1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; HOL 88 Version 2.0 ;;;
;;; ;;;
;;; FILE NAME: f-typeml.l ;;;
;;; ;;;
;;; DESCRIPTION: Functions for typechecking ML ;;;
;;; ;;;
;;; USES FILES: f-franz.l (or f-cl.l), f-constants.l, f-macro.l ;;;
;;; ;;;
;;; University of Cambridge ;;;
;;; Hardware Verification Group ;;;
;;; Computer Laboratory ;;;
;;; New Museums Site ;;;
;;; Pembroke Street ;;;
;;; Cambridge CB2 3QG ;;;
;;; England ;;;
;;; ;;;
;;; COPYRIGHT: University of Edinburgh ;;;
;;; COPYRIGHT: University of Cambridge ;;;
;;; COPYRIGHT: INRIA ;;;
;;; ;;;
;;; REVISION HISTORY: Original code: typeml (lisp 1.6) part of Edinburgh ;;;
;;; LCF by M. Gordon, R. Milner and C. Wadsworth (1978) ;;;
;;; Transported by G. Huet in Maclisp on Multics, Fall ;;;
;;; 1981 ;;;
;;; ;;;
;;; V2.2 :new-exit instead of err ;;;
;;; ;;;
;;; V4.3 : (\x.e)e' typechecks like let x=e' in e GH ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(eval-when (compile)
#+franz (include "lisp/f-franz")
(include "lisp/f-constants")
(include "lisp/f-macro")
(special |%print_lettypes-flag|))
#+franz
(declare
(localf structon
structoff
genmlink
listtyping
typing
adjust-fundef
adjust-abstraction
is-constructor
is-local-constructor
record-abstype
record-conctype
abstract-typing
concrete-typing
test-trap-typing
parserr
tidycdrs
varbindings
layer
layerl
gettype
get-builtin
gettypeid
mutant
mutant1
immut
isdeftype
getdeftype
rectyping
newdeftype
gettypet
tyscoperr
checkabst
gettypetid
typebindings
popenv
poptenv
tidy
tidyup
condpstring
printabstype
printtytail
make-atom-ty
mlink
instof
prune
occursbt
polyb
unifyt
unifybt
unifytl))
;;; make a circular list (x x x x ...)
(defun twistlist (x)
(let ((lx (list x))) (rplacd lx lx))) ;twistlist
(defun structon (x) (setq structcheck t) x) ;structon
(defun structoff (x) (setq structcheck nil) x) ;structoff
;;; Generate a type variable
(defun genmlink () (list '%MLINK)) ;genmlink
;;; Check the types of several objects, recording all type errors
;;; (listtyping (ob1 ... obn) (ty1 .. tyn) ty)
;;; unifies the type of each obi with type tyi, finally returns ty
;;; if type errors occur, return a new type variable to prevent error cascade
(defun listtyping (obl tyl ty)
(let ((OK t))
(while obl
(let ((ty$ (typing (car obl))))
(when (and (car tyl) (not (unifyt ty$ (car tyl))))
(incf type%errors)
(setq OK nil)
(llterpri)
(llprinc '|ill-typed phrase: |)
(print-ml-text (car obl) %mlprindepth)
(llterpri)
(let ((%temt tenv))
(ptoken |has an instance of type|)
(pbreak 2 4)
(printmty (tidy ty$))
(pnewline)
(ptoken |which should match type|)
(pbreak 2 4)
(printmty (tidy (car tyl)))
(pnewline))))
(setq obl (cdr obl)) (setq tyl (cdr tyl)))
(if OK ty (genmlink)))) ; listtyping
;;; Deduce types of ML syntax tree
;;; also deduces ML types inside quotations, for typing of antiquotations
(defun typing (ob)
(let ((c (car ob)) (l (cdr ob)) (ty (genmlink)) (ty$ (genmlink)))
(case c
(mk-empty (if structcheck ty nullty))
(mk-boolconst boolty)
(mk-intconst intty)
(mk-tokconst tokty)
(MK=VARTYPE typety)
((MK=VAR MK=CONST) termty)
(mk-fail ty)
(mk-failwith (listtyping l (list tokty) ty))
((mk-con mk-con0) (gettype (car l)))
(mk-wildcard
(if structcheck (genmlink)
(progn
(llprinc '|wildcard allowed only in patterns|)
(llterpri)
(throw-from typecheck nil))))
(mk-var
(let ((c-arity (is-constructor (car l))))
(when c-arity
(rplaca ob (if (zerop c-arity) 'mk-con0 'mk-con)))
(gettype (car l))))
(mk-consttyp
(if (checkabst l)
(cons (gettypet (car l)) (mapcar #'typing (cdr l)))
(gettypet (car l))))
(mk-vartyp
(cond
((assoc1 (car l) %vartypes))
((push (cons (car l) ty) %vartypes) ty)))
;;; mk-objtyp deleted from the following list [TFM 90.09.09]
;;; MJCG 11 May 1992.
