File: STRIP_TAC.doc

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (64 lines) | stat: -rw-r--r-- 1,854 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
\DOC STRIP_TAC

\TYPE {STRIP_TAC : tactic}

\SYNOPSIS
Splits a goal by eliminating one outermost connective.

\KEYWORDS
tactic.

\DESCRIBE
Given a goal {(A,t)}, {STRIP_TAC} removes one outermost occurrence of one of the
connectives {!}, {==>}, {~} or {/\} from the conclusion of the goal {t}.  If
{t} is a universally quantified term, then {STRIP_TAC} strips off the
quantifier:
{
      A ?- !x.u
   ==============  STRIP_TAC
     A ?- u[x'/x]
}
\noindent where {x'} is a primed variant that does not appear free in the
assumptions {A}.  If {t} is a conjunction, then {STRIP_TAC} simply splits the
conjunction into two subgoals:
{
      A ?- v /\ w
   =================  STRIP_TAC
    A ?- v   A ?- w
}
\noindent If {t} is an implication, {STRIP_TAC} moves the antecedent into the
assumptions, stripping conjunctions, disjunctions and existential
quantifiers according to the following rules:
{
    A ?- v1 /\ ... /\ vn ==> v            A ?- v1 \/ ... \/ vn ==> v
   ============================        =================================
       A u {{v1,...,vn}} ?- v             A u {{v1}} ?- v ... A u {{vn}} ?- v

     A ?- ?x.w ==> v
   ====================
    A u {{w[x'/x]}} ?- v
}
\noindent where {x'} is a primed variant of {x} that does not appear free in
{A}. Finally, a negation {~t} is treated as the implication {t ==> F}.

\FAILURE
{STRIP_TAC (A,t)} fails if {t} is not a universally quantified term,
an implication, a negation or a conjunction.

\EXAMPLE
Applying {STRIP_TAC} twice to the goal:
{
    ?- !n. m <= n /\ n <= m ==> (m = n)
}
\noindent results in the subgoal:
{
   {{n <= m, m <= n}} ?- m = n
}
\USES
When trying to solve a goal, often the best thing to do first
is {REPEAT STRIP_TAC} to split the goal up into manageable pieces.

\SEEALSO
CONJ_TAC, DISCH_TAC, DISCH_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_GOAL_THEN.

\ENDDOC