File: SOME_EL_CONV.doc

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (50 lines) | stat: -rw-r--r-- 1,167 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
\DOC SOME_EL_CONV

\TYPE {SOME_EL_CONV : conv -> conv}

\SYNOPSIS
Computes by inference the result of applying a predicate to elements of a list.

\KEYWORDS
conversion, list.

\DESCRIBE
{SOME_EL_CONV} takes a conversion {conv} and a term {tm} in the following form:
{
   SOME_EL P [x0;...xn]
}
\noindent It returns the theorem
{
   |- SOME_EL P [x0;...xn] = F
}
\noindent if for every {xi} occurred in the list, {conv "P xi"}
returns a theorem {|- P xi = F}, otherwise, if for at least one {xi},
evaluating {conv "P xi"} returns the theorem {|- P xi = T}, then it returns the theorem
{
   |- SOME_EL P [x0;...xn] = T
}

\FAILURE
{SOME_EL_CONV conv tm} fails if {tm} is not of the form described above, or
failure occurs when evaluating {conv "P xi"} for some {xi}.

\EXAMPLE
Evaluating
{
   SOME_EL_CONV bool_EQ_CONV "SOME_EL ($= T) [T;F;T]";;
}
\noindent returns the following theorem:
{
   |- SOME_EL($= T)[T;F;T] = T
}
\noindent   In general, if the predicate {P} is an explicit lambda abstraction
{(\x. P x)}, the conversion should be in the form
{
   (BETA_CONV THENC conv')
}

\SEEALSO
ALL_EL_CONV, IS_EL_CONV, FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.

\ENDDOC