;;; Test for badly formed list types (e.g. (bool,bool)list) added.
(mk-listyp
(cond ((cdr l)
(llprinc '|too many args to list |)
(llterpri)
(throw-from typecheck nil))
(t (cons c (list(typing(car l)))))))
((mk-inttyp mk-booltyp mk-termtyp mk-formtyp mk-typetyp mk-thmtyp
mk-toktyp mk-nulltyp
;;; mk-listyp ;;; Commented out by MJCG 11 May 1992
mk-prodtyp mk-funtyp mk-sumtyp)
(cons c (mapcar #'typing l)))
(mk-straint
(let ((ty (typing (cadr l))))
(listtyping (list (car l)) (list ty) ty)))
(mk-dupl
`(mk-prodtyp ,(typing (car l)) ,(typing (cadr l))))
(mk-seq (listtyping (car l) (twistlist nil) (typing (cadr l))))
(mk-list (listtyping l (twistlist ty) (list 'mk-listyp ty)))
(mk-appn
(ifn (eq (caar l) 'mk-abstr)
(listtyping l (list (list 'mk-funtyp ty ty$) ty) ty$)
(dis-place
(cadr ob)
(adjust-abstraction (cadadr ob) (caddadr ob)))
(typing `(mk-let (,(cadar l) . ,(cadr l))))
(popenv (typing (caddar l)))))
;;; types (\x.e1)e2 like let x=e2 in e1 [GH]
;;; maybe %pt should be changed accordingly, so that the translator may
;;; take advantage of the transformation too.
(mk-binop
(ifn structcheck
(typing `(mk-appn (mk-var ,(car l)) (mk-dupl ,@(cdr l))))
(setq ty$ `(mk-listyp ,ty))
(listtyping (cdr l) (list ty ty$) ty$)))
(mk-unop (typing `(mk-appn (mk-var ,(car l)) ,(cadr l))))
(mk-assign (let ((ty nil))
(structon (setq asscheck t))
(setq ty (typing (car l)))
(structoff (setq asscheck nil))
(listtyping (cdr l) (list ty) ty)))
((mk-test mk-trap) (test-trap-typing c l ty ty$))
(mk-while (listtyping (list (car l)) (twistlist boolty) nil)
(typing (cadr l)) nullty)
(mk-case (typing `(mk-appn (mk-fun ,(cadr l)) ,(car l))))
(mk-abstr
(dis-place ob (adjust-abstraction (car l) (cadr l)))
(setq l (cdr ob))
(varbindings (car l) c)
(popenv (list 'mk-funtyp
(structoff (typing (structon (car l)))) (typing (cadr l)))))
(mk-fun
(listtyping
(mapcar #'(lambda (funcase)
`(mk-abstr ,(car funcase) ,(cdr funcase)))
(car l))
(twistlist ty)
ty))
(mk-in (typing (car l)) (popenv (typing (cadr l))))
(mk-ind (typing (car l)) (poptenv (typing (cadr l))))
((mk-ina mk-inc) (typing (car l))
(typescopechk (popenv (poptenv (typing (cadr l))))))
((mk-let mk-letref)
(let* ((consl1l2 (split (mapcar #'adjust-fundef l)))
(l1 (car consl1l2))
(l2 (cdr consl1l2)))
(rplacd ob (list (binarize l1 'mk-dupl) (binarize l2 'mk-dupl))))
(setq l (cdr ob))
(let ((ty (typing (cadr l))))
(prog2
(varbindings (car l) c)
(structoff (listtyping (structon (list (car l))) (list ty) ty))
(if (eq c 'mk-let) (rplaca (car env) 'let)))))
(mk-letrec
(let* ((consl1l2 (split (mapcar #'adjust-fundef l)))
(l1 (car consl1l2))
(l2 (cdr consl1l2)))
(rplacd ob (list (binarize l1 'mk-dupl) (binarize l2 'mk-dupl)))
(setq l (cdr ob))
(varbindings (car l) c)
(rectyping l)))
((mk-abstype mk-absrectype) (abstract-typing c l))
