File: description.tex

package info (click to toggle)
hol88 2.02.19940316dfsg-8
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 65,960 kB
  • sloc: ml: 199,939; ansic: 9,666; sh: 6,913; makefile: 6,032; lisp: 2,747; yacc: 894; sed: 201; cpp: 87; awk: 5
file content (1115 lines) | stat: -rw-r--r-- 44,282 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
\chapter{The parser Library}

\begin{quote}
\it That which can be conceived can be created. \rm -- Enzo Ferrari
\end{quote}

\section{Introduction}

  We describe a generic parser-generator to aid in the
  embedding of languages in \HOL.
  The need for such a tool is becoming readily apparent as support for various
  languages in \HOL\ has either been implemented or is in progress.  The 
  parser-generator described in this document was written to fulfill the needs
  of various projects underway in the Computer Laboratory dealing with either 
  hardware description or programming languages.

  The input to the generator is a form of modified {\small BNF}
  notation consisting 
  of terminals, non-terminals, and action symbols.  Users familiar with the
  definite clause grammar ({\small DCG}) notation of Prolog will see 
  similarities here.  This input is not, however, a full attribute grammar, and
  may originate either from the user's terminal or a file.  The output of
  the generator is an \ML\ program that builds an object of user-defined type
  from input that meets the syntax specified by the grammar.

  The discussion of the generator that follows will first cover the syntax 
  of the input language.  An overview of the translation process will 
  then be delivered.  It will be followed by a presentation of the 
  generator's reserved words, and an exposition of the construction
  of action symbols.
  We will conclude with some extended examples to demonstrate the use of
  the parser-generator.

\section{Syntax}

The generator is meant to deal with non left-recursive context free grammars.
There is no checking for left-recursion, and any input employing it will 
necessarily cause an infinite loop to be generated.  Action symbols are then
embedded in the grammar to construct the user's semantics for the
syntax.  If these symbols are not present, a simple recogniser for the 
language in question will be created.

\newpage
As an example, if we wished to specify a grammar for a prefix representation
of a subset of Boolean logic, the following {\small BNF}
description might be used:
\small
\begin{center}
\begin{boxed}
\begin{tabular}{lcl}
bool & ::= & term {\it EOF} \\
term & ::= & neg $|$ imp $|$ conj $|$ disj
               $|$ {\it var} \\
neg & ::= & {\bf NEG} term \\
imp & ::= & {\bf IMP} term term \\
conj & ::= & {\bf CONJ} term term \\
disj & ::= & {\bf DISJ} term term \\
\end{tabular}
\end{boxed}
\end{center}
\normalsize
where terminal symbols appear in boldface, {\it var} represents a Boolean
variable, and {\it EOF} shows where the end of the input stream should occur.

The above grammar may be represented as input to the 
parser-generator as follows:
\small
\begin{center}
\begin{boxed}
\begin{verbatim}
FIRST_CHARS  `a b`. 
CHARS `a b c d`. 

MAIN_LOOP --> term [EOF]. 

term --> neg | imp | conj | disj | {mk_var(TOKEN,":bool")}. 

conj --> [CONJ] {mk_conj(term,term)}.

disj --> [DISJ] {mk_disj(term,term)}.

neg --> [NEG] {mk_neg(term)}.

imp --> [IMP] {mk_imp(term,term)}.
\end{verbatim}
\end{boxed}
\end{center}
\normalsize
\verb"FIRST_CHARS"\autoindex{FIRST\_CHARS@{\ptt FIRST\_CHARS}} and 
\verb"CHARS"\autoindex{CHARS@{\ptt CHARS}} are declarations which define the 
legal 
first and other characters of the language's identifiers.  Within the grammar
itself, action symbols are enclosed by braces (\verb"{}") whilst
terminal symbols are delimited with square brackets (\verb"[]"), and 
conditional 
branches are separated by
vertical bars (\verb"|").  The non-terminal 
\verb"MAIN_LOOP"\autoindex{MAIN\_LOOP@{\ptt MAIN\_LOOP}} is a reserved
symbol defining the start of the parser.  The terminal symbol 
\verb"EOF"\autoindex{EOF@{\ptt EOF}} is
also reserved, and marks where the end of file should occur.  The
{\small BNF} syntax for the parser-generator's input language is provided in
Section~\ref{BNFsec}, and the system's reserved words (including 
\verb"MAIN_LOOP" and \verb"EOF") are described in Section~\ref{reserved}.

\section{Generating Parsers}

The parser-generator may be incorporated into the \HOL\ system by loading 
in the library \verb"parser".
Once loaded, the generator is invoked by the function
\verb"parse"\autoindex{parse@{\ptt parse}}.  Continuing with the Boolean logic
example, the following
session shows how a parser is generated from the grammar just specified.
\setcounter{sessioncount}{1}
\small
\begin{center}
\begin{session}
\begin{verbatim}
#parse();;
Input file:  bool.grm
Output file: bool 
Opening the file bool.ml (MAIN OUTPUT) 
Opening the file bool_decls.ml (DECLARATIONS) 
Load the declarations file before the main output. 
See the file bool_load.ml for a sample. 
See the file ./Makefile.bool for a sample Makefile. 
Output type: term 

  Generating PARSE_file and PARSE_text (MAIN_LOOP used). 

() : void 

#quit();; 
\end{verbatim}
\end{session}
\end{center}
\normalsize
The generator prompts for an input file containing the grammar.  It is
assumed that the Boolean logic grammar is found in the file 
\verb"bool.grm".  The second file is the beginning of the file name for
the output of the generator.  Since we want to create a \HOL\ term using
the generated parser, the appropritate type is supplied when prompted.
The generator keys on the use of the non-terminal 
\verb"MAIN_LOOP"\autoindex{MAIN\_LOOP@{\ptt MAIN\_LOOP}} to
construct
two functions to invoke the generated parser.  
\verb"PARSE_text"\autoindex{PARSE\_text@{\ptt PARSE\_text}} allows 
target language constructs to be parsed from a \ML\ string.
\verb"PARSE_file"\autoindex{PARSE\_file@{\ptt PARSE\_file}} provides the same 
functionality for input files containing these same objects.

