File: STRIP_GOAL_THEN.doc

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (69 lines) | stat: -rw-r--r-- 1,852 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\DOC STRIP_GOAL_THEN

\TYPE {STRIP_GOAL_THEN : (thm_tactic -> tactic)}

\SYNOPSIS
Splits a goal by eliminating one outermost connective, applying the
given theorem-tactic to the antecedents of implications.

\KEYWORDS
theorem-tactic.

\DESCRIBE
Given a theorem-tactic {ttac} and a goal {(A,t)}, {STRIP_GOAL_THEN} removes one
outermost occurrence of one of the connectives {!}, {==>}, {~} or {/\} from the
conclusion of the goal {t}.  If {t} is a universally quantified term, then
{STRIP_GOAL_THEN} strips off the quantifier:
{
      A ?- !x.u
   ==============  STRIP_GOAL_THEN ttac
     A ?- u[x'/x]
}
\noindent where {x'} is a primed variant that does not appear free in the
assumptions {A}.  If {t} is a conjunction, then {STRIP_GOAL_THEN} simply splits
the conjunction into two subgoals:
{
      A ?- v /\ w
   =================  STRIP_GOAL_THEN ttac
    A ?- v   A ?- w
}
\noindent If {t} is an implication {"u ==> v"} and if:
{
      A ?- v
  ===============  ttac (u |- u)
     A' ?- v'
}
\noindent then:
{
      A ?- u ==> v
  ====================  STRIP_GOAL_THEN ttac
        A' ?- v'
}
\noindent Finally, a negation {~t} is treated as the implication {t ==> F}.

\FAILURE
{STRIP_GOAL_THEN ttac (A,t)} fails if {t} is not a universally quantified term,
an implication, a negation or a conjunction.  Failure also occurs if the
application of {ttac} fails, after stripping the goal.

\EXAMPLE
When solving the goal
{
   ?- (n = 1) ==> (n * n = n)
}
\noindent a possible initial step is to apply
{
   STRIP_GOAL_THEN SUBST1_TAC
}
\noindent thus obtaining the goal
{
   ?- 1 * 1 = 1
}
\USES
{STRIP_GOAL_THEN} is used when manipulating intermediate results (obtained by
stripping outer connectives from a goal) directly, rather than as assumptions.

\SEEALSO
CONJ_TAC, DISCH_THEN, FILTER_STRIP_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_TAC.

\ENDDOC