((mk-type mk-rectype) (concrete-typing c l))
(mk-deftype
(typebindings (mapcar #'newdeftype (car l)))
nullty)
((mk-tyquot mk-quot MK=ANTIQUOT MK=TYPE=ANTIQUOT)
(typing (car l)))
(MK=TYPE (listtyping (cdr l) (twistlist typety) typety))
(MK=TYPED (listtyping l (list termty typety) termty))
((MK=COMB MK=PAIR MK=ABS MK=COND)
(listtyping l (list termty termty termty ) termty))
(MK=NEG (listtyping l (list formty) formty))
;;; MK=IFF deleted in the following list
((MK=CONJ MK=DISJ MK=IMP)
(listtyping l (list formty formty) formty))
((MK=FORALL MK=EXISTS) (listtyping l (list termty formty) formty))
(MK=PREDICATE (listtyping (cdr l) (list termty) formty))
((MK=EQUIV MK=INEQUIV) (listtyping l (list termty termty) formty))
(t (parserr c))
))) ;typing
;;; parse-failed removed by MJCG to avoid crashing into lisp
(defun adjust-fundef (paire)
(let ((x (car paire)) (y (cdr paire)))
(case (car x)
(mk-straint (adjust-fundef (cons (cadr x) `(mk-straint ,y ,(caddr x)))))
(mk-appn (if (and (eq (caadr x) 'mk-var) (is-constructor (cadadr x)))
(cons x y)
(adjust-fundef (cons (cadr x) `(mk-abstr ,(caddr x) ,y)))))
((mk-var mk-binop mk-dupl mk-list mk-empty) (cons x y))
(t (princ
'|Syntax error detected by typechecker.|)
(terpri)
(princ '|Bad left hand side of definition: |)
(print-ml-text x %mlprindepth)
(llterpri)(throw-from typecheck nil))))) ; adjust-fundef
(defun adjust-abstraction (a b)
(if (or (not (eq (car a) 'mk-appn))
(and (eq (caadr a) 'mk-var) (is-constructor (cadadr a))))
`(mk-abstr ,a ,b)
(adjust-abstraction (cadr a) `(mk-abstr ,(caddr a) ,b)))) ; adjust-abstraction
(defun is-constructor (f)
(or (get f 'constructor) (is-local-constructor f env))) ; is-constructor
(defun is-local-constructor (f e)
(when e (if (and (eq (caar e) 'CONC) (assoc-equal f (car e)))
(if (eq (car (assoc-equal f (car e))) 'mk-funtyp) 1 0)
(is-local-constructor f (cdr e))))) ; is-local-constructor
;;; generate an atom and store abstype info on its property list
(defun record-abstype (eqn)
(let ((tysym (uniquesym "ABS" (car eqn))))
(eval-remember
`(progn
(putprop (quote ,tysym) (quote ,(length (cadr eqn))) 'arity)
(putprop (quote ,tysym) (quote ,(car eqn)) 'abstyname)))
(cons (car eqn) tysym))) ; record-abstype
;;; similar for concrete types
(defun record-conctype (eqn)
(let ((tysym (uniquesym "CONC" (car eqn))))
(eval-remember
`(progn
(putprop (quote ,tysym) (quote ,(length (cadr eqn))) 'arity)
(putprop (quote ,tysym) (quote ,(car eqn)) 'tyname)))
(cons (car eqn) tysym))) ; record-conctype
;;; processing of abstract types
(defun abstract-typing (c l)
(let ((eqnl (car l)))
(let ((tyops (mapcar #'record-abstype eqnl))
(isoms nil))
(if (eq c 'mk-absrectype) (typebindings tyops))
(mapc
#'(lambda (eqn)
(let ((%vartypes