\subsection {Auxiliary Files}

The first file created by the generator (\verb"bool_load.ml") 
is one that will load the parts of the
newly-constructed parser into the \HOL\ system in the proper order.
In the current
example, there are no user-specified actions.  We therefore have no need
to include any files other than the ones output by the parser-generator.
The inital file loaded (\verb"general.ml") contains 
functions used by all generated parsers to provide basic operations. 
Once these functions have been loaded,
declarations for each production are incorporated via the file
{\tt bool\_decls.ml}.  They are in turn followed by a file holding the 
functions describing each production ({\tt bool.ml}).  
The rationale behind the creation of these last two files is discussed in 
Section~\ref{Internals}.

\small
\begin{center}
\begin{boxed}
\begin{verbatim}
% Generated parser load file 

  First load some basic definitions: %
loadf `/usr/groups/hol/hol2/Library/parser/general`;;

% Insert any other files you want loaded here: %

% Now load the declarations: %
loadf `bool_decls`;;

% Finally load in the function definitions: %
loadf `bool`;; 
\end{verbatim}
\end{boxed}
\end{center}
\normalsize

No editing of the generated {\tt Makefile} (\verb"./Makefile.bool") is 
required either.  It simply compiles the generated files in the same order
that they should be loaded.  While compilation is not essential to use the
generated parser, it is recommended.  The system will run much faster.
In order to make a compiled version of the parser, we need only execute the 
command \verb"make -f Makefile.bool all" at the Unix prompt.
\small
\begin{center}
\begin{boxed}
\begin{verbatim}
# Generated parser Makefile

# Version of HOL to be used:
HOL=/usr/groups/hol/hol2/hol

# General definitions for all generated parsers:
GENERAL=/usr/groups/hol/hol2/Library/parser/general

# Insert entries for user-defined stuff here:
# Remember to insert the appropriate dependencies and "load"'s below.

# Now compile the declarations:
bool_decls_ml.o: bool_decls.ml
        echo 'set_flag(`abort_when_fail`,true);;'\
             'loadf `$(GENERAL)`;;'\
             'compilet `bool_decls`;;'\
             'quit();;' | $(HOL) 

# Finally do the actual functions
bool_ml.o: bool.ml bool_decls_ml.o
        echo 'set_flag(`abort_when_fail`,true);;'\
             'loadf `$(GENERAL)`;;'\
             'loadf `bool_decls`;;'\
             'compilet `bool`;;'\
             'quit();;' | $(HOL)

all: bool_ml.o
        @echo '===> Parser "bool" built.
\end{verbatim}
\end{boxed}
\end{center}
\normalsize
{\bf NB:} Both the load and make files are created every time the generator
is run. It is therefore advisable to save a copy of each once their contents
has been fixed.

\subsection{Running the Generated Parser}

We use the generated load file to install the parser in the \HOL\ system.  
Note that
the parser-generator is no longer needed.  Invoking the function 
\verb"PARSE_text"\autoindex{PARSE\_text@{\ptt PARSE\_text}}
will then run the parser on the desired input.  We have supplied a null list
as both the second and third arguments to 
\verb"PARSE_text"\autoindex{PARSE\_text@{\ptt PARSE\_text}}.  
The result is that only the default whitespace list (space, tab, and newline)
is used to separate tokens.  We will fully describe the nature of these 
arguments in Section~\ref{reserved}, and an example their use appears in
Section~\ref{SEPS}.
\setcounter{sessioncount}{1}
\small
\begin{center}
\begin{session}
\begin{verbatim}
#loadf `bool_load`;;
................................................() : void

#PARSE_text(`IMP CONJ a b CONJ b a`,[],[]);;
"a /\ b ==> b /\ a" : term
\end{verbatim}
\end{session}
\end{center}
\normalsize

We now introduce an error\autoindex{errors@error\ messages} in the input to 
demonstrate the use of the
debugging\autoindex{debugging@debugging} features of the system.  
The function \verb"debug_on"\autoindex{debug\_on@{\ptt debug\_on}}
puts the parser into debugging mode, and returns the previous debug state.
Its converse is \verb"debug_off"\autoindex{debug\_off@{\ptt debug\_off}}.
\small
\begin{center}
\begin{session}
\begin{verbatim}
#PARSE_text(`IMP CON a b CONJ b a`,[],[]);;
evaluation failed     fail

#debug_on();;
false : bool

#PARSE_text (`IMP CON a b CONJ b a`,[],[]);;
ENTERING prdn "MAIN_LOOP": Curr. Token = "IMP"; Expected = "nil".
ENTERING prdn "term": Curr. Token = "IMP"; Expected = "nil".
ENTERING prdn "neg": Curr. Token = "IMP"; Expected = "nil".
ENTERING prdn "imp": Curr. Token = "IMP"; Expected = "nil".
ENTERING prdn "term": Curr. Token = "CON"; Expected = "nil".
ENTERING prdn "neg": Curr. Token = "CON"; Expected = "nil".
ENTERING prdn "imp": Curr. Token = "CON"; Expected = "nil".
ENTERING prdn "conj": Curr. Token = "CON"; Expected = "nil".
ENTERING prdn "disj": Curr. Token = "CON"; Expected = "nil".
ENTERING prdn "conj": Curr. Token = "IMP"; Expected = "nil".
ENTERING prdn "disj": Curr. Token = "IMP"; Expected = "nil".
evaluation failed     fail

#debug_off();;
true : bool

#PARSE_text(`IMP CONJ a b CONJ b a`,[],[]);;
"a /\ b ==> b /\ a" : term
\end{verbatim}
\end{session}
\end{center}
\normalsize
The only mysterious part of the debugger is the \verb"Expected" statement.
It shows the character or language construct that should immediately follow 
the string currently being parsed.  \verb"nil" represents a ``don't care''
case.

