File: FOLDL_CONV.doc

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (56 lines) | stat: -rw-r--r-- 1,360 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
\DOC FOLDL_CONV

\TYPE {FOLDL_CONV : conv -> conv}

\SYNOPSIS
Computes by inference the result of applying a function to elements of a list.

\KEYWORDS
conversion, list.

\DESCRIBE
{FOLDL_CONV} takes a conversion {conv} and a term {tm} in the following form:
{
   FOLDL f e [x0;...xn]
}
\noindent It returns the theorem
{
   |- FOLDL f e [x0;...xn] = tm'
}
\noindent where {tm'} is the result of applying the function {f} iteratively to
the successive elements of the list and the result of the previous
application starting from the tail end of the list. During each
iteration, an expression {f ei xi} is evaluated. The user supplied
conversion {conv} is used to derive a theorem 
{
   |- f ei xi = e(i+1)
}
\noindent which is used in the next iteration.

\FAILURE
{FOLDL_CONV conv tm} fails if {tm} is not of the form described above.

\EXAMPLE
To sum the elements of a list, one can evaluate
{
   FOLDL_CONV ADD_CONV "FOLDL $+ 0 [0;1;2;3]";;
}
\noindent which returns the following theorem:
{
   |- FOLDL $+ 0[0;1;2;3] = 6
}
\noindent In general, if the function {f} is an explicit lambda abstraction
{(\x x'. t[x,x'])}, the conversion should be in the form
{
   ((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv'))
}
\noindent  where {conv'} applied to {t[x,x']} returns the theorem
{
   |-t[x,x'] = e''.
}

\SEEALSO
FOLDR_CONV, list_FOLD_CONV.

\ENDDOC