File: sort.doc

package info (click to toggle)
hol88 2.02.19940316dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 65,816 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (34 lines) | stat: -rw-r--r-- 956 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
\DOC sort

\TYPE {sort : (((* # *) -> bool) -> * list -> * list)}

\SYNOPSIS
Sorts a list using a given transitive `ordering' relation.

\DESCRIBE
The call
{
   sort op list
}
\noindent where {op} is an (uncurried) transitive relation on the elements of
{list}, will topologically sort the list, i.e. will permute it such that if
{x op y} but not {y op x} then {x} will occur to the left of {y} in the
sorted list. In particular if {op} is a total order, the list will be sorted in
the usual sense of the word.

\FAILURE
Never fails.

\EXAMPLE
A simple example is:
{
   #sort $< [3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9];;
   [1; 1; 2; 3; 3; 4; 5; 5; 5; 6; 7; 8; 9; 9; 9] : int list
}
\noindent The following example is a little more complicated. Note
that the `ordering' is not antisymmetric.
{
   #sort ($< o (fst # fst)) [(1,3); (7,11); (3,2); (3,4); (7,2); (5,1)];;
   [(1, 3); (3, 4); (3, 2); (5, 1); (7, 2); (7, 11)] : (int # int) list
}
\ENDDOC