\section{Error Messages}

The parser-generator is quite sensitive to the context in which an 
error\autoindex{errors@error\ messages}
within the input grammar appears.  Should an error be present, a message of the
following form will occur.
\begin{center}
\begin{boxed}
\verb+ERROR: symbol "+{\it symbol}$\;$\verb+" encountered in the wrong place.+ \\
\hspace*{4ex}\verb+-- Production: +{\it production} \\
\hspace*{4ex}\verb+-- Diagnostic: +{\it reason}
\end{boxed}
\end{center}
{\it symbol} is the token that caused the error, {\it production} is the
production in which it occurred, and {\it reason} is the reason that the
parser-generator thinks might have caused the error.

\section{Internals}\label{Internals}

  We now present a short discussion of the internals of the parser-generator,
  as well as the design decisions that were made.  The following were the main
  goals during the development of the generator.
  \begin{itemize}
  \item The order in which productions are specified should not be important
  \item Mutual recursion of productions should be allowed.
  \item Non-determinism within a given production should be possible
        (i.e. not just regular grammars).
  \item The output of any generated parser should be an object of
        user-defined type.
  \item The generator ought to operate in one pass.
  \end{itemize}

  Obstacles were presented to the first two of these goals by the way
  in which \ML\ functions are declared and used.  The difficulty is based on
  the fact that functions may
  not be used before they are defined, otherwise typechecking becomes
  problematic.  As an illustration, if production {\it A} was to 
  reference production {\it B},
  then the function describing {\it B} must be defined in the \ML\ system
  before the one specifying {\it A}.  The result, therefore, is
  that production {\it B} would have to appear in the input
  grammar before production {\it A}.  Even if the restriction of confining the
  user to a particular ordering of productions was adopted, it would
  still be insufficient to deal with the case where {\it A} and {\it B} are
  mutually recursive.  The use of a gigantic {\tt let}--{\tt and} in \ML\
  would take care of the mutual recursion problem, but does not allow for
  the operation to be spread accross multiple files should one decide
  to structure one's grammar in that manner.

  To overcome these problems, the following translation scheme was developed:
  \begin{itemize}
  \item Each production specified by the user generates two objects, each 
        in a separate file.
  \item Objects in the first file are \ML\ {\tt letref} declarations 
        specifying the input and output types of the function that will 
        be generated.  
  \item Objects in the second file are $\lambda$-expressions representing the
        functions that describe the productions.
  \item Objects from the second file are bound to objects in the first file
        via assignment.
  \item When a generated parser is compiled, the file containing the
        declarations is loaded first.  The one containing the 
        $\lambda$-expressions
        and their assignments to an object from the first file is loaded 
        afterwards.
  \end{itemize}
  The result of the above process is that all functions are declared before 
  they are
  used.  The productions that the user specifies may therefore reference
  each other in any order.  Furthermore, should the user wish to describe 
  a parser
  in many files, the productions may reference each other across those files.
  The proviso is, of course, that all generated declarations are loaded into 
  the system first when the generated parser is run.

  Each generated parser maintains an internal stack of intermediate results. 
  It is simply a list of \ML\ objects of a user-defined type
  that have been built up during the course of the parser's execution.  
  This results stack is
  the only method of building the final object that is returned to the user,
  and is accessed via the \verb"POP"\autoindex{POP@{\ptt POP}} reserved 
  symbol mentioned in 
  Section~\ref{reserved} and described in Section~\ref{actions}.  It is 
  modified through action symbols that the user imbeds in the grammar.

  The parser-generator will handle non-determinism
  in productions.
  In order to implement this feature, it was necessary to build a backtracking 
  mechanism into all generated parsers.  It is based on \ML\
  failure-trapping, and simply creates a fail trap for each
  branch of a production.  These traps are guaranteed to be hierarchical in
  nature by the way in which an input grammar is specified.  A one character
  look-ahead is used to determine if the syntactic object currently being
  parsed is followed by useful input.  If it is not, a failure results, and the
  backtracking mechanism is invoked.

\section{Reserved Words}\label{reserved}

The generator makes use of several reserved words.  They are all in upper case,
and since the parser-generator is case-sensitive, will not conflict with
user-defined functions of the same name expressed in either mixed or lower
case.

