~\cite{Melham-banff}.
\subsection{Defining types}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, in recursive type definition|(}
\index{recursive types, in HOL logic@recursive types, in \HOL\ logic!tools for construction of|(}
The main \ML\ function in the \HOL\ type definition package is
\begin{boxed}
\index{define_type@\ml{define\_type}|pin}
\begin{verbatim}
define_type : string -> string -> thm
\end{verbatim}\end{boxed}
\noindent This function can be used to define any concrete recursive type in
the \HOL\ system. These are types whose values are generated by a set of {\it
constructors\/} (i.e.\ functions) which yield concrete representations for
these values. Examples include types which denote finite sets of atomic values
(enumerated types), types which denote sets of structured values (record types)
or finite disjoint unions of structured values (variant records), and types
which denote sets of recursive data structures (recursive types).
The two inputs to \ml{define\_type} are both strings. The first string
is a name under which the results of making
the type definition will be stored in the current theory segment. The second is
a user-supplied informal\footnote{ In this context, {\it informal\/} means not
in the language of higher order logic.} specification of the concrete
recursive type to be defined. This type specification is written in
a notation (explained below) which resembles
a data type declaration in functional programming languages like Standard
\ML~\cite{sml}. It simply states the names of the new type's
constructors and the logical types of their \mbox{arguments.} The output is a
theorem which abstractly characterizes the properties of
the desired recursive type---i.e.\ a
derived `abstract axiomatization' of the type.
\subsubsection{Input syntax}
The type specification given as input\index{type definition package, in HOL system@type definition package, in \HOL\ system!input to|(} to \ml{define\_type}
must be an \ML\ string\index{strings, in ML@strings, in \ML!as input to HOL type definition package@as input to \HOL\ type definition package} (of \ML\ type \ml{string}) of the form:
{\def\op{{\normalsize\sl op}}
\begin{hol}\begin{alltt}
`{\op} = \(C\sb{1}\;ty{}\sb{1}\sp{1}\;\ldots\;ty{}\sb{1}\sp{k\sb{1}} \) | \(\cdots\) | \(C\sb{m}\;ty{}\sb{m}\sp{1}\;\ldots\;ty{}\sb{m}\sp{k\sb{m}}\)`
\end{alltt}\end{hol}}
\noindent where each $ty_i^{j}$ is either a type expression already defined
as a type in the current theory (this type expression must not
contain \ty{op}) or is the name \ty{op} itself. A string of this form
describes an $n$-ary type operator \ty{op},
where $n$ is the number of distinct type variables in the types
$ty_i^{j}$ on the right hand side of the equation.
If $n = 0$ then \ty{op} is a type constant;
otherwise \ty{op} is an $n$-ary type operator. The concrete
type described has $m$
distinct constructors \m{C_1, \dots, C_m} where $m \geq 1$.
Each constructor \m{C_i} takes $k_i$ arguments, where $k_i \geq 0$;
and the types of these arguments are given by the type
expressions $ty_i^j$ for $1 \leq j \leq k_i$. If one or more of the type
expressions $ty_i^{j}$ is the type \ty{op} itself, then the \mbox{equation}
specifies a {\it recursive\/} type. In any specification of a recursive type,
at least one constructor must be non-recursive---i.e.\ all its arguments must
have types which already exist in the current theory.
The input parser for \ml{define\_type} treats type expressions exactly as the
\HOL\ quotation parser does, with precedences among the various built-in type
operators in force.\index{type definition package, in HOL system@type definition package, in \HOL\ system!input to|)}
\subsubsection{The type specified}
The logical type described by an input string of the form
shown above is intended
to denote the set of all values which can be finitely
generated using the constructors \m{C_1, \dots, C_m},
where each constructor is one-to-one and any two
different constructors yield different values. Every value of this
type will be denoted by some term of the form:
\[ C_i\;x_i^1\;\ldots\;x_i^{k_i} \]
\noindent where $x_i^j$ is a term of type $ty_i^j$ for $1 \leq j \leq
k_i$. In addition, any two terms:
\[ C_i\;x_i^1\;\ldots\;x_i^{k_i} \qquad {\rm and} \qquad
C_j\;x_j^1\;\ldots\;x_j^{k_j} \]
\noindent denote equal values exactly when their constructors are the same
(i.e.\ $i=j$) and these constructors are applied to equal arguments
(i.e.\ $x_i^n = x_j^n\;\,{\rm for}\;\,1\leq n\leq k_i$).
\subsubsection{The output}\label{define-type-output}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!output of|(}
\noindent For any type specification
in the form of an equation of the kind discussed above, executing:
{\def\op{{\normalsize\sl op}}
\begin{hol}
\index{define_type@\ml{define\_type}}
\begin{alltt}
define\_type `\m{name}` `{\op} = \(C\sb{1}\;ty{}\sb{1}\sp{1}\;\ldots\;ty{}\sb{1}\sp{k\sb{1}} \) | \(\cdots\) | \(C\sb{m}\;ty{}\sb{m}\sp{1}\;\ldots\;ty{}\sb{m}\sp{k\sb{m}}\)`
\end{alltt}\end{hol}}
\noindent will make a formal definition for a
type (or type operator) \ty{op}
in the current theory segment, make appropriate definitions for
constants \m{C_1, C_2,\dots, C_m},
and automatically prove a theorem which
provides an abstract
characterization\index{characterizing theorem!for defined types}\index{automated derivation!of characterizing theorems for recursive types}
of the newly-defined type \ty{op}. This theorem, which is
stored in the current theory segment under the name $name$ and also returned by
\ml{define\_type}, has the form shown below:
{\def\op{{\normalsize\sl op}}
\begin{hol}\begin{alltt}
|- !f\(\sb{1}\:\cdots\:\)f\(\sb{m}\). ?!fn:{\op}->*.
!x\(\sb{1}\sp{1}\;\,\cdots\,\;\)x\(\sb{1}\sp{k\sb{1}}\). fn(\m{C}\(\sb{1}\,\) x\(\sb{1}\sp{1}\;\,\ldots\,\;\)x\(\sb{1}\sp{k\sb{1}}\)) = f\(\sb{1}\) (fn x\(\sb{1}\sp{1}\))\(\;\ldots\;\)(fn x\(\sb{1}\sp{k\sb{1}}\)) x\(\sb{1}\sp{1}\;\ldots\;\)x\(\sb{1}\sp{k\sb{1}}\)
\(\vdots\)
!x\(\sb{m}\sp{1}\;\cdots\;\)x\(\sb{1}\sp{k\sb{m}}\!\). fn(\m{C}\(\sb{m}\) x\(\sb{m}\sp{1}\;\ldots\;\)x\(\sb{m}\sp{k\sb{m}}\)) = f\(\sb{m}\) (fn x\(\sb{m}\sp{1}\))\(\;\ldots\;\)(fn x\(\sb{m}\sp{k\sb{m}}\)) x\(\sb{m}\sp{1}\;\ldots\;\)x\(\sb{m}\sp{k\sb{m}}\)
\end{alltt}\end{hol}}
\noindent where the right hand sides of the equations include recursive
applications `$\ml{fn}\;\ml{x}_i^j$' only for variables $\ml{x}_i^j$ of type
\ty{op}. (See the examples given below.) A theorem of this form asserts the
unique existence of primitive recursive functions defined by cases on the
constructors \m{C_1, C_2,\dots,C_m}. This is a slight
extension of the {\it initiality\/}\index{initiality} property by which
structures of this kind are characterized in the `initial algebra' approach to
specifying abstract data types~\cite{goguen}. This property provides an
abstract characterization of the type \ty{op} which is both succinct and
complete, in the sense that it completely determines the structure of the
values of \ty{op} up to isomorphism.
The call to \ml{define\_type} shown above fails if:
\begin{myenumerate}
\item not in draft mode\index{draft mode, in HOL system@draft mode, in \HOL\ system};
\item \ty{op} is already the name of a type constant or type operator in the
current theory;
\item any one of $C_1,\dots,C_{m}$ is already the name
of a constant in the current theory.
\item either \ty{op} or any one $C_{1},\dots,C_{m}$ is not a
legal identifier. Identifiers must start with a letter (as defined by
\ml{is\_letter}) and contain only alphanumeric characters (as defined by
\ml{is\_alphanum})
\item $\ml{ABS\_}\ty{op}$\index{ABS_@\ml{ABS\_}$\ldots$}
or $\ml{REP\_}\ty{op}$\index{REP_@\ml{REP\_}$\ldots$}
are already constants in the
current theory;
\item there is already an axiom, definition, constant specification or type
definition stored under either the name
$\ty{op}\ml{\_TY\_DEF}$\index{TY_DEF@$\ldots$\ml{\_TY\_DEF}} or the name
$\ty{op}\ml{\_ISO\_DEF}$ in the current
theory segment.