(mapcar #'(lambda (v) (cons v (genmlink))) (cadr eqn)))
(ty2 (typing (cddr eqn)))
(ty1 (cons (assoc1 (car eqn) tyops) (mapcar #'cdr %vartypes))))
(unless (= (length (cadr eqn)) (length %vartypes))
(llprinc '|free vartype in abstype equation|)
(llterpri)
(throw-from typecheck nil))
(push
(list (concat '|rep_| (car eqn))
'mk-funtyp ty1 ty2) isoms)
(push
(list (concat '|abs_| (car eqn))
'mk-funtyp ty2 ty1) isoms)))
eqnl)
(if (eq c 'mk-abstype) (typebindings tyops))
(push (cons 'abs isoms) env)
(prog1 (typing (cadr l)) (popenv (rplacd (cadr env) (cdar env))))))
) ; abstract-typing
;;; processing of concrete types
(defun concrete-typing (c eqnl)
(let ((tyops (mapcar #'record-conctype eqnl))
(constrs nil))
(if (eq c 'mk-rectype) (typebindings tyops))
(mapc
#'(lambda (eqn)
(let ((%vartypes (mapcar #'(lambda (v) (cons v (genmlink))) (cadr eqn))))
(let ((ty1 (cons (assoc1 (car eqn) tyops) (mapcar #'cdr %vartypes))))
(mapc
#'(lambda (constr-def)
(let ((ty (ifn (cdr constr-def)
ty1
(list 'mk-funtyp (typing (cdr constr-def)) ty1))))
(push (cons (car constr-def) ty) constrs)))
(reverse (cdddr eqn))))))
eqnl)
(if (eq c 'mk-type) (typebindings tyops))
(push (cons 'constructors constrs) env)
(binarize (mapcar #'cdr (cdar env)) 'mk-prodtyp))) ; concrete-typing
(defun test-trap-typing (c l ty ty$)
(cond ((eq c 'mk-trap)
(setq l
(cons (cons (triple 'once '(mk-list) (car l)) (cadr l)) (cddr l)))))
(listtyping
(mapcar #'cadr (car l))
(twistlist (if (eq c 'mk-test) boolty (list 'mk-listyp tokty)))
nil)
(let ((b nil) (e nil))
(cond ((cdr l)
(setq e (cdadr l)) (setq b (caadr l))
(unless (atom b)
(setq e `(mk-in (mk-let ((mk-var ,(cdr b)) . (mk-tokconst))) ,e))
(setq b (car b)))
(setq ty$ (typing e))
(if (eq b 'once) (setq ty ty$)))
(t (if (eq c 'mk-test) (setq ty nullty)))))
(listtyping
(mapcar #'cddr (car l))
(mapcar #'(lambda (x) (if (eq (car x) 'once) ty)) (car l))
ty)) ; test-trap-typing
(defun parserr (c) (lcferror (catenate '|bad parser constructor | c))) ;parserr
(defun initmltypenv ()
(setq nullty '(mk-nulltyp))
(setq boolty '(mk-booltyp))
(setq intty '(mk-inttyp))
(setq tokty '(mk-toktyp))
;;;(setq objty '(mk-objtyp)) deleted: [TFM 90.09.09]
(setq typety '(mk-typetyp))
(setq termty '(mk-termtyp))
(setq formty '(mk-formtyp))
(setq thmty '(mk-thmtyp))
(setq %emt nil)
(setq %temt nil)
(setq %deftypes nil)) ;inittmltypenv
(eval-when (load)
(cond (initial%load (initmltypenv))))
;;; Top-level type checker
(defun typecheck (ob)
(let ((ph (car ob)) (env %emt) (tenv %temt) (type%errors 0)
(asscheck nil) (structcheck nil) (glassl nil) (%vartypes nil))
(let ((ty (tidy (typing ob))))
(unless (zerop type%errors)
(llprinc type%errors)
(llprinc '| error|)
(if (> type%errors 1) (llprinc '|s|))
(llprinc '| in typing|)
(llterpri)
(throw-from typecheck nil))