  \begin{itemize}
     \item {\small NON-TERMINAL:} $\;$
     \begin{itemize}
     \item \verb"MAIN_LOOP"\autoindex{MAIN\_LOOP@{\ptt MAIN\_LOOP}}     
        \normalsize---
        a production that the user 
        specifies to describe the top-level parse loop.  The generator senses
        its presence and outputs two wrappers to call the generated parser 
        in a properly initialised state.  It
        may not be called from within the grammar at any time.
     \end{itemize}
     \item {\small TERMINAL:} $\;$
     \begin{itemize}
     \item \verb"EOF"\autoindex{EOF@{\ptt EOF}}            \normalsize--- 
        specifies when the end of file may occur.
     \end{itemize}
     \item {\small ARGUMENTS:} The following can only appear as arguments
        to action symbols.  Their presence anywhere else in the input grammar
        will cause a fatal error.  Their types are given parenthetically.
     \begin{itemize}
     \item \verb"POP"\autoindex{POP@{\ptt POP}} (\verb":"{\it user-defined})
         \normalsize--- 
         returns the most recent previously constructed result from the results
         list.
     \item \verb"TOKEN"\autoindex{TOKEN@{\ptt TOKEN}} (\verb":string") 
         \normalsize--- returns a legal
         token identifier as specified using the constructs below.  Successive
         calls to \verb"TOKEN" will cause new identifiers to be obtained
         from the input source.
     \item \verb"WORD"\autoindex{WORD@{\ptt WORD}} (\verb":string") 
         \normalsize--- returns the current
         string in the input stream.  No checking of any kind is performed.
         The construct is particularly useful for dealing with arbitrary
         objects in the language that the user wants to treat specially.
     \end{itemize}
     \item {\small DECLARATIONS:} Both 
        \verb"FIRST_CHARS"\autoindex{FIRST\_CHARS@{\ptt FIRST\_CHARS}} and 
        \verb"CHARS"\autoindex{CHARS@{\ptt CHARS}}
        below must appear for the
        parser-generator to construct a tokeniser.  If one is present without
        the other, a fatal error results.  They may not be multiply
        defined within the same grammar.
     \begin{itemize}
     \item \verb"FIRST_CHARS"\autoindex{FIRST\_CHARS@{\ptt FIRST\_CHARS}
   }    \normalsize--- 
        Used to specify a whitespace-separated string of characters 
        representing
        the legal first characters of identifiers.  It may not be empty.
     \item \verb"CHARS"\autoindex{CHARS@{\ptt CHARS}}    \normalsize--- 
        Used to specify a whitespace-separated string of characters
        representing
        the other legal characters of identifiers.  It may not be empty.
     \item \verb"USEFUL"\autoindex{USEFUL@{\ptt USEFUL}} \normalsize---
        Used to tell the generated parser those characters delineating a useful
        block of text which should be concatenated into a single string.  It
        takes the form of an association list, where each member of the list
        has the type \verb"(string#string)".  The first element of the pair is
        the character which begins the block, and the second is the one that
        terminates it.  The generator does not check the
        syntax or type of the list, and it is incumbent upon the user to make
        sure that it is well-formed.
     \item \verb"IGNORE"\autoindex{IGNORE@{\ptt IGNORE}} \normalsize--
        The converse of \verb"USEFUL".  It is an association list of the
        same form as \verb"USEFUL", but is used to specify the 
        beginning
        and ending of blocks of text which may be thrown away by
        generated parser as it is reading in input.  The declaration is
        particularly useful in removing comments from an input stream before
        it is passed to the parser.
     \end{itemize} 
     \item {\small FUNCTIONS:} $\;$
     \begin{itemize}
     \item \verb"PARSE_file"\autoindex{PARSE\_file@{\ptt PARSE\_file}}     
        \normalsize
        --- The first
        function derived from
        the production \verb"MAIN_LOOP"\autoindex{MAIN\_LOOP@{\ptt MAIN\_LOOP}}.  Its 
        name therefore cannot be used
        as the name of a non-terminal, or as an argument to an action symbol.
        The function takes three arguments.  The first is the name of the
        input file, and is a standard \ML\ string.  If terminal {\small I/O} 
        is desired, \verb"`nil`" should be supplied.  The second argument is
        of type \verb"string list", and represents the whitespace used
        by the language.  Supplying a null list (\verb"[]") will trigger the 
        use of the default list of blank, tab and newline.  The final argument
        is used to describe special delimiting characters and those that may
        follow them to make a valid token.
        It is an association list of type
        \verb"(string # string list) list" where the first element of
        each pair is the delimiting character, and the second is the list
        of following characters.  A null following list means that the special
        character is a token by itself. If a null list is provided as the 
        argument, the only separators used will be those contained in the 
        whitespace list.
     \item \verb"PARSE_text"\autoindex{PARSE\_text@{\ptt PARSE\_text}}
        \normalsize
        --- Another
        function created by the production 
        \verb"MAIN_LOOP"\autoindex{MAIN\_LOOP@{\ptt MAIN\_LOOP}}.  Its 
        arguments are the same as for 
        \verb"PARSE_file"\autoindex{PARSE\_file@{\ptt PARSE\_file}} with the 
        exception
        of the first one.  Here the language constructs
        to be parsed are directly stated as a \ML\ string.
        It is important to remember to include the standard escape 
        character in these strings when required.  Failure to do so, can cause
        much frustration.
     \item \verb"TOKEN"\autoindex{TOKEN@{\ptt TOKEN}}
        \normalsize--- The name of the generated tokeniser function.
     \item \verb"TOKEN_1"\autoindex{TOKEN\_1@{\ptt TOKEN\_1}}        
        \normalsize--- The name of a helping
        function for \verb"TOKEN".
     \item {\raggedright \verb"chop_off", \verb"close_file", 
        \verb"complete_separator",
        \verb"debug_enter", \verb"debug_off",\\ \verb"debug_on",
        \verb"debug_return", \verb"determine_lst", \verb"do_return",
        \verb"do_return_1",\\ \verb"eat_terminal", \verb"e_w_s",
        \verb"e_w_s_ok",
        \verb"get_word", \verb"get_word1", \verb"get_word2", \verb"gnt",\\
        \verb"open_file", \verb"pop", \verb"push", \verb"read_char",
        \verb"read_input", \verb"write_string"} --- 
        These are functions that are used by all
        generated parsers, and cannot be used as names for the user's action
        symbols or productions.
        \autoindex{chop\_off@{\ptt chop\_off}}
        \autoindex{close\_file@{\ptt close\_file}}
        \autoindex{complete\_separator@{\ptt complete\_separator}}
        \autoindex{debug\_enter@{\ptt debug\_enter}}
        \autoindex{debug\_off@{\ptt debug\_off}}
        \autoindex{debug\_on@{\ptt debug\_on}}
        \autoindex{debug\_return@{\ptt debug\_return}}
        \autoindex{determine\_lst@{\ptt deterimine\_lst}}
        \autoindex{do\_return@{\ptt do\_return}}
        \autoindex{do\_return\_1@{\ptt do\_return\_1}}
        \autoindex{eat\_terminal@{\ptt eat\_terminal}}
        \autoindex{e\_w\_w@{\ptt e\_w\_s}}
        \autoindex{e\_w\_s\_ok@{\ptt e\_w\_s\_ok}}
        \autoindex{get\_word@{\ptt get\_word}}
        \autoindex{get\_word1@{\ptt get\_word1}}
        \autoindex{get\_word2@{\ptt get\_word2}}
        \autoindex{gnt@{\ptt gnt}}
        \autoindex{open\_file@{\ptt open\_file}}
        \autoindex{pop@{\ptt pop}}
        \autoindex{push@{\ptt push}}
        \autoindex{read\_char@{\ptt read\_char}}
        \autoindex{read\_input@{\ptt read\_input}}
        \autoindex{write\_string@{\ptt write\_string}}
     \end{itemize}
  \end{itemize}