\item there is already a theorem stored under the name \ml{`\m{name}`} in the
current theory segment.
\item the input type specification does not conform to the syntax described
above.
\end{myenumerate}
\index{recursive types, in HOL logic@recursive types, in \HOL\ logic!tools for construction of|)}\index{type definition extension, in HOL logic@type definition extension, in \HOL\ logic|)}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!output of|)}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, in recursive type definition|)}
\subsubsection{Examples}\label{define-type-example}
\index{primitive recursion theorem!a degenerate case|(}
The session that follows illustrates the use of \ml{define\_type} in defining
a variety of simple concrete types. It is assumed that the session begins
with the user in draft mode.
The first definition is simple, the definition of a type \ml{three} with
exactly three distinct values: \ml{ONE}, \ml{TWO}, and \ml{THREE}.
\setcounter{sessioncount}{1}\label{types-session}
\begin{session}\begin{verbatim}
#let three_Axiom = define_type `three_Axiom` `three = ONE | TWO | THREE`;;
three_Axiom =
|- !e0 e1 e2. ?! fn. (fn ONE = e0) /\ (fn TWO = e1) /\ (fn THREE = e2)
\end{verbatim}\end{session}
\noindent The theorem returned by \ml{define\_type} provides a complete
and abstract characterization of
a defined logical type \ml{three} which denotes a set of
exactly three elements. This characterization takes the form of a
degenerate `primitive recursion'
theorem for the concrete type \ml{three}.
Since \ml{three} is an enumerated type with no recursive constructors,
the theorem returned by \ml{define\_type} simply
states that any function defined by cases on the three constants \ml{ONE},
\ml{TWO}, and \ml{THREE} exists and is uniquely defined.
It follows immediately from this theorem that the type constant \ml{three}
denotes a set containing exactly three values: the fact that the function
\ml{fn} always exists implies that the constants \ml{ONE}, \ml{TWO}, and
\ml{THREE} denote distinct values of type \ml{three}, and the fact that \ml{fn}
is uniquely determined by its values for \ml{ONE}, \ml{TWO}, and \ml{THREE}
implies that these constants denote the only values of type \ml{three}.
\index{primitive recursion theorem!a degenerate case|)}
The next call to \ml{define\_type} defines a `record type' \ml{rec}, values of
which are records with three boolean fields (essentially 3-tuples):
\begin{session}\begin{verbatim}
#let rec_Axiom = define_type `rec_Axiom` `rec = REC bool bool bool`;;
rec_Axiom = |- !f. ?! fn. !b0 b1 b2. fn(REC b0 b1 b2) = f b0 b1 b2
\end{verbatim}\end{session}\label{rec-def}
\noindent Here, the resulting theorem states that a function \ml{fn} on
record values of type \ml{rec} can be
uniquely defined in terms of a function \ml{f} of the three components of
the record.
A more interesting {\it recursive\/}
example is the type of natural
numbers\index{number theory, in HOL logic@number theory, in \HOL\ logic!type definition package version of}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, to build number theory}, which can be defined using \ml{define\_type} as follows:
\begin{session}\begin{verbatim}
#let nat_Axiom = define_type `nat_Axiom` `nat = Z | Suc nat`;;
nat_Axiom = |- !e f. ?! fn. (fn Z = e) /\ (!n. fn(Suc n) = f(fn n)n)
\end{verbatim}\end{session}
\noindent Here, the input string describes a type \ml{nat} with two
constructors: \ml{Z}, which stands for zero; and \ml{Suc}, which is the
successor function on natural numbers. (The names
\ml{Z}, and \ml{Suc} are used here because \ml{0} and \ml{SUC} are already
constants in the built-in \HOL\ theory \ml{num}.)
The output theorem is just the primitive recursion
theorem\footnote{See Section~\ref{prim_rec} for a discussion of
the primitive recursion theorem.}
for the natural numbers; it states that any primitive recursive definition on
the natural numbers (\ie\ on values of type \ml{nat})
uniquely defines a total function.
A recursive type of labelled binary trees\index{binary tree theory, in HOL logic@binary tree theory, in \HOL\ logic|(}, where labels of type \ml{*}
appear only on leaf nodes, can likewise be defined using \ml{define\_type}.
The input states that a binary tree is either a leaf node (\ml{LEAF})
labelled by a value of type \ml{*} or an internal node \ml{NODE} with
two binary trees as subtrees:
\begin{session}\begin{verbatim}
#let btree_Axiom =
# define_type `btree_Axiom` `btree = LEAF * | NODE btree btree`;;
btree_Axiom =
|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)
\end{verbatim}\end{session}\label{btree-def}
\noindent The result returned by the call to {\small \verb!define_type!} is,
in this case, an abstract
characterization for a defined type {\small\verb!(*)btree!},
in the form of a `primitive recursion theorem' for the required
type of labelled binary trees.\index{binary tree theory, in HOL logic@binary tree theory, in \HOL\ logic|)}
Any simple concrete recursive type can be defined automatically from a
user-supplied equation using \ml{define\_type} in exactly the same way.
\subsection{Defining recursive functions}\label{prim-rec-defs}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, in recursive function definition|(}
\index{recursive definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated, for recursive types|(}
\index{primitive recursion theorem!for binary trees|(}
An important property of the characterizing theorems for concrete types
shown in the examples given above is that they
provide a formal
means for defining recursive functions on those types.
When a concrete
recursive type \ty{op} is
characterized by a theorem of the kind returned by
\ml{define\_type}\index{types, in HOL logic@types, in \HOL\ logic!tools for construction of} (see Section~\ref{define-type-output}) this theorem
can be used to
prove the existence of any
{\it primitive recursive\/} function on \ty{op} and to
define constants which denote such functions.
This is illustrated
for a particular
example by the method of defining primitive recursive functions on
the natural numbers discussed in Section~\ref{num-prim-rec}. In that section,
an \ML\ function \ml{new\_prim\_rec\_definition}\index{new_prim_rec_definition@\ml{new\_prim\_rec\_definition}}
was described which automates
the logical inferences necessary to derive particular primitive recursive
definitions on the built-in defined type \ml{num} of natural numbers. The
basis of this function is the primitive recursion theorem
\begin{hol}
\index{num_Axiom@\ml{num\_Axiom}}
\begin{verbatim}
num_Axiom |- !x f. ?!fn. (fn 0 = x) /\ (!n. fn(SUC n) = f (fn n) n)
\end{verbatim}\end{hol}
\noindent which is pre-proved and stored in the built-in theory \ml{prim\_rec}\index{prim_rec@\ml{prim\_rec}}
(see Section~\ref{prim_rec}). The \ML\ function
\ml{new\_prim\_rec\_definition} uses \ml{num\_Axiom} to automate the
justification of any user-supplied primitive recursive definition on the
natural numbers.
The type definition package\index{primitive recursion theorem!automated use of, in HOL system@automated use of, in \HOL\ system|(} provides a similar function for defining
primitive recursive functions on
arbitrary concrete recursive
types.\footnote{In fact, {\tt new\_prim\_rec\_definition} is defined in ML
using the more general tools provided by the type definition package.}
The \ML\ function
\begin{boxed}\index{new_recursive_definition@\ml{new\_recursive\_definition}|pin}
\begin{verbatim}
new_recursive_definition : bool -> thm -> string -> term -> thm
\end{verbatim}\end{boxed}
\noindent automates the
inferences necessary to justify any given primitive recursive definition on a
concrete recursive type of the kind definable by \ml{define\_type}.
It takes four arguments. The first is a boolean
flag which indicates if the function to be defined will be an infix\index{infixes, in HOL logic@infixes, in \HOL\ logic!in recursive type definitions} or not.
The second is the primitive recursion theorem for the concrete type in question
(\ie\ a theorem obtained from {\small\verb!define_type!}).\index{define_type@\ml{define\_type}} The third
argument is a name under which the resulting definition will be saved in the
current theory segment.
The fourth argument is a term giving the desired primitive recursive
definition. The value returned
by {\small\verb!new_recursive_definition!} is a theorem
which states the primitive recursive definition requested by the
user. This theorem is derived by formal proof from an instance of the general
primitive recursion theorem\index{automated derivation!of recursive definitions}
given as the second argument.