(typescopechk ty)
(when (and (eq ph 'mk-letref) (poly ty))
(llprinc '|top-level letref has polytype |)
(printmty ty)
(pnewline)
(throw-from typecheck nil))
(mapc #'(lambda (x)
(cond ((poly (cdr x))
(llprinc '|non-local assignment to polytyped variable |)
(llprinc (car x))
(llterpri)
(throw-from typecheck nil))))
glassl)
(unless (eq tenv %temt)
(setq %thistydec (car tenv)))
(unless (eq env %emt)
(tidycdrs (cdr (setq %thisdec (car env)))))
ty))) ; typecheck
(defun tidycdrs (l)
(mapc #'(lambda(x) (rplacd x (tidy (cdr x)))) l)) ;tidycdrs
(defun updatetypes ()
(cond
(%sections
(if %thisdec (push %thisdec %emt))
(if %thistydec (push %thistydec %temt)))
(t
(setq %deftypes (append %thistydec %deftypes))
(when %thisdec
(putpropl (cdr %thisdec) 'mltype)
(mapc #'(lambda (x)
(if (eq 'mk-letref (car %thisdec)) (putprop (car x) t 'refvar)
(remprop (car x) 'refvar)))
(cdr %thisdec))
(mapc #'(lambda (x)
(if (eq 'constructors (car %thisdec))
(putprop (car x)
(if (eq (cadr x) 'mk-funtyp) 1 0)
'constructor)))
(cdr %thisdec)))))) ;updatetypes
;;; Push a new layer of bindings onto the environment
;;; "binder" tells how binders were created; mk-let, mk-letrec, etc.
(defun varbindings (st binder)
(push (cons binder (layer st)) env)) ;varbindings
(defun layer (st)
(case (car st)
(mk-var (ifn (is-constructor (cadr st))
(list (cons (cadr st) (genmlink)))))
(mk-appn (layerl (cdr st)))
(mk-straint (layer (cadr st)))
((mk-dupl mk-list) (layerl (cdr st)))
(mk-binop (layerl (cddr st)))
(t nil))) ;layer
(defun layerl (stl)
(cond (stl (append (layer (car stl)) (layerl (cdr stl)))))) ;layerl
;;; get the type of the identifier
;;; if unbound, print message and assume identifier is bound by "letref"
(defun gettype (%id)
(cond ((let ((nonloc nil)) (gettypeid env)))
(t (incf type%errors)
(llterpri)
(llprinc '|unbound or non-assignable variable |)
(llprinc %id)
(llterpri)
(varbindings (list 'mk-var %id) 'mk-letref)
(genmlink)))) ; gettype
;;; Look up "it", or a dmlc'd constant
(defun get-builtin ()
(when (and (eq %id lastvalname) (assq 'mk-abstr env))
(llprinc '|May not use '|)
(llprinc lastvalname)
(llprinc '|' in a function body|)
(llterpri)
(throw-from typecheck nil))
(get %id 'mltype)) ; get-builtin
;;; Get type type of %id in environment e
;;; asscheck is true if this is the left-hand of an assignment
;;; nonloc is true if e was found underneath a mk-abstr binding
(defun gettypeid(e)
(ifn e
(let ((ty (get-builtin)))
(cond
((get %id 'refvar)ty)
(asscheck (if (is-constructor %id) ty))
(ty (mutant ty nil))))
(let ((ty (assoc1 %id (cdar e))))
(cond ((null ty)
(cond ((eq (caar e) 'mk-abstr) (setq nonloc t)))
(gettypeid (cdr e)))
((eq (caar e) 'mk-letref)
(cond ((and asscheck nonloc) (push (cons %id ty) glassl)))
ty)
(asscheck nil) ; assignable variable needed?