\section{Action Symbols}\label{actions}\autoindex{action@{action\ symbols}}

  These are specified by the user outside the context of
  the grammar (i.e. in a separate file).  Their arguments may be any of the
  reserved arguments just mentioned, non-terminals, or actual \ML\
  expressions.  The parser-generator assumes that these functions exist, and 
  simply creates a call to them.  It is up to the user to make sure that the
  actual functions are well-typed with respect to the generated call.
  \begin{description}
  \item[{\small EXAMPLES:}] $\;$
  \begin{itemize}
    \item \verb"{action}" --- Generates a call to the user-defined function
      {\tt action}.  It is assumed that {\tt action} has
      {\tt ()} as its argument.
    \item \verb"{action(prdn)}" --- Generates a call to the user-defined 
      function
      {\tt action}, with the result of the elaboration of the non-terminal 
      {\tt prdn} as its argument.  Since the execution of a non-terminal 
      results in an object of user-defined type, the function {\tt action} 
      should reflect this in its specification.
    \item \verb"{action(prdn1,prdn2)}" --- Same as above.  The
      non-terminals {\tt prdn1} and {\tt prdn2} are evaluated in sequence 
      before the results are passed to {\tt action}.
    \item \verb"{action(TOKEN)}"\autoindex{TOKEN@{\ptt TOKEN}} --- Evalutates
      the current input string as an
      identifier as specified by 
      \verb"FIRST_CHARS"\autoindex{FIRST\_CHARS@{\ptt FIRST\_CHARS}} and 
      \verb"CHARS"\autoindex{CHARS@{\ptt CHARS}} and passes
      the result to {\tt action}.  If
      there is no current string, one is fetched from the input source.
    \item \verb"{action(TOKEN,TOKEN)}"\autoindex{TOKEN@{\ptt TOKEN}} --- Same
      as above.  The current string
      and the next one read from the input source are evaluated as identifiers,
      and passed to {\tt action} in left-to-right order as arguments.
    \item \verb"{action(POP)}"\autoindex{POP@{\ptt POP}} --- The most recent 
      previous result is removed
      from the result list, and passed as an argument to {\tt action}.
    \item \verb"{action(POP,POP)}"\autoindex{POP@{\ptt POP}} --- Same as 
      above.  The most recent previous
      result is passed as the second argument to {\tt action}, while the one
      before it is sent as the first argument.
    \item \verb"{action(POP,TOKEN,prdn,POP)}"\autoindex{POP@{\ptt POP}} --- The
      calls to \verb"POP" are first elaborated in the manner just described
      (i.e. the most recent previous result will be passed as the last argument
      to {\tt action}, while the one before that will be the first one).
      \verb"TOKEN"\autoindex{TOKEN@{\ptt TOKEN}} is then executed before the
      non-terminal {\tt prdn} is
      expanded.  After {\tt prdn} returns, the four results are passed to
      {\tt action}.
   \end{itemize}
   \end{description}

\section{Examples} \label{ex}

In the examples that follow, we assume that the parser-generator has been 
loaded into the \HOL\ system.

\subsection{Terminal Input and Errors} \label{ex:errs}

The following session demonstrates the generator's ability to understand 
input from the user's console.  Providing \verb"nil" as the input file allows
the user to specify a grammmar in an interactive manner.  In the current
example, there is an error in the grammar which causes an error message
to be output\autoindex{errors@error\ messages}.
\setcounter{sessioncount}{1}
\small
\begin{center}
\begin{session}
\begin{verbatim}
#parse();;
Input file:  nil
Output file: foo
Opening the file foo.ml (MAIN OUTPUT)
Opening the file foo_decls.ml (DECLARATIONS)
Load the declarations file before the main output.
See the file foo_load.ml for a sample.
See the file ./Makefile.foo for a sample Makefile.
Output type: term 
foo --> [A] get_word.
evaluation failed

ERROR: symbol "get_word" encountered in the wrong place.
   -- Production: foo 
   -- Diagnostic: "get_word" is a system function.
\end{verbatim}
\end{session}
\end{center}
\normalsize
Similar messages will be output for various classes of errors.  An effort
was made to trap all possible errors, and generate an appropriate message.
The user should note, however, that there are probably unforeseen combinations
of inputs not reflected in the trapping mechanism.

\subsection{HOL Types}

We now present a more complex example, the subject of which is a 
re-implementation of the \HOL\ type parser.  Points of interest include
user-defined action symbols,
operator precedences,
and seamless integration of the parser with the \HOL\ system.