If the \ML\ variable \ty{op}\ml{\_Axiom} is bound to a theorem of the form
returned by \ml{define\_type},
then evaluating:
{\def\op{{\normalsize\sl op}}
\begin{hol}\begin{alltt}
new_recursive_definition
`\m{flag}` \op\_Axiom `\m{name}` "{\normalsize\it primitive recursive definition on \op}"
\end{alltt}\end{hol}}
\noindent automatically proves the existence of the primitive recursive
function supplied as the fourth argument,
and then declares a new constant in the current theory
with this definition as its
specification. This constant specification is returned as a theorem
and is saved in the current theory segment under the name
$name$.
If $flag$ is \ml{true}, the constant is given infix status.
Failure occurs if:
\begin{myenumerate}
\item \HOL\ cannot prove there is a function
satisfying the defining equations supplied by the user
(\ie\ the term supplied to \ml{new\_recursive\_definition}
is not a well-formed primitive recursive definition on values
of type \ty{op});
\item any other condition for making a constant specification is violated
(see the failure conditions for \ml{new\_specification} in
Section~\ref{conspec}).
\end{myenumerate}
Curried\index{currying, in ML@currying, in \ML!in recursive definitions}
functions defined using \ml{new\_recursive\_definition} can be
recursive on any one of their arguments. Furthermore, defining equations need
not be given for all the constructors of the concrete type in question. See
the examples given in the next section, or the examples of functions
defined on \ml{num} given in Section~\ref{num-prim-rec} for more details.
The \ML\ function
\begin{boxed}
\index{prove_rec_fn_exists@\ml{prove\_rec\_fn\_exists}|pin}
\begin{verbatim}
prove_rec_fn_exists : thm -> term -> thm
\end{verbatim}\end{boxed}
\noindent is a version of \ml{new\_recursive\_definition} which proves only
that the required function exists; it does not make a constant specification.
The first argument is a theorem of the form returned by \ml{define\_type},
and the second is a user-supplied primitive recursive function definition.
The theorem which is returned asserts the existence of the recursively-defined
function in question (if it is primitive recursive over the type characterized
by the theorem given as the first argument).
\index{recursive definitions, in HOL logic@recursive definitions, in \HOL\ logic!automated, for recursive types|)}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, in recursive function definition|)}
\index{primitive recursion theorem!automated use of, in HOL system@automated use of, in \HOL\ system|)}
\subsubsection{More examples}
Continuing the example session started above in Section~\ref{define-type-example},
the following interactions with the system show how the \ML\ function
\ml{new\_recursive\_definition} can be used to define functions on concrete types,
which have themselves been defined using \ml{define\_type}.
Given the characterizing theorem
\ml{btree\_Axiom} for the type of labelled binary trees
defined in Section~\ref{types-session}, a recursive function \ml{Leaves}, which
computes the number of leaf nodes in a binary tree,
can be defined recursively in \HOL\ as shown below:
\begin{session}\begin{verbatim}
#let Leaves =
# new_recursive_definition false btree_Axiom `Leaves`
# "(Leaves (LEAF (x:*)) = 1) /\
# (Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))";;
Leaves =
|- (!x. Leaves(LEAF x) = 1) /\
(!t1 t2. Leaves(NODE t1 t2) = (Leaves t1) + (Leaves t2))
\end{verbatim}\end{session}
\noindent The result of the call to {\small\verb!new_recursive_definition!} is
a theorem which states that the constant {\small\verb!Leaves!} satisfies the
primitive-recursive defining equations supplied by the user. This theorem is
derived automatically from an instance of the general primitive recursion
theorem for binary trees ({\small\verb!btree_Axiom!}) and an appropriate
constant specification for the constant {\small\verb!Leaves!}.
The function defined using \ml{new\_recursive\_definition}\index{type
definition package, in HOL system@type definition package, in \HOL\
system!use of, in case definition} need not, in fact, be recursive.
Here is the definition of a predicate \ml{IsLeaf}, which is true of
binary trees which are leaves, but is false of the internal nodes in a
binary tree:
\begin{session}\begin{verbatim}
#let IsLeaf =
# new_recursive_definition false btree_Axiom `IsLeaf`
# "(IsLeaf (NODE t1 t2) = F) /\ (IsLeaf (LEAF (x:*)) = T)";;
IsLeaf = |- (!t1 t2. IsLeaf(NODE t1 t2) = F) /\ (!x. IsLeaf(LEAF x) = T)
\end{verbatim}\end{session}
\noindent Note that two equations defining a (recursive or non-recursive)
function on binary trees by cases can be given in either order. Here, the
\ml{NODE} case is given first, and the \ml{LEAF} case second. The reverse
order was used in the above definition of \ml{Leaves}.
The \ML\ function {\small\verb!new_recursive_definition!} also allows the user
to partially specify\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, in partial definition} the value of a function defined on a concrete type, by
allowing defining equations for some of the constructors to be omitted. Here,
for example, is the definition of a function \ml{Label} which extracts the
label from a leaf node. The value of \ml{Label} applied to an internal node
is left unspecified:
\begin{session}\begin{verbatim}
#let Label =
# new_recursive_definition false btree_Axiom `Label`
# "Label (LEAF (x:*)) = x";;
Label = |- !x. Label(LEAF x) = x
\end{verbatim}\end{session}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, in curried infix definition|(}
Curried functions can also be defined, and the recursion can be on any
argument. The next definition defines an infix (curried)
function \ml{<<} which expresses the idea that one tree is a proper
subtree of another.
\begin{session}\begin{verbatim}
#let Subtree =
# new_recursive_definition true btree_Axiom `Subtree`
# "(<< (t:(*)btree) (LEAF (x:*)) = F) /\
# (<< t (NODE t1 t2) = ((t=t1) \/ (t=t2) \/ (<< t t1) \/ (<< t t2)))";;
Subtree =
|- (!t x. t << (LEAF x) = F) /\
(!t t1 t2.
t << (NODE t1 t2) = (t = t1) \/ (t = t2) \/ t << t1 \/ t << t2)
\end{verbatim}\end{session}
\noindent Note that the first argument to the \ML\ function is \ml{true}
(to indicate that the function being defined is to have infix status) and that
the constant \ml{<<} is an infix after the definition has been made.
Furthermore, the function \ml{<<} is recursive on its second argument\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, in curried infix definition|)}.
Finally, the function {\small\verb!new_recursive_definition!} can also be used
to define functions by cases on enumerated types. For example, a predicate
\ml{One}, which is true of only the value \ml{ONE} of the three-valued type
\ml{three} defined above in Section~\ref{types-session}, can be defined as
follows:
\begin{session}\begin{verbatim}
#let One = new_recursive_definition false three_Axiom `One`
# "(One ONE = T) /\ (One TWO = F) /\ (One THREE = F)";;
One = |- (One ONE = T) /\ (One TWO = F) /\ (One THREE = F)
\end{verbatim}\end{session}
The existence only of
any function definable using \ml{new\_recursive\_definition} can be proved
using \ml{prove\_rec\_fn\_exists}. For example:
\begin{session}\begin{verbatim}
#close_theory();;
() : void
#let exists = prove_rec_fn_exists three_Axiom
# "(f ONE = T) /\ (f TWO = F) /\ (f THREE = F)";;
exists = |- ?f. (f ONE = T) /\ (f TWO = F) /\ (f THREE = F)
\end{verbatim}\end{session}
\noindent The resulting theorem simply states the existence of the
required function. Here, a constant is not defined, and the user need
not be in draft mode.
\index{primitive recursion theorem!for binary trees|)}
\subsection{Structural induction}
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, to build induction tools|(}
\index{induction rule!structural, derivation of|(}
For any concrete recursive type definable
using the \HOL\ type definition package there is a structural induction
theorem which states the validity of proof by induction
on the structure of the type's values. The \ML\ function
\begin{boxed}
\index{prove_induction_thm@\ml{prove\_induction\_thm}|pin}
\begin{verbatim}
prove_induction_thm : thm -> thm
\end{verbatim}\end{boxed}
\noindent can be used to derive a structural induction\index{automated derivation!of structural induction theorems}\index{induction rule!for concrete recursive types}
theorem for any concrete
recursive type defined using \ml{define\_type}. If the \ML\
variable \ty{op}\ml{\_Axiom} is bound to a theorem of the form
returned by \ml{define\_type},
then executing
\[ \ml{prove\_induction\_thm}\;\ty{op}\ml{\_Axiom} \]
\noindent will prove and return a structural induction theorem for
the concrete type
\ty{op}. The `induction' theorem is degenerate in the case of non-recursive
types (see the examples given below). Failure occurs, or an unpredictable
output theorem is returned, if the input theorem does not have the form
of a theorem returned by \ml{define\_type}.