((memq (caar e) '(let abs)) (mutant ty (cdr e)))
(t ty)
)))) ; gettypeid
;;; Rename type variables for different uses of a let-bound identifier
;;; (also abstract type isomorphisms)
(defun mutant (ty %env)
(if (poly ty) (let ((%l nil)) (mutant1 ty)) ty)) ;mutant
(defun mutant1 (ty)
(cond
((instof ty) (mutant1 (instof ty)) )
((or (atom ty) (mlink ty))
(cond ((assq1 ty %l))
((immut ty %env) ty)
((cdar (push (cons ty (genmlink)) %l)))))
((cons (car ty) (mapcar #'mutant1 (cdr ty)))))) ;mutant1
;;; A type variable is immutable only if all its uses are in let-bound
;;; identifiers (or abstract type isomorphisms)
(defun immut (tyv e)
(and e
(or (and (not (memq (caar e) '(let abs)))
(exists #'(lambda (x) (occurst tyv (cdr x))) (cdar e)))
(immut tyv (cdr e))))) ;immut
;;; See if a synonym exists for a given type, returns (tok . ty) or nil
;;; This test is used to see if the type is monomorphic. The token returned
;;; may actually be out of scope.
(defun isdeftype (ty te)
(cond ((null te) (revassoc ty %deftypes))
((revassoc ty (car te)))
((isdeftype ty (cdr te))))) ; isdeftype
;;; Get the current synonym for type ty in environment te
;;; Returns nil if none, else (tok . ty)
;;; "nil" is a legal type name
(defun getdeftype (ty te)
(let ((typair (isdeftype ty te)))
(if (and typair (equal ty (gettypetid (car typair) te)))
typair))) ; getdeftype
(defun rectyping (l)
(let ((ty (structoff (typing (structon (car l))))))
(listtyping (cdr l) (list ty) ty)
(rplaca (car env) 'let)
ty)) ;retyping
(defun newdeftype (ob)
(let ((id (car ob)) (ty (typing (cdr ob))))
(cond ((poly ty)
(llprinc '|type variable in DEFTYPE|)
(llterpri)
(throw-from typecheck nil))
((cons id (tidy ty)))))) ; newdeftype
;;; See if the abstract or concrete types in ty are still accessible
(defun typescopechk (ty) (prog (%l) (atch ty) (return ty))) ;typescopechk
(defun atch (ty)
(cond
((assq ty %l) nil)
((instof ty) (atch (instof ty)))
((mlink ty) nil)
((atom ty) nil)
(t (push ty %l)
;;;;; built-in type operator or user-defined abstract type
(let ((arity (get (car ty) 'arity))
(name (or (get (car ty) 'abstyname) (get (car ty) 'tyname))))
(if (and arity (not (eq (gettypet name) (car ty))))
(tyscoperr name)))
(exists 'atch (cdr ty))))) ; atch
(defun gettypet (tyid)
(cond ((gettypetid tyid tenv)) ((tyscoperr tyid)))) ;gettypet
(defun tyscoperr (x)
(llprinc '| type |)
(llprinc x)
(llprinc '| out of scope |)
(llterpri)
(throw-from typecheck nil)) ;tyscoperr
;;; MJCG: Reorganization and bugfix 4 May 1992
;;; Old code:
;;; (defun checkabst (idargs)
;;; (let ((ty (gettypet (car idargs))))
;;; (cond
;;; ((atom ty)
;;; (cond