\subsubsection{The Grammar}

\begin{center}
\begin{boxed}
\begin{verbatim}
FIRST_CHARS `a b c d e f g h i j k l m n o p q r s t u v w x y z 
             A B C D E F G H I J K L M N O P Q R S T U V W X Y Z *`.

CHARS `a b c d e f g h i j k l m n o p q r s t u v w x y z 
       A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
       1 2 3 4 5 6 7 8 9 0 *`.

tyname --> {mk_type_name(TOKEN)}.

tyvar --> {mk_type_var(TOKEN)}.

MAIN_LOOP --> typ [EOF].

typ --> type1 more_type.

more_type --> [#] {add_to_list(type1,POP)} more_prod_type sum_or_fun_type
            | [->] {MK_bin_type(`fun`,POP,typ)}
            | [+] type1 more_sum_type fun_type
            | [].

more_prod_type --> [#] {add_to_list(type1,POP)} more_prod_type
                 | {MK_defd_type(POP,`prod`)}.

sum_or_fun_type --> [+] {MK_bin_type(`sum`,POP,typ)}
                  | [->] {MK_bin_type(`fun`,POP,typ)}
                  | [].

more_sum_type --> [+] {add_to_list_rev(POP,POP)} type1 more_sum_type
                | [#] {add_to_list(type1,POP)} more_prod_type more_sum_type
                | {add_to_list_rev(POP,POP)} {MK_defd_type(POP,`sum`)}.

fun_type --> [->] {MK_bin_type(`fun`,POP,typ)} | [].

type1 --> [(] typ poss_cmpnd_type | tyname more_type1 | tyvar more_type1.

poss_cmpnd_type --> [)] more_type1 | [,] {add_to_list(POP,typ)} rest_of_cmpnd.

rest_of_cmpnd --> [,] {add_to_list(POP,typ)} rest_of_cmpnd
                | [)] {MK_type(POP,TOKEN)} more_type1.

more_type1 --> {MK_type(POP,TOKEN)} more_type1 | [].
\end{verbatim}
\end{boxed}
\end{center}

The grammar used to specify the type parser is slightly more complex
to specify than the Boolean logic example.  The main difference is in
the need to have a notion of operator precedence (\verb"->" $>$ \verb"+" $>$
\verb"#").  In order to preserve the ordering, it becomes necessary to
make separate productions for each operator.

The action symbols used in the grammar all create an object of type 
\verb"type list".  The reason for creating lists of types rather than
types by themselves is based on the need to gather together arbitrarily 
many types to
form a single one.  This grouping into a list is a standard ploy when 
developing grammars for parsers where the final object to be created is
dependent upon an unknown number of like objects.

\subsubsection{Running the Generator}

The parser-generator is run in exactly the same fashion as for the
Boolean logic example.  The only difference is in supplying \verb"type list" as
the output type of the generated parser.
\setcounter{sessioncount}{1}
\begin{center}
\begin{session}
\begin{verbatim}
#parse();;
Input file:  types.grm
Output file: types
Opening the file types.ml (MAIN OUTPUT)
Opening the file types_decls.ml (DECLARATIONS)
Load the declarations file before the main output.
See the file types_load.ml for a sample.
See the file ./Makefile.types for a sample Makefile.
Output type: type list


 Generating PARSE_file and PARSE_text (MAIN_LOOP used).

() : void

#quit();;
\end{verbatim}
\end{session}
\end{center}

\subsubsection{Auxiliary Files}\label{SEPS}

The first auxiliary file is not machine-generated.  It contains all the
functions used as action symbols within the grammar.  \verb"mk_type_name" and
\verb"mk_type_var" are the lowest-level functions, and create type lists from
primitive types and type variables.  \verb"add_to_list" and 
\verb"add_to_list_rev" group individual type lists into a single monolithic 
one.  A reversed list of types is required to make sure that subcomponents of
types associate properly.  \verb"MK_type" is the same as the standard \ML\
function \verb"mk_type" with the exception that it returns a type list.
\verb"MK_bin_type" is used to return a type list resulting from the creation
of a type from a binary type operator.  \verb"MK_defd_type" uses 
\verb"fix_defd" to create a properly associated type from a reversed list of
types.
\begin{center}
\begin{boxed}
\begin{verbatim}
let mk_type_name thing = [mk_type(thing,[])]
and mk_type_var thing = [mk_vartype thing]
and add_to_list (lst,thing) = append lst thing
and add_to_list_rev (lst,thing) = append thing lst
and MK_type(lst,op) = [mk_type(op,lst)]
and MK_bin_type(op,type1,typ) = [mk_type(op,(append type1 typ))];;

letrec fix_defd(lst,op,result) =
    if null lst then result
    else fix_defd(tl lst,op,mk_type(op,[hd lst;result]));;

let MK_defd_type(lst,op) =
    [fix_defd(tl (tl lst),op,mk_type(op,[hd (tl lst);hd lst]))];;
\end{verbatim}
\end{boxed}
\end{center}

Several additions have been made to the generated load file.  The first is to
load in the file of action function definitions just described 
(\verb"types_help.ml").  Next, we have defined a list of separators to allow
the lexical analyzer to break up the input stream into meaningful tokens in
the possible absence of standard whitespace.  The function 
\verb"parse"\autoindex{parse@{\ptt parse}} is
defined to call \verb"PARSE_text"\autoindex{PARSE\_text@{\ptt PARSE\_text}} 
with the 
appropriate arguments, and to
return the head of the result of its computation (a \HOL\ type).  
\verb"new_syntax_block" is a function provided as a part of \HOL\ Version 1.12,
and passes the string between its first and second arguments to the function
named by its third.  While not strictly necessary, the functionality provided
by \verb"new_syntax_block" makes input to the generated parser visually 
more appealing.
\begin{center}
\begin{boxed}
\begin{verbatim}
% Generated parser load file