\subsubsection{Examples}
A structural induction theorem on the type of binary trees defined in the session
beginning on Section~\ref{types-session} can be proved by:
\begin{session}\begin{verbatim}
#let btree_Induct = prove_induction_thm btree_Axiom;;
btree_Induct =
|- !P.
(!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)
\end{verbatim}\end{session}
\noindent The output theorem states that a predicate \ml{P} is true of all
binary trees if it is true of all labelled leaf nodes, and whenever it is true
of two binary trees \ml{b1} and \ml{b2} it is also true of the binary tree
\ml{NODE b1 b2}, in which \ml{b1} and \ml{b2} occur as immediate left and right
subtrees.
For non-recursive types, the induction theorem returned by
\ml{prove\_induction\_thm} is degenerate: there are no `step' cases in the
induction. For the two types \ml{three} and \ml{rec} defined in the preceding
interactions of this session, the induction theorems are:
\begin{session}\begin{verbatim}
#let three_Induct = prove_induction_thm three_Axiom;;
three_Induct = |- !P. P ONE /\ P TWO /\ P THREE ==> (!t. P t)
#let rec_Induct = prove_induction_thm rec_Axiom;;
rec_Induct = |- !P. (!b0 b1 b2. P(REC b0 b1 b2)) ==> (!r. P r)
\end{verbatim}\end{session}
\noindent Here, induction simply reduces to the consideration of
cases,\index{case analysis, in HOL logic@case analysis, in \HOL\ logic!as instance of induction} one for each of the constructors for the concrete type involved.
\index{induction rule!structural, derivation of|)}
\subsection{Structural induction tactics}
\label{avrasi}
%I added one paragraph because this section is so out of sequence. Avra 9/11/89.
\index{theorem continuations!use of, in derivation of induction tactics|(}
This section has been included here for reference
because it relates chiefly to the
type definition package, but it involves concepts not defined until
later, in Chapter~\ref{tactics-and-tacticals}. Tactics, goals
and subgoals are
defined in Section~\ref{tactics}; and theorem continuations, in
Section~\ref{asm-manip}. \ml{MAP\_EVERY} is defined in Section~\ref{avra_manip1}.
\ml{ASSUME\_TAC} is defined in Section~\ref{avra_builtin}.
\ml{MP\_TAC} and \ml{INDUCT\_TAC} can be found in \REFERENCE.
The \ML\ function
\begin{boxed}
\index{INDUCT_THEN@\ml{INDUCT\_THEN}|pin}
\index{induction tactics!derivation of|(}
\begin{verbatim}
INDUCT_THEN : thm -> (thm -> tactic) -> tactic
\end{verbatim}\end{boxed}
\noindent can be used to generate
a structural induction tactic\index{automated derivation!of structural induction tactics}
for any concrete types definable using \ml{define\_type}.\index{define_type@\ml{define\_type}} The first argument
is an induction theorem of the form returned by the function
\ml{prove\_induction\_thm}\index{prove_induction_thm@\ml{prove\_induction\_thm}} discussed in the previous section. The second
argument is a theorem continuation\index{characterizing theorem!use of, in deriving induction} (see
Chapter~\ref{tactics-and-tacticals}) that determines what is to be done with
the induction hypotheses when the resulting tactic is applied to a goal.
If $th$ is an induction theorem for a concrete type \ty{op} with
$m$ constructors \mbox{$C_1$, \dots, $C_m$}
(\ie\ a theorem of the kind returned by
\ml{prove\_induction\_thm}) and $F$ is a theorem continuation, then the
tactic $\ml{INDUCT\_THEN}\;th\;F$ will reduce a goal
{\small\verb%(%}$\Gamma${\small\verb%,"!%}$x{:}
\ty{op}${\small\verb%.%}$t[x]${\small\verb%")%} to the collection of $m$
induction subgoals generated by:
\[ \begin{array}[t]{@{}l@{}l}
\ml{MAP\_EVERY } F \ml{ [}th_1^1\ml{;}\;\ldots\ml{;}\;th_1^{k_1}\ml{]} &
\ml{ (}\Gamma\ml{, "}t[ C_1\;x_1^1\;\ldots\;x_1^{k_1}]\ml{")},\\
\qquad\qquad \vdots & \mbox{} \\
\ml{MAP\_EVERY } F \ml{ [}th_m^1\ml{;}\;\ldots\ml{;}\;th_m^{k_m}\ml{]} &
\ml{ (}\Gamma\ml{, "}t[ C_m\;x_m^1\;\ldots\;x_m^{k_m}]\ml{")}
\end{array}
\]\index{MAP_EVERY@\ml{MAP\_EVERY}}
\noindent where $th_i^j$ is a theorem of the form $\ml{|- }t[x_i^j]$ asserting
the truth of $t[x_i^j]$ for the $j$th recursive argument (for non-recursive
arguments, there will be no $th_i^j$ in the list) of the $i$th constructor
$C_i$ (for $1 \leq i \leq m$).
The most common use of \ml{INDUCT\_THEN} is in conjunction with the theorem
continuation \ml{ASSUME\_TAC}. For example, the built-in
induction tactic \ml{INDUCT\_TAC} for mathematical induction on
the natural numbers is defined in \ML\ by:
\begin{hol}
\index{INDUCT_TAC@\ml{INDUCT\_TAC}}
\begin{verbatim}
let INDUCT_TAC = INDUCT_THEN INDUCTION ASSUME_TAC
\end{verbatim}\end{hol}
\noindent This built-in tactic reduces a goal
{\small\verb%(%}$\Gamma${\small\verb%,"!%}$n${\small\verb%.%}$t[n]${\small\verb%")%} to a basis subgoal
{\small\verb%(%}$\Gamma${\small\verb%,"%}$t[${\small\verb%0%}$]${\small\verb%")%}
and a step subgoal
{\small\verb%(%}$\Gamma\cup\{${\small\verb%"%}$t[n]${\small\verb%"%}$\}${\small\verb%,"%}$t[${\small\verb%SUC %}$n]${\small\verb%")%}.
The extra assumption {\small\verb%"%}$t[n]${\small\verb%"%} (\ie\ the
induction hypothesis)
is added to the assumptions $\Gamma$ by \ml{ASSUME\_TAC}.
By contrast, the
induction tactic \ml{INDUCT\_MP\_TAC} (which is not built-in) defined
by:
\begin{hol}\begin{verbatim}
let INDUCT_MP_TAC = INDUCT_THEN INDUCTION MP_TAC
\end{verbatim}\end{hol}
\noindent reduces a goal
{\small\verb%(%}$\Gamma${\small\verb%,"!%}$n${\small\verb%.%}$t[n]${\small\verb%")%} to a basis subgoal
{\small\verb%(%}$\Gamma${\small\verb%,"%}$t[${\small\verb%0%}$]${\small\verb%")%}
and an induction step subgoal
{\small\verb%(%}$\Gamma${\small\verb%, "%}$t[n]${\small\verb% ==> %}$t[${\small\verb%SUC %}$n]${\small\verb%")%}.
Here, the theorem continuation \ml{MP\_TAC} makes the induction hypothesis
an antecedent of the step subgoal, rather than an assumption.
As this example illustrates, the theorem continuation $F$ in
an induction tactic
\[ \ml{INDUCT\_THEN }th\;\;F \]
\noindent generated using an induction theorem $th$ can be thought of as a
function which determines what is to be done with the induction hypotheses
corresponding to the recursive arguments of constructors in the step
cases of a proof by structural induction. When $F$ is \ml{ASSUME\_TAC},
the induction hypotheses become assumptions in the subgoals generated; and when
$F$ is \ml{MP\_TAC}, the induction hypotheses become the antecedents of
implicative subgoals. Other theorem continuations (for which, see
Chapter~\ref{tactics-and-tacticals} and \REFERENCE) can also be used\index{theorem continuations!use of, in derivation of induction tactics|)}.
\index{type definition package, in HOL system@type definition package, in \HOL\ system!use of, to build induction tools|)}\index{induction tactics!derivation of|)}
\subsection{Other tools}
The function
\begin{boxed}
\index{prove_constructors_one_one@\ml{prove\_constructors\_one\_one}|pin}
\begin{verbatim}
prove_constructors_one_one : thm -> thm
\end{verbatim}\end{boxed}
\noindent proves that the constructors\index{constructors, of concrete types in HOL logic@constructors, of concrete types in \HOL\ logic!proving one-to-one}
of a concrete type which take arguments
are one-to-one\index{automated derivation!of one-to-one theorems}. The argument to \ml{prove\_constructors\_one\_one} is a
theorem of the form returned by \ml{define\_type}.
