1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
\DOC let_CONV
\TYPE {let_CONV : conv}
\SYNOPSIS
Evaluates {let}-terms in the HOL logic.
\KEYWORDS
conversion.
\DESCRIBE
The conversion {let_CONV} implements evaluation of object-language {let}-terms.
When applied to a {let}-term of the form:
{
let v1 = t1 and ... and vn = tn in t
}
\noindent where {v1}, ..., {vn} are variables, {let_CONV} proves and returns
the theorem:
{
|- (let v1 = t1 and ... and vn = tn in t) = t[t1,...,tn/v1,...,vn]
}
\noindent where {t[t1,...,tn/v1,...,vn]} denotes the result of substituting
{ti} for {v1} in parallel in {t}, with automatic renaming of bound variables
to prevent free variable capture.
{let_CONV} also works on {let}-terms that bind tuples of variables to tuples of
values. That is, if {<tup>} is an arbitrarily-nested tuple of distinct
variables {v1}, ..., {vn} and {<val>} is a structurally similar tuple of
values, that is {<val>} equals {<tup>[t1,...,tn/v1,...,vn]} for some terms
{t1}, ..., {tn}, then:
{
let_CONV "let <tup> = <val> in t"
}
\noindent returns
{
|- (let <tup> = <val> in t) = t[t1,...,tn/v1,...,vn]
}
\noindent That is, the term {ti} is substituted for the corresponding variable
{vi} in {t}. This form of {let}-reduction also works with simultaneous binding
of tuples using {and}.
Finally, {let_CONV} also handles {let}-terms that introduce local definitions
of functions. When applied to a term of the form:
{
"let f v1 ... vn = tm in t"
}
\noindent {let_CONV} returns:
{
|- (let f v1 ... vn = tm in t) = t'
}
\noindent where {t'} is obtained by rewriting all applications of the function
{f} in {t} using the defining equation {f v1 ... vn = tm}. Partial applications
of the form {f x1 ... xm} where {m} is less that {n} are rewritten to
lambda-abstractions (see the example given below). Simultaneous introduction
of functions using {and} is handled, and each of {v1}, ..., {vn} in the pattern
shown above can be either a variable or a tuple of variables.
\FAILURE
{let_CONV tm} fails if {tm} is not a reducible {let}-term of one of the forms
specified above.
\EXAMPLE
A simple example of the use of {let_CONV} to eliminate a single local variable
is the following:
{
#let_CONV "let x = 1 in x+y";;
|- (let x = 1 in x + y) = 1 + y
}
\noindent and an example showing a tupled binding is:
{
#let_CONV "let (x,y) = (1,2) in x+y";;
|- (let (x,y) = 1,2 in x + y) = 1 + 2
}
\noindent Simultaneous introduction of two local functions {f} and {g}
and rewriting is illustrated by:
{
#let_CONV "let f x = x + 1 and g x = x + 2 in !x. g(f(g x)) = x + 5";;
|- (let f x = x + 1 and g x = x + 2 in (!x. g(f(g x)) = x + 5)) =
(!x. ((x + 2) + 1) + 2 = x + 5)
}
\noindent and an example of partial application is:
{
#let_CONV "let f x y = x+y in f 1";;
|- (let f x y = x + y in f 1) = (\y. 1 + y)
}
\noindent Note the introduction of a lambda-abstraction in the result.
\SEEALSO
BETA_CONV, PAIRED_BETA_CONV.
\ENDDOC
|