  First load some basic definitions: %
loadf `/usr/groups/hol/hol2/Library/parser/general`;;

% Insert any other files you want loaded here: %
loadf `types_help`;;

% Now load the declarations: %
loadf `types_decls`;;

% Finally load in the function definitions: %
loadf `types`;;

let SEPS = [(`(`,[]);(`)`,[]);(`#`,[]);(`-`,[`>`]);(`+`,[]);(`,`,[])];;

let parse thing = hd (PARSE_text(thing,[],SEPS));;

new_syntax_block(`<<`,`>>`,`parse`);;
\end{verbatim}
\end{boxed}
\end{center}

The changes to the generated \verb"Makefile" (\verb"Makefile.types") are less
extensive.  We have added a rule to deal with the compilation of the file
of action functions.  The new rule has then been linked into the
dependencies of the parser's compilation through its inclusion on the
object list of \verb"types_decls_ml.o".
\begin{center}
\begin{boxed}
\begin{verbatim}
# Generated parser Makefile

# Version of HOL to be used:
HOL=/usr/groups/hol/hol2/hol

# General definitions for all generated parsers:
GENERAL=/usr/groups/hol/hol2/Library/parser/general

# Insert entries for user-defined stuff here:
# Remember to insert the appropriate dependencies and "load"'s below.
types_help_ml.o: types_help.ml
	echo 'set_flag(`abort_when_fail`,true);;'\
	     'loadf `$(GENERAL)`;;'\
	     'compilet `types_help`;;'\
	     'quit();;' | $(HOL)

# Now compile the declarations:
types_decls_ml.o: types_decls.ml types_help_ml.o
	echo 'set_flag(`abort_when_fail`,true);;'\
	     'loadf `$(GENERAL)`;;'\
	     'loadf `types_help`;;'\
	     'compilet `types_decls`;;'\
	     'quit();;' | $(HOL)

# Finally do the actual functions
types_ml.o: types.ml types_decls_ml.o
	echo 'set_flag(`abort_when_fail`,true);;'\
	     'loadf `$(GENERAL)`;;'\
	     'loadf `types_help`;;'\
	     'loadf `types_decls`;;'\
	     'compilet `types`;;'\
	     'quit();;' | $(HOL)

all: types_ml.o
	@echo '===> Parser "types" built.'
\end{verbatim}
\end{boxed}
\end{center}

\subsubsection{Running the Generated Parser}

Running the parser is the much same as for the Boolean logic example.  The
only significant change is in the mode of input, which has been provided by
\verb"new_syntax_block".  The first part of the following session deals with
loading in the generated parser into the \HOL\ system, and presents an example 
input.
\setcounter{sessioncount}{1}
\begin{center}
\begin{session}
\begin{verbatim}
#loadf `loader`;;
...................................................................() : void

#":bool";;
":bool" : type

#<< bool >>;;
":bool" : type
\end{verbatim}
\end{session}
\end{center}

Since we have re-implemented the \HOL\ type parser, we have every reason
to expect that our parser constructs types that are indistinguishable from
those created by the system.  We should also anticipate that our parser
will not construct invalid types, while at the same time remaining sensitive
to any additional ones created by the user.  The continuation of the previous
session demonstrates these properties.  Also shown is the way in which the
\verb"SEPS" list (declared in the load file) permits a more natural style
of input.
\begin{center}
\begin{session}
\begin{verbatim}
#":((* # (ind -> bool))list list + *list # * list -> *)list";;
":(((* # (ind -> bool))list)list + *list # (*)list -> *)list" : type

#<< ((* # (ind -> bool))list list + *list # * list -> *)list >>;;
":(((* # (ind -> bool))list)list + *list # (*)list -> *)list" : type

#":((bool,ind)fun,(*,*1)prod)sum";;
":(bool -> ind) + * # *1" : type

#<< ((bool,ind)fun,(*,*1)prod)sum >>;;
":(bool -> ind) + * # *1" : type

#":(bool,ind,*)tri";;
evaluation failed     mk_type in quotation

#<< (bool,ind,*)tri >>;;
evaluation failed     fail

#new_theory`tri`; new_type 3 `tri`;;
() : void

#":(bool,ind,*)tri";;
":(bool,ind,*)tri" : type

#<< (bool,ind,*)tri >>;;
":(bool,ind,*)tri" : type
\end{verbatim}
\end{session}
\end{center}

\subsection{Blocks}
 
Here we demonstrate the use of the block declarations 
\verb"IGNORE"\autoindex{IGNORE@{\ptt IGNORE}} and 
\verb"USEFUL"\autoindex{USEFUL@{\ptt USEFUL}}.  While the grammar will be 
trivial, the concept it shows is
important.  We will only present the grammar, and examples of the generated
parser.  The generation process is the same as for the previous examples.

\subsubsection{The Grammar}

The following grammar shows the pattern of input that is of interest.  Note
that no specification of legal characters is given, with the result that no
token recogniser is generated.  The 
\verb"USEFUL"\autoindex{USEFUL@{\ptt USEFUL}} declaration states that
all sequences of characters enclosed by single quotes should be concatenated
into a single string.  
\verb"IGNORE"\autoindex{IGNORE@{\ptt IGNORE}} describes the blocks that can 
be thrown
away.  The action symbol is a standard \ML\ function that returns type 
\verb"void", which is also the type which should be provided to the generator.
\begin{center}
\begin{boxed}
\begin{verbatim}
USEFUL [(`'`,`'`)].

IGNORE [(`"`,`"`)].