The function
\begin{boxed}
\index{prove_constructors_distinct@\ml{prove\_constructors\_distinct}|pin}
\begin{verbatim}
prove_constructors_distinct : thm -> thm
\end{verbatim}\end{boxed}
\noindent proves that the constructors\index{constructors, of concrete types in HOL logic@constructors, of concrete types in \HOL\ logic!proving distinct}
of a concrete type yield distinct\index{automated derivation!of
distinctness theorems} values. The argument to
\ml{prove\_constructors\_distinct} is again
a theorem of the form returned by \ml{define\_type}.
The function
\begin{boxed}
\index{prove_cases_thm@\ml{prove\_cases\_thm}|pin}
\begin{verbatim}
prove_cases_thm : thm -> thm
\end{verbatim}\end{boxed}
\noindent proves a cases\index{automated derivation!of case analysis theorems}
theorem\index{case analysis, in HOL logic@case analysis, in \HOL\ logic!theorems for} for any concrete type. Such a theorem states that every
value can be constructed using one of the type's constructors. This property
follows more easily (and therefore is faster to prove) from induction than from
primitive recursion, so the function \ml{prove\_cases\_thm} takes as an
argument an induction theorem of the kind returned by
\ml{prove\_induction\_thm}.\index{prove_induction_thm@\ml{prove\_induction\_thm}}
These auxiliary tools work for any concrete type definable using
\ml{define\_type}.
\subsubsection{Examples}
The following interactions with the system show the proof that the constructor
\ml{LEAF} for the type \ml{(*)btree} is one-one,
and also that the constructor \ml{REC} for the type \ml{rec} is one-to-one.
\begin{session}\begin{verbatim}
#let LEAF_one_one = prove_constructors_one_one btree_Axiom;;
LEAF_one_one =
|- (!x x'. (LEAF x = LEAF x') = (x = x')) /\
(!b1 b2 b1' b2'.
(NODE b1 b2 = NODE b1' b2') = (b1 = b1') /\ (b2 = b2'))
#let REC_one_one = prove_constructors_one_one rec_Axiom;;
REC_one_one =
|- !b0 b1 b2 b0' b1' b2'.
(REC b0 b1 b2 = REC b0' b1' b2') =
(b0 = b0') /\ (b1 = b1') /\ (b2 = b2')
\end{verbatim}\end{session}
The function \ml{prove\_constructors\_one\_one} fails when the concrete
type involved has no constructors that take arguments. For example:
\begin{session}\begin{verbatim}
#let th = prove_constructors_one_one three_Axiom;;
evaluation failed prove_constructors_one_one: invalid input theorem
\end{verbatim}\end{session}
The function \ml{prove\_constructors\_distinct} returns the theorem stating
that the constructors of a concrete type yield pair-wise distinct values. For
example:
\begin{session}\begin{verbatim}
#let NOT_LEAF_NODE = prove_constructors_distinct btree_Axiom;;
NOT_LEAF_NODE = |- !x b1 b2. ~(LEAF x = NODE b1 b2)
#let three_distinct = prove_constructors_distinct three_Axiom;;
three_distinct = |- ~(ONE = TWO) /\ ~(ONE = THREE) /\ ~(TWO = THREE)
\end{verbatim}\end{session}
Cases theorems\index{case analysis, in HOL logic@case analysis, in \HOL\ logic!as instance of induction} are proved from structural induction theorems. For the binary
tree example considered in the present session, here is the cases theorem:
\begin{session}\begin{verbatim}
#let btree_cases = prove_cases_thm btree_Induct;;
btree_cases = |- !b. (?x. b = LEAF x) \/ (?b1 b2. b = NODE b1 b2)
\end{verbatim}\end{session}
\noindent Note that the structural induction theorem for binary trees,
\ml{btree\_Induct}, is used.
\index{extension, of HOL logic@extension, of \HOL\ logic!by type definition|)}
\index{type definition package, in HOL system@type definition package, in \HOL\ system|)}
\section{Miscellaneous system features}
\label{avramisc}
This section describes some of the features
that exist for managing the interface\index{HOL system@\HOL\ system!adjustment of user interface of} to the
\HOL\ system. (Other system functions can be found in
Chapter~\ref{sysfuns}.)
\begin{itemize}
\item Flags for controlling the parsing and printing of terms.
\item A mechanism called {\it sticky types\/} allows default types of
variables to be established.
\item A facility called {\it interface maps\/} permits
a limited amount of overloading to be achieved. Interface maps also support
the use of conventional logical characters on bit-mapped screens.
\item Functions for changing the {\small ASCII}
versions to $\lambda$ and $\vdash$ inside quotations
(the defaults are {\small\verb%\%} and
{\small\verb%|-%} respectively).
\item A method for hiding constants from the quotation parser, so that
variables
with the same names as constants can be input by quotation.
\item A method for arranging for definitions and theorems (and so on)
to be loaded automatically when their names are encountered by the \ML\ parser.
\item Functions to control whether entire theories are kept in memory
(`cached') or not.
\item A function for adjusting the maximum depth to which terms and
theorems are printed by the pretty printer (the default is 500).
\item Functions for counting the number of primitive inferences done in
an evaluation, and timing it.
\end{itemize}
\subsection{Flags for the HOL logic}
\label{HOLflags}
\index{HOL system@\HOL\ system!adjustment of user interface of|(}
See also Chapter~\ref{sysfuns} for a description of the flag mechanism which
is used to control the state of the \HOL\ system. The subset of flags\index{HOL system@\HOL\ system!flags in}\index{flags, in ML@flags, in \ML}
that control aspects of \HOL\ relating to the logic is summarized in the table
below.
\begin{center}
\index{counting inferences, in HOL proofs@counting inferences, in \HOL\ proofs}
\index{inferences, in HOL logic@inferences, in \HOL\ logic!counting of}
\index{printing, in HOL logic@printing, in \HOL\ logic!of types}
\index{types, in HOL logic@types, in \HOL\ logic!printing of}
\index{types, in HOL logic@types, in \HOL\ logic!default}
\index{theory files!pretty printing of}
\index{pretty printing!flags for, in HOL system@flags for, in \HOL\ system}
\index{type checking, in HOL logic@type checking, in \HOL\ logic!verbose errors in}
\index{interface maps}
\index{printing, in HOL logic@printing, in \HOL\ logic!of quantification}
\index{let-terms, in HOL logic@\ml{let}-terms, in \HOL\ logic!pretty printing of}
\index{infixes, in HOL logic@infixes, in \HOL\ logic!pretty printing of}
\index{printing, in HOL logic@printing, in \HOL\ logic!pretty printing}
%\index{printing, in HOL logic@printing, in \HOL\ logic!undischarging
%IS_ASSUMPTION_OFs in@undischarging \ml{IS\_ASSUMPTION\_OF}s in}
%\index{IS_ASSUMPTION_OF@\ml{IS\_ASSUMPTION\_OF}}
\index{timing@\ml{timing}}
\index{show_types@\ml{show\_types}}
\index{sticky@\ml{sticky}}
\index{theory_pp@\ml{theory\_pp}}
\index{type_error@\ml{type\_error}}
\index{interface_print@\ml{interface\_print}}
\index{print_cond@\ml{print\_cond}}
\index{print_quant@\ml{print\_quant}}
\index{print_let@\ml{print\_let}}
\index{print_list@\ml{print\_list}}
\index{print_uncurry@\ml{print\_uncurry}}
\index{print_infix@\ml{print\_infix}}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!paired}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!pretty printing, of paired}
\begin{tabular}{|l|l|l|} \hline
\multicolumn{3}{|c|}{ } \\
\multicolumn{3}{|c|}{\bf Settable system flags} \\
\multicolumn{3}{|c|}{ } \\
{\it Flag} & {\it Function} &
{\it Default value} \\ \hline
& & \\
\ml{timing} & Print number of theorems proved& \ml{false}\\ \hline
\ml{show\_types} & Prints types in quotations & \ml{false}\\ \hline
\ml{sticky} & Activates sticky types & \ml{false}\\ \hline
\ml{theory\_pp} & Pretty printing of theory files & \ml{false} \\ \hline
\ml{type\_error} & Verbose type checking errors in quotations& \ml{true} \\ \hline
\ml{interface\_print} & Causes inverse of interface map & \ml{true}\\[-1mm]
& to be used when printing & \\ \hline
\ml{print\_cond} & Pretty print \HOL\ conditionals & \ml{true}\\ \hline
\ml{print\_quant} & Pretty print \HOL\ quantifications & \ml{true}\\ \hline
\ml{print\_let} & Pretty print \HOL\ \ml{let}-expressions &\ml{true}\\ \hline
\ml{print\_list} & Pretty print \HOL\ lists & \ml{true}\\ \hline
\ml{print\_uncurry} & Pretty print \HOL\ paired abstractions & \ml{true}\\ \hline
\ml{print\_infix} & Pretty print \HOL\ infixes & \ml{true}\\ \hline
\end{tabular}
\end{center}
\subsection{Sticky types and default types}
\label{stickytypes}
\index{sticky types, in HOL logic@sticky types, in \HOL\ logic|(}
\index{types, in HOL logic@types, in \HOL\ logic!default|(}
\index{types, in HOL logic@types, in \HOL\ logic!sticky|(}
\index{type checking, in HOL logic@type checking, in \HOL\ logic!sticky types in|(}
\index{HOL system@\HOL\ system!sticky types in|(}
\index{default types, in HOL logic@default types, in \HOL\ logic|(}
The quotation type checker normally requires that there be enough information
in a quotation to fully determine the types of all subterms of the term being
type checked. This information comes from two sources:
\begin{myenumerate}
\item the generic\index{types, in HOL logic@types, in \HOL\ logic!generic}
types of constants, and
\item explicit type\index{types, in HOL logic@types, in \HOL\ logic!explicit printing of}
information given after a colon.