;;; ((or (= (get ty 'arity) (length (cdr idargs)))
;;; (llprinc '|bad args for abstype |) (llprinc (car idargs)) (llterpri)
;;; (throw-from typecheck nil))
;;; t))))))
(defun checkabst (idargs)
(let ((ty (gettypet (car idargs))))
(cond ((atom ty)
(cond ((= (get ty 'arity) (length (cdr idargs))) t)
(t (llprinc '|bad args for abstype |)
(llprinc (car idargs))
(llterpri)
(throw-from typecheck nil))))))) ;checkabst
;;; Look up the type tyid in environment te or %deftypes
(defun gettypetid (tyid te)
(cond
((null te) (assq1 tyid %deftypes))
((assq1 tyid (car te)))
((gettypetid tyid (cdr te))))) ;gettypetid
(defun typebindings (l) (push l tenv)) ;typebindings
(defun popenv (x) (pop env) x) ;popenv
(defun poptenv (x) (pop tenv) x) ;poptenv
;;; Strip out links, replace type variables with stars
(defun tidy (ty) (let ((%l nil) (%star '||)) (tidyup ty))) ;tidy
(defun tidy1 (ty) (let ((tenv %temt)) (tidy ty))) ;tidy1
(defun tidyup (ty)
(cond
((instof ty) (tidyup (instof ty)))
((assq1 ty %l))
((or (atom ty) (mlink ty))
(setq %star (concat '|*| %star))
(push (cons ty %star) %l)
%star)
((cons (car ty) (mapcar #'tidyup (cdr ty)))))) ;tidyup
;;; Print (car string) if non-nil, return value of string
(defun condpstring (str)
(if str (pstring (car str))) str) ;condpstring
;;; MJCG 7/2/89 for HOL88
;;; Function to filter the output of getdeftype if
;;; |%print_lettypes-flag| is nil
;;; This only filters the top level of defined types.
;;; To filter all levels the recursive calls of
;;; getdeftype must also be filtered (i.e. the definition
;;; of getdeftype must be changed instead of just wrapping
;;; a filter around its call in printmty).
(setq |%print_lettypes-flag| t)
(defun lettype-filter (x)
(cond (|%print_lettypes-flag| x)
(t (if (atom(cdr x)) x))))
;;; MJCG 7/2/89 for HOL88
;;; lettype-filter wrapped around getdeftype
(defun printmty (tidyty)
(cond
((condpstring (lettype-filter(getdeftype tidyty %temt))))
((atom tidyty) (pstring tidyty))
((case (car tidyty)
(mk-nulltyp (ptoken |void|))
(mk-inttyp (ptoken |int|))
(mk-booltyp (ptoken |bool|))
(mk-toktyp (ptoken |string|)) ; used to be tok GH 7/28/83
;;; (mk-objtyp (ptoken |obj|)) ; obj deleted [TFM 90.09.09]
(mk-typetyp (ptoken |type|))
(mk-termtyp (ptoken |term|))
(mk-formtyp (ptoken |form|))
(mk-thmtyp (ptoken |thm|))
(t (let ((abs (getdeftype (car tidyty) %temt)))
(cond
(abs (printabstype (cdr tidyty) (car abs)))
((eq (car tidyty) 'mk-listyp)
(printabstype (cdr tidyty) '|list|))
(t (pbegin 1)
(ptoken |(|)
(printmty (cadr tidyty))
(printtytail (car tidyty) (caddr tidyty))
(ptoken |)|)
(pend))))))))) ; printmty
(defun printabstype (args name)
(pbegin 0)
(cond
