File: num_CONV.doc

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (29 lines) | stat: -rw-r--r-- 631 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
\DOC num_CONV

\TYPE {num_CONV : conv}

\SYNOPSIS
Provides definitional axiom for a nonzero numeral.

\KEYWORDS
conversion, number, arithmetic.

\DESCRIBE
{num_CONV} is an axiom-scheme from which one may obtain a defining equation for
any natural number constant not equal to {0} (i.e. {1}, {2}, {3},...).  If
{"n"} is such a constant, then {num_CONV "n"} returns the theorem:
{
   |- n = SUC m
}
\noindent where {m} is the numeral that denotes the predecessor of the
number denoted by {n}.

\FAILURE
{num_CONV tm} fails if {tm} is {"0"} or if not {tm} is not a numeral constant.

\EXAMPLE
{
#num_CONV "3";;
|- 3 = SUC 2
}
\ENDDOC