\end{myenumerate}
\noindent If sticky types are activated (by setting the flag \ml{sticky} to
\ml{true}) then the last type a variable had in a session is remembered, and
this is used as a default type during type checking. The sticky type is only
used, however, if the variable in question is completely unconstrained by its
context in the quotation. If the context partially determines the type of a
variable, then sticky types are not used. For example, in the term \ml{"f 1"}
the variable \ml{f} is constrained to have a function type, but the range type
is not determined. In the quotation \ml{"(f,1)"} the variable \ml{f} is
completely unconstrained. In the latter case an (appropriate) sticky type
would resolve the typing, but in the former it would not. Sticky types can
never cause the type checking of a quotation to fail when it would succeed
without them.
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#set_flag(`sticky`,true);;
false : bool
#"f:num->num";;
"f" : term
#"f 1";;
Indeterminate types: "f:num -> ?"
evaluation failed types indeterminate in quotation
#"f";;
"f" : term
\end{verbatim}\end{session}
A name can be given a sticky type explicity with the function:
\begin{boxed}
\index{set_sticky_type@\ml{set\_sticky\_type}|pin}
\begin{verbatim}
set_sticky_type : string # type -> void
\end{verbatim}\end{boxed}
\noindent This sets sticky types whether or not sticky
types are active.
Note that the flag \ml{sticky} controls whether types are automatically stuck
onto names; it does not control whether such sticky types are actually used
during type checking: sticky types are always used if they are defined.
Sticky types can be removed with the function:
\begin{boxed}
\index{remove_sticky_type@\ml{remove\_sticky\_type}|pin}
\begin{verbatim}
remove_sticky_type : string -> type
\end{verbatim}\end{boxed}
\noindent The sticky type is returned (failure if the variable does not
have a sticky type). A function to return the sticky type of a variable
can be defined by:
\begin{hol}\begin{verbatim}
let sticky_type v =
let ty = remove_sticky_type v
in
(set_sticky_type(v,ty);ty)
\end{verbatim}\end{hol}
\noindent The list of sticky types active in a session is computed by the
function:
\begin{boxed}
\index{sticky_list@\ml{sticky\_list}|pin}
\begin{verbatim}
sticky_list : void -> (string # type) list
\end{verbatim}\end{boxed}\index{default types, in HOL logic@default types, in \HOL\ logic|)}\index{HOL system@\HOL\ system!sticky types in|)}\index{type checking, in HOL logic@type checking, in \HOL\ logic!sticky types in|)}
\index{types, in HOL logic@types, in \HOL\ logic!sticky|)}
\index{types, in HOL logic@types, in \HOL\ logic!default|)}
\index{sticky types, in HOL logic@sticky types, in \HOL\ logic|)}
\subsection{Interface maps}
An interface map\index{interface maps|(}\index{HOL system@\HOL\ system!interface maps in|(} is a list of pairs of strings:
\begin{hol}\begin{alltt}
[`\m{a\sb{1}}`,`\m{c\sb{1}}`; \m{\ldots} ;`\m{a\sb{n}}`,`\m{c\sb{n}}`]
\end{alltt}\end{hol}
If such a map is active, then whenever $a_i$ (for $1\leq i \leq n$) occurs as a
constant or variable in a quoted term, it is translated (by the quotation
parser) to $c_i$, which must be an existing constant (`$a$' is for
`abbreviation' and `$c$' for `constant').
The function:
\begin{boxed}
\index{set_interface_map@\ml{set\_interface\_map}|pin}
\begin{verbatim}
set_interface_map : string list -> string list
\end{verbatim}\end{boxed}
\noindent installs an interface map (the previous map is undone and returned).
The effect of executing:
\begin{hol}\begin{alltt}
set_interface_map [`\m{a\sb{1}}`,`\m{c\sb{1}}`; \m{\ldots} ;`\m{a\sb{n}}`,`\m{c\sb{n}}`];;
\end{alltt}\end{hol}
\noindent is to install
\ml{[`\m{a_1}`,`\m{c_1}`;\m{\ \ldots\ } ;`\m{a_n}`,`\m{c_n}`]}
as the current interface map. Any
binder\index{binders, in HOL logic@binders, in \HOL\ logic!under interface maps} or infix\index{infixes, in HOL logic@infixes, in \HOL\ logic!under interface maps} status (including precedences)\index{precedence, in HOL logic@precedence, in \HOL\ logic!under interface maps} of $c_i$ is propagated
to $a_i$ in the order:
\[ {\it status\/}(c_1)\;\;\leadsto\;\; a_1\;\; {\rm then}\;\;
{\it status\/}(c_2)\;\;\leadsto\;\; a_2\;\; {\rm then}\;\;\;
\ldots\;\;\;{\rm then}\;\; {\it status\/}(c_n)\;\;\leadsto\;\;a_n \]
\noindent This order can be important. For example, if $ix$ is the
name of an
infixed constant and $c$ the name of a non-infixed
constant, then executing:
{\def\con#1{\mbox{\normalsize\sf #1}}
\begin{hol}\begin{alltt}
set\_interface\_map[`\m{c}`,`\m{ix}`; `\m{ix}`,`\m{c}`];;
\end{alltt}\end{hol}}
\noindent will result in both $c$ and $ix$ being infixes; but
executing:
{\def\con#1{\mbox{\normalsize\sf #1}}
\begin{hol}\begin{alltt}
set\_interface\_map[`\m{ix}`,`\m{c}`; `\m{c}`,`\m{ix}`];;
\end{alltt}\end{hol}}
\noindent results in neither $c$ nor $ix$ being an infix:
The current interface map is given by:
\begin{boxed}
\index{interface_map@\ml{interface\_map}|pin}
\begin{verbatim}
interface_map : void -> string list
\end{verbatim}\end{boxed}
\index{printing, in HOL logic@printing, in \HOL\ logic!under interface maps|(}
To avoid parsing and printing ambiguities, maps must be single valued (\ie\
one abbreviation cannot abbreviate two constants) and one-to-one (\ie\
different abbreviations must map to different constants). Furthermore, if
$a_i$ is already a constant then it must be given an abbreviation by the
map. For example:
\begin{hol}\begin{verbatim}
set_interface_map[`+`,`APPEND`];;
\end{verbatim}\end{hol}
\noindent is not allowed because it would make it unclear how to print
pre-existing terms involving \ml{+}. To avoid this problem, an abbreviation
for the old \ml{+} must also be provided.
The flag \ml{interface\_print}\index{interface_print@\ml{interface\_print}}
determines whether the inverse of the current
interface map is applied when printing.
This should be useful for debugging as
it shows what is `really there'\index{printing, in HOL logic@printing, in \HOL\ logic!under interface maps|)}.