((cdr args) ; more than one arg, so print brackets
(pbegin 1) (ptoken |(|)
(printmty (car args))
(mapc #'(lambda (arg) (ptoken |,|) (printmty arg)) (cdr args))
(ptoken |)|) (pend)
(pbreak 1 0))
(args (printmty (car args)) (pbreak 1 0)))
(pstring name)
(pend)) ; printabstype
;;; supress parentheses in t1 op t2 op t3 op t4, for any one op
(defun printtytail (op ty)
(case op
(mk-prodtyp (ptoken | #|))
(mk-sumtyp (ptoken | +|))
(mk-funtyp (ptoken | ->|))
(t (lcferror '|bad type to print|)))
(pbreak 1 0)
(cond ((condpstring (getdeftype ty %temt)))
((and (consp ty) (eq op (car ty)))
(printmty (cadr ty))
(printtytail op (caddr ty)))
(t (printmty ty)))) ; printtytail
;;; convert a human-readable Lisp form into an ML type
(defun makety (e)
(cond
((null e) nullty)
((atom e) (make-atom-ty e))
((eq (cadr e) '|list|) ; bars added JAC 7/89
(list 'mk-listyp (makety (car e))))
((eq (cadr e) arrow-sym)
(list 'mk-funtyp (makety (car e)) (makety (caddr e))))
((eq (cadr e) sum-sym)
(list 'mk-sumtyp (makety (car e)) (makety (caddr e))))
((eq (cadr e) prod-sym)
(list 'mk-prodtyp (makety (car e)) (makety (caddr e))))
(t (lcferror 'makety)))) ;makety
;;; look up a type name
(defun make-atom-ty (e)
(case e
((|void| |.|) nullty)
(|int| intty)
(|bool| boolty)
((|string| |tok| |token|) tokty)
;;; (|obj| objty) deleted : [TFM 90.09.09]
(|type| typety)
(|term| termty)
(|form| formty)
(|thm| thmty)
(t e))) ; make-atom-ty
;;; check for a type variable
(defun mlink (ty) (ifn (atom ty) (eq (car ty) '%MLINK))) ;mlink
;;; See if type variable has been unified with some type
(defun instof (ty) (if (mlink ty) (cdr ty))) ;instof
(defun prune (ty) (if (instof ty) (prune (instof ty)) ty)) ;prune
(defun occurst (v ty) (occursbt v (prune ty))) ;occurst
(defun occursbt (tyv bty)
(if (mlink bty)
(eq tyv bty)
(exists #'(lambda (ty) (occurst tyv ty)) (cdr bty)))) ;occurstb
;;; See if the type is polymorphic
(defun poly (ty) (polyb (prune ty))) ;poly
(defun polyb (bty)
(or (atom bty) (mlink bty) (exists 'poly (cdr bty)))) ;polyb
;;; Return t if types can be unified.
;;; side-effect -- link certain type variables to types
(defun unifyt (ty1 ty2) (unifybt (prune ty1) (prune ty2))) ;unifyt
(defun unifybt (bty1 bty2)
(cond
((eq bty1 bty2))
((mlink bty1) (cond ((occursbt bty1 bty2) nil)
(t (rplacd bty1 bty2))))
((mlink bty2) (cond ((occursbt bty2 bty1) nil)
(t (rplacd bty2 bty1))))
((eq (car bty1) (car bty2))
(unifytl (cdr bty1) (cdr bty2))))) ;unifybt
;;; unify corresponding types in each list
;;; returns t if each pair can be unified
(defun unifytl (tyl1 tyl2)
(cond
((null tyl1))
((unifyt (car tyl1) (car tyl2)) (unifytl (cdr tyl1) (cdr tyl2)))
)) ;unifytl
|