MAIN_LOOP --> foo [EOF].

foo --> ['] {print_string(WORD)} ['] foo | [].
\end{verbatim}
\end{boxed}
\end{center}

\subsubsection{Running the Generated Parser}

We provide below some sample input to the generated parser.  It performs
as expected.
\setcounter{sessioncount}{1}
\begin{center}
\begin{session}
\begin{verbatim}
#loadf `blocks_load`;;
....................................() : void

#PARSE_text(`'a;lsdkfj'`,[],[]);;
a;lsdkfj() : void

#PARSE_text(`'a;lsdkfj'"IIIIII'III"'MMMMM"""'`,[],[]);;
a;lsdkfjMMMMM"""() : void
\end{verbatim}
\end{session}
\end{center}

\subsection{Other Examples}

More examples are provided in the \verb"Examples" directory distributed with 
the current version of the generator.  See the \verb"READ-ME" file associated
with each for a brief description of the features.  These additional examples
are:
\begin{itemize}
\item \verb"Examples/HOL" --- A subset of the \HOL\ term parser.
\item \verb"Examples/ella" --- A parser for the the {\small ELLA} hardware
description language.
\item \verb"Examples/tiny" --- A for the programming language
from the \verb"prog_logic88" library.
\item \verb"Examples/user_guide" --- Examples used in this document:
\begin{itemize}
\item \verb"blocks" --- The use of 
\verb"USEFUL"\autoindex{USEFUL@{\ptt USEFUL}} and 
\verb"IGNORE"\autoindex{IGNORE@{\ptt IGNORE}}.
\item \verb"bool" --- Boolean logic.
\item \verb"types" --- The \HOL\ type parser.
\end{itemize}
\end{itemize}

\newpage
\section{The Parser-Generating Language}\label{BNFsec}

The {\small BNF} syntax for the parser-generator's input grammar is described by the following 
productions.  
Items in {\tt typewriter} font are the terminal symbols.  A comment beginning
and ending with the character \verb"%" may appear anywhere in the grammar
input to the generator.
\small
\begin{center}
\begin{boxed}
\begin{tabular}{l}
      grammar ::= declarations productions $|$ productions declarations $|$ productions 
\end{tabular} \\
\begin{tabular}{l}
      declarations ::=  first\_chars chars blocks $|$  chars blocks first\_chars $|$ blocks first\_chars chars
\end{tabular} \\
\begin{tabular}{l}
      first\_chars ::= \verb"FIRST_CHARS" hol\_string {\tt .}
\end{tabular} \\
\begin{tabular}{l}
      chars ::= \verb"CHARS" hol\_string {\tt .}
\end{tabular} \\
\begin{tabular}{l}
      hol\_string ::= {\it (a standard \ML\ string of whitespace-separated characters)}
\end{tabular} \\
\begin{tabular}{l}
      blocks ::= useful ignore $|$ ignore useful $|$ useful $|$ ignore $|$ $\epsilon$
\end{tabular} \\
\begin{tabular}{l}
      useful ::= \verb"USEFUL" assoc\_list {\tt .}
\end{tabular} \\
\begin{tabular}{l}
      ignore ::= \verb"IGNORE" assoc\_list {\tt .}
\end{tabular} \\
\begin{tabular}{l}
      assoc\_list ::= {\it (a standard \ML\ list of type (string{\small \#}string))}
\end{tabular}\\
\begin{tabular}{lrl}
      productions & ::= & production\_name \verb"-->" production productions \\
                  &   $|$ & $\epsilon$
\end{tabular} \\
\begin{tabular}{lrl}
      production & ::= & terminal prdn\_with\_choice \\
                 &   $|$ & one\_liner
\end{tabular} \\
\begin{tabular}{l}
      terminal ::= {\tt [} terminal\_symbol {\tt ]}
\end{tabular} \\
\begin{tabular}{lrl}
      terminal\_symbol & ::= & {\it (any alphanumeric character)} terminal\_symbol \\
                      &   $|$ & \verb"\" special\_symbol terminal\_symbol \\
                      & $|$ & $\epsilon$
\end{tabular} \\
\begin{tabular}{l}
      special\_symbol ::= \verb"{" $|$ \verb"}" $|$ \verb"\" $|$ \verb"[" $|$ \verb"]"
\end{tabular} \\
\begin{tabular}{l}
      production\_name ::= lead\_char {\it (any sequence of alphanumeric characters)}
\end{tabular} \\
\begin{tabular}{l}
      lead\_char ::= {\it (any alphabetic character)}
\end{tabular} \\
\begin{tabular}{l}
      action\_symbol ::= {\tt \{} action\_name optional\_args {\tt \}}
\end{tabular} \\
\begin{tabular}{l}
optional\_args ::= {\tt (} args {\tt )} $|$ $\epsilon$
\end{tabular}\\
\begin{tabular}{l}
      action\_name ::= lead\_char {\it (any sequence of alphanumeric characters)}
\end{tabular} \\
\begin{tabular}{l}
      args ::= arg {\tt ,} args $|$ arg
\end{tabular} \\
\begin{tabular}{lrl}
      arg & ::= & {\tt TOKEN} \\
	    & $|$ & {\tt WORD} \\
            & $|$ & {\tt POP} \\
            & $|$ & production\_name \\
            & $|$ & {\it ($\;$\HOL\ string or term)}
\end{tabular} \\
\begin{tabular}{lrl}
      prdn\_with\_choice & ::= & terminal prdn\_with\_choice \\
                       &  $|$ & action\_symbol prdn\_with\_choice \\
                       &  $|$ & production\_name prdn\_with\_choice \\
                       &  $|$ & \verb"|" prdn\_with\_choice \\
                       &  $|$ & \verb"."
\end{tabular} \\
\begin{tabular}{lrl}
      one\_liner & ::= & action\_symbol one\_liner \\
                &  $|$ & production\_name one\_liner \\
                &  $|$ & {\tt .}
\end{tabular}
\end{boxed}
\end{center}
\normalsize