The following functions are also provided:
\begin{boxed}
\index{is_constant@\ml{is\_constant}|pin}
\index{is_infix@\ml{is\_infix}|pin}
\index{is_binder@\ml{is\_binder}|pin}
\index{constants, in HOL logic@constants, in \HOL\ logic!indicator function for}
\begin{verbatim}
is_constant : string -> bool
is_infix : string -> bool
is_binder : string -> bool
\end{verbatim}\end{boxed}
\noindent these tell whether a string is the name of a constant, infix\index{infixes, in HOL logic@infixes, in \HOL\ logic!indicator functions for} or
binder\index{binders, in HOL logic@binders, in \HOL\ logic!indicator functions for} respectively (note: being an infix or binder entails being a constant).
The function
\begin{boxed}
\index{allowed_constant@\ml{allowed\_constant}|pin}
\begin{verbatim}
allowed_constant : string -> bool
\end{verbatim}\end{boxed}
\noindent tests whether a string has the correct lexical structure to be a
constant.
The function:
\begin{boxed}
\index{draft_mode@\ml{draft\_mode}|pin}
\begin{verbatim}
draft_mode : void -> bool
\end{verbatim}\end{boxed}
\noindent returns \ml{true} in draft mode\index{draft mode, in HOL system@draft mode, in \HOL\ system}\footnote{See Section~\ref{theoryfns}
for an explanation of `draft mode'.} and \ml{false} otherwise.
The following sessions illustrate the use of interface maps (the comments are
provided by the author, not by the system). They
also show the great potential of interface maps for
generating confusion! The first session illustrates checking that
interface maps are well formed.
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#set_interface_map[`+`,`APPEND`];;
evaluation failed + would become hidden
#set_interface_map[`+`,`APPEND`;`+`,`++`];;
evaluation failed interface map not single valued
#set_interface_map[`+`,`APPEND`;`++`,`+`];;
[] : (string # string) list
\end{verbatim}\end{session}
\noindent The next session shows the propagation of infix status by the interface map declared above:
\begin{session}\begin{verbatim}
#"1 ++ 2";; % ++ is not an infix. %
Badly typed application of: "1"
which has type: ":num"
to the argument term: "++"
which has type: ":num -> (num -> num)"
evaluation failed mk_comb in quotation
#"++ 1 2";;
"++ 1 2" : term
#set_interface_map[`++`,`+`; `+`,`APPEND`];;
[(`+`,`APPEND`); (`++`,`+`)] : (string # string) list
#"1 ++ 2";;
"1 ++ 2" : term
\end{verbatim}\end{session}
\noindent Setting the flag \ml{interface\_print} to \ml{false}
causes the true form of terms to be shown.
\begin{session}\begin{verbatim}
#set_flag(`interface_print`, false);;
true : bool
#"1 ++ 2";;
"1 + 2" : term
#dest_const "++";; % This illustrates potential for confusion. %
`+`,":num -> (num -> num)" : (string # type)
\end{verbatim}\end{session}
\noindent Continuing:
\vfill
\newpage
\begin{session}\begin{verbatim}
#"[1]+[2]";; % APPEND is not an infix. %
Badly typed application of: "[1]"
which has type: ":(num)list"
to the argument term: "APPEND"
which has type: ":(?1)list -> ((?1)list -> (?1)list)"
evaluation failed mk_comb in quotation
#"+[1][2]";;
"APPEND[1][2]" : term
#"APPEND [1] [2]";;
"APPEND[1][2]" : term
\end{verbatim}\end{session}
\noindent Here is an example illustrating the kind of thing to avoid.
\begin{session}\begin{verbatim}
#ADD1;; % Built in theorem. %
Theorem ADD1 autoloaded from theory `arithmetic`.
ADD1 = |- !m. SUC m = m + 1
|- !m. SUC m = m + 1
#set_flag(`interface_print`, true);;
false : bool
#ADD1;;
|- !m. SUC m = m ++ 1
#set_interface_map[`+`,`-`; `-`,`+`];;
[`++`,`+`; `+`,`APPEND`] : (string # string) list
#ADD1;;
|- !m. SUC m = m - 1
\end{verbatim}\end{session}
There are some subtleties and rough edges to the current implementation
of interface maps. For example, any special parsing or printing properties
of special constants (\ml{!}, \ml{?}, {\small\verb%/\%}, {\small\verb%\/%},
\etc) are transferred to the names that abbreviate them. For example, notice the
disappearing spaces in the next session.
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#set_interface_map[`Forall`,`!`; `Exists`,`?`];;
[] : (string # string) list
#"Forall x. Exists y. x < y";;
"Forallx. Existsy. x < y" : term
\end{verbatim}\end{session}
\noindent This happens because the printer does not print spaces after
\ml{!} and \ml{?} and this behaviour gets transferred to \ml{Forall} and
\ml{Exists} by the interface map.
It would be straightforward, but rather messy, to have the printer insert
spaces after \ml{Forall} and \ml{Exists}. This will be implemented, and other
changes or additions, if experience indicates it is sensible.
Interface maps are still rather
experimental, and it is expected that various details will need
modification as experience is gained. A feature
not currently implemented, but possibly useful, would
allow the relative precedences of user-defined infixes to be adjusted.
\index{HOL system@\HOL\ system!interface maps in|)}
\index{interface maps|)}
\subsection{Changing the lambda symbol}
\label{change-lambda}
\index{lambda symbol in HOL logic, resetting@lambda symbol, in \HOL\ logic, resetting|(}
\index{customization of HOL system@customization of \HOL\ system|(}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!changing symbol for|(}
\index{HOL system@\HOL\ system!changeable symbols of|(}
\index{symbols in HOL logic, changeable@symbols in \HOL\ logic, changeable|(}
The \ML\ function:
\begin{boxed}
\index{set_lambda@\ml{set\_lambda}|pin}
\begin{verbatim}
set_lambda : string -> string
\end{verbatim}\end{boxed}
\noindent allows an alternative symbol (or string) to be used to represent
lambda ($\lambda$) inside quotations.\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!changing symbol for}
The previous $\lambda$-representing
string is returned. Note that after calling \ml{set\_lambda}:
\begin{itemize}
\item The symbol {\small\verb%\%}\index{ function abstraction binder, in HOL logic@{\small\verb+\+} (function abstraction binder, in \HOL\ logic)}
is still available for input.
\item All abstractions will be printed with the new string.
\item It is necessary to use:
{\verb%set_lambda `\\`%}
to restore the alternative lambda to {\small\verb%\%}\index{ escape, in ML strings@{\small\verb+\+} (escape, in \ML\ strings)}
(since {\small\verb%\%} is the escape character inside \ML\ strings).
\end{itemize}
\noindent For example:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#set_lambda `Lambda`;;
`\` : string
#"Lambda x.x+1";;
"Lambda x. x + 1" : term
#"\x.x+1";;
"Lambda x. x + 1" : term
\end{verbatim}\end{session}
\index{lambda symbol in HOL logic, resetting@lambda symbol, in \HOL\ logic, resetting|)}
\subsection{Changing the turnstile symbol}
\label{turnstile}
The turnstile symbol {\small\verb%|-%}, which is used as an {\small ASCII}
approximation to $\vdash$ when printing theorems, can be changed with the
\ML\ function:
\begin{boxed}
\index{set_turnstile@\ml{set\_turnstile}|pin}
\begin{verbatim}
set_turnstile : string -> string
\end{verbatim}\end{boxed}
\noindent The previous representation of turnstile is returned. For example:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#REFL "x:num";;
|- x = x
#set_turnstile `Proved! `;;
`|- ` : string
#REFL "x:num";;
Proved! x = x
#set_turnstile ` |- `;;
`Proved! ` : string
#REFL "x:num";;
|- x = x
\end{verbatim}\end{session}
\index{customization of HOL system@customization of \HOL\ system|)}
\index{function abstraction, in HOL logic@function abstraction, in \HOL\ logic!changing symbol for|)}
\index{HOL system@\HOL\ system!changeable symbols of|)}
\index{symbols in HOL logic, changeable@symbols in \HOL\ logic, changeable|)}
\subsection{Hiding constants}
\label{hidden}
\index{parsing, of HOL logic@parsing, of \HOL\ logic!hiding constant status in|(}
\index{HOL system@\HOL\ system!hiding constants in|(}
The following function can be used to hide\index{constants, in HOL logic@constants, in \HOL\ logic!hiding status of|(} the constant status of a name from
the quotation parser.
\begin{boxed}
\index{hide_constant@\ml{hide\_constant}|pin}
\begin{verbatim}
hide_constant : string -> void
\end{verbatim}\end{boxed}
\noindent Evaluating \ml{hide\_constant\ `}$x$\ml{`}
makes the quotation parser treat $x$ as a variable (lexical
rules permitting), even if $x$ is the name of a constant in the current theory
(constants and variables can have the same name).
This is useful if one wants to use variables\index{variables, in HOL logic@variables, in \HOL\ logic!with constant names} with the same names
as previously declared (or built-in) constants (\eg\ \ml{o}, \ml{I}, \ml{S}
\etc).
The name $x$ is still a
constant for the constructors, theories, etc; \ml{hide\_constant}
affects only parsing.
Hiding a constant and then attempting to declare it as a new
constant will fail (as it must, if the system is to remain sound).\index{soundness!of HOL logic@of \HOL\ logic}\index{constants, in HOL logic@constants, in \HOL\ logic!hiding status of|)}
The function
\begin{boxed}
\index{unhide_constant@\ml{unhide\_constant}|pin}
\begin{verbatim}
unhide_constant : string -> void
\end{verbatim}\end{boxed}
\noindent undoes the hiding; it fails if its argument is not a previously
hidden constant.
The function:
\begin{boxed}
\index{is_hidden@\ml{is\_hidden}|pin}
\begin{verbatim}
is_hidden : string -> bool
\end{verbatim}\end{boxed}
\noindent tests whether a string is the name of a hidden constant.
\index{HOL system@\HOL\ system!adjustment of user interface of|)}
\index{HOL system@\HOL\ system!hiding constants in|)}
\index{parsing, of HOL logic@parsing, of \HOL\ logic!hiding constant status in|)}
\subsection{Autoloading of axioms, definitions and theorems}\index{axioms!autoloading of, in HOL system@autoloading of, in \HOL\ system}
It is possible to mark the name of an axiom, definition or theorem so that
if it occurs in an \ML\ expression then the named item will be automatically
loaded\index{loading, of HOL theories@loading, of \HOL\ theories}\index{automatic loading, of HOL theory components@automatic loading, of \HOL\ theory components} from the appropriate theory before the \ML\ expression is evaluated.
This provides a kind of crude `paging'\index{theories, in HOL logic@theories, in \HOL\ logic!paging of} of theories. Many standard definitions
and theorems are set up to autoload
if they are used.
The function to set up an autoloading action is:
\begin{boxed}
\index{autoload_theory@\ml{autoload\_theory}|pin}
\begin{verbatim}
autoload_theory : (string # string # string) -> void
\end{verbatim}\end{boxed}
\noindent Evaluating
\ml{autoload\_theory(`}$kind$\ml{`,`}$thy$\ml{`,`}$name$\ml{`)}, where $kind$
is \ml{axiom}, \ml{definition} or \ml{theorem}, has the side effect of setting
the name $name$ so that when it is encountered by the \ML\ parser the
appropriate sort of object will be autoloaded from the theory $thy$. Note that
constant specifications\index{constant specifications, in HOL logic@constant specifications, in \HOL\ logic!autoloading of}\index{type definitions, in HOL logic@type definitions, in \HOL\ logic!autoloading of} and type definitions are regarded as special cases of
definitions.
An autoloading action set up with \ml{autoload\_theory} will only be done once,
namely the first time the name is encountered in the session. Autoload actions
can be removed from a name using the function:
\begin{boxed}
\index{undo_autoload@\ml{undo\_autoload}|pin}
\begin{verbatim}
undo_autoload : string -> bool
\end{verbatim}\end{boxed}
The value \ml{true} is returned
if an autoload action had been set up, \ml{false} is returned otherwise.
\subsection{Cached theories}
When a theory is first accessed using the functions \ml{load\_theory},
\ml{axiom}, \ml{definition}, \ml{theorem} \etc, the whole theory is read from
disk into a data-structure in memory called a {\it theory cache\/}.\index{theories, in HOL logic@theories, in \HOL\ logic!caching of}\index{caching}\index{theory caching}\index{HOL system@\HOL\ system!caching theories in} Subsequent
accesses then refer to this in-memory cache and are therefore faster. Theories,
however, can be very large, and on machines with limited memory,
this can lead to a lot of
garbage collection, or even running out of space. To deal with
this problem, the \ML\ function:
\begin{boxed}
\index{delete_cache@\ml{delete\_cache}|pin}
\begin{verbatim}
delete_cache : string -> void
\end{verbatim}\end{boxed}
\noindent can be used to delete the theory cache (but not the theory
file on disk), thereby
freeing up some space (at the cost of making the next theory access slower).
For example, a function that fetches a single theorem without
bringing in the whole theory is:
\begin{hol}\begin{verbatim}
let fetch_thm_without_caching thy thm =
let th = theorem thy thm
in (delete_cache thy; th);;
\end{verbatim}\end{hol}
Whether a theory has been cached or not can be discovered with the function:
\begin{boxed}
\index{cached_theories@\ml{cached\_theories}|pin}
\begin{verbatim}
cached_theories : void -> (string # bool) list
\end{verbatim}\end{boxed}
\noindent This returns a list of pairs
\ml{(}$thy$\ml{,}$b$\ml{)} where $thy$ is the name of
a theory that has been loaded and
$b$ is a truth value that is \ml{true} if $thy$'s cache has been deleted with
\ml{delete\_cache} and \ml{false} otherwise.
\subsection{Adjusting the pretty-print depth}
\index{ML@\ML!pretty printer for|(}
The following \ML\ function can be used to adjust the maximum depth of
printing\index{printing, in HOL logic@printing, in \HOL\ logic!structural depth adjustment in}.
\begin{boxed}
\index{max_print_depth@\ml{max\_print\_depth}|pin}
\begin{verbatim}
max_print_depth : int -> int
\end{verbatim}\end{boxed}
\noindent The default print depth\index{default print depth, for HOL logic@default print depth, for \HOL\ logic|(} is $500$. Evaluating
\ml{max\_print\_depth}$\ n$ sets the maximum to $n$ and returns
the previous value
of the maximum. Subterms nested more deeply than
the maximum print depth are printed as
{\small\verb%&%}. For example:
\setcounter{sessioncount}{1}
\begin{session}\begin{verbatim}
#ADD_CLAUSES;;
Theorem ADD_CLAUSES autoloaded from theory `arithmetic`.
ADD_CLAUSES =
|- (0 + m = m) /\
(m + 0 = m) /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))
|- (0 + m = m) /\
(m + 0 = m) /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))
#max_print_depth 7;;
500 : int
#ADD_CLAUSES;;
|- (& + & = m) /\ (& + & = m) /\ ((& + & = &(&) /\ (& + (& = &(&)
#max_print_depth 5;;
7 : int
#ADD_CLAUSES;;
|- (& /\ (& /\ (& /\ (&
#max_print_depth 3;;
5 : int
#ADD_CLAUSES;;
|- &
\end{verbatim}\end{session}
\index{default print depth, for HOL logic@default print depth, for \HOL\ logic|)}
\noindent For more details about pretty printing in \ML, see
Section~\ref{pretty-print}.
\index{ML@\ML!pretty printer for|)}
\subsection{Timing and counting theorems}
Whenever \HOL\ performs a primitive inference (or accepts an axiom or
definition) a counter\index{inferences, in HOL logic@inferences, in \HOL\ logic!counting of}\index{timing of HOL evaluations@timing of \HOL\ evaluations}\index{HOL system@\HOL\ system!timing and counting inferences in} is incremented. The value of this counter is returned by
the function:
\begin{boxed}
\index{thm_count@\ml{thm\_count}|pin}
\index{counting inferences, in HOL proofs@counting inferences, in \HOL\ proofs}
\begin{verbatim}
thm_count : void -> int
\end{verbatim}\end{boxed}
\noindent This counter can be reset with the function:
\begin{boxed}
\index{set_thm_count@\ml{set\_thm\_count}|pin}
\begin{verbatim}
set_thm_count : int -> int
\end{verbatim}\end{boxed}
\noindent The previous value of the counter is returned.
The following function is used to switch \ML\ into a mode in which the number
of primitive inferences done during each top-level interaction is shown.
Run-time and garbage collection time are also shown.
\begin{boxed}
\index{timer@\ml{timer}|pin}
\begin{verbatim}
timer : bool -> bool
\end{verbatim}\end{boxed}
\noindent Executing \ml{timer true} causes the number of primitive inferences
and timings to be printed; \ml{timer false} switches the printing off. The
previous setting is
returned. Executing \ml{timer}$\ b$ is equivalent to
setting the flag \ml{timing} to the value $b$ (see Section~\ref{flags}).
|