1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
\chapter{Pre-proved Theorems}\input{theorems-intro}\section{The type definition}\THEOREM set\_ISO\_DEF sets
|- (!a. SPEC(CHF a) = a) /\ (!r. (\p. T)r = (CHF(SPEC r) = r))
\ENDTHEOREM
\THEOREM set\_TY\_DEF sets
|- ?rep. TYPE_DEFINITION(\p. T)rep
\ENDTHEOREM
\section{Membership, equality, and set specifications}\THEOREM EXTENSION sets
|- !s t. (s = t) = (!x. x IN s = x IN t)
\ENDTHEOREM
\THEOREM GSPEC\_DEF sets
|- !f. GSPEC f = SPEC(\y. ?x. y,T = f x)
\ENDTHEOREM
\THEOREM GSPECIFICATION sets
|- !f v. v IN (GSPEC f) = (?x. v,T = f x)
\ENDTHEOREM
\THEOREM IN\_DEF sets
|- !x s. x IN s = CHF s x
\ENDTHEOREM
\THEOREM NOT\_EQUAL\_SETS sets
|- !s t. ~(s = t) = (?x. x IN t = ~x IN s)
\ENDTHEOREM
\THEOREM NUM\_SET\_WOP sets
|- !s. (?n. n IN s) = (?n. n IN s /\ (!m. m IN s ==> n <= m))
\ENDTHEOREM
\THEOREM SET\_MINIMUM sets
|- !s M. (?x. x IN s) = (?x. x IN s /\ (!y. y IN s ==> (M x) <= (M y)))
\ENDTHEOREM
\THEOREM SPECIFICATION sets
|- !P x. x IN (SPEC P) = P x
\ENDTHEOREM
\section{The empty and universal sets}\THEOREM EMPTY\_DEF sets
|- {} = SPEC(\x. F)
\ENDTHEOREM
\THEOREM EMPTY\_NOT\_UNIV sets
|- ~({} = UNIV)
\ENDTHEOREM
\THEOREM EQ\_UNIV sets
|- (!x. x IN s) = (s = UNIV)
\ENDTHEOREM
\THEOREM IN\_UNIV sets
|- !x. x IN UNIV
\ENDTHEOREM
\THEOREM MEMBER\_NOT\_EMPTY sets
|- !s. (?x. x IN s) = ~(s = {})
\ENDTHEOREM
\THEOREM NOT\_IN\_EMPTY sets
|- !x. ~x IN {}
\ENDTHEOREM
\THEOREM UNIV\_DEF sets
|- UNIV = SPEC(\x. T)
\ENDTHEOREM
\THEOREM UNIV\_NOT\_EMPTY sets
|- ~(UNIV = {})
\ENDTHEOREM
\section{Set inclusion}\THEOREM EMPTY\_SUBSET sets
|- !s. {} SUBSET s
\ENDTHEOREM
\THEOREM NOT\_PSUBSET\_EMPTY sets
|- !s. ~s PSUBSET {}
\ENDTHEOREM
\THEOREM NOT\_UNIV\_PSUBSET sets
|- !s. ~UNIV PSUBSET s
\ENDTHEOREM
\THEOREM PSUBSET\_DEF sets
|- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t)
\ENDTHEOREM
\THEOREM PSUBSET\_IRREFL sets
|- !s. ~s PSUBSET s
\ENDTHEOREM
\THEOREM PSUBSET\_MEMBER sets
|- !s t. s PSUBSET t = s SUBSET t /\ (?y. y IN t /\ ~y IN s)
\ENDTHEOREM
\THEOREM PSUBSET\_TRANS sets
|- !s t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u
\ENDTHEOREM
\THEOREM PSUBSET\_UNIV sets
|- !s. s PSUBSET UNIV = (?x. ~x IN s)
\ENDTHEOREM
\THEOREM SUBSET\_ANTISYM sets
|- !s t. s SUBSET t /\ t SUBSET s ==> (s = t)
\ENDTHEOREM
\THEOREM SUBSET\_DEF sets
|- !s t. s SUBSET t = (!x. x IN s ==> x IN t)
\ENDTHEOREM
\THEOREM SUBSET\_EMPTY sets
|- !s. s SUBSET {} = (s = {})
\ENDTHEOREM
\THEOREM SUBSET\_REFL sets
|- !s. s SUBSET s
\ENDTHEOREM
\THEOREM SUBSET\_TRANS sets
|- !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u
\ENDTHEOREM
\THEOREM SUBSET\_UNIV sets
|- !s. s SUBSET UNIV
\ENDTHEOREM
\THEOREM UNIV\_SUBSET sets
|- !s. UNIV SUBSET s = (s = UNIV)
\ENDTHEOREM
\section{Intersection and union}\THEOREM EMPTY\_UNION sets
|- !s t. (s UNION t = {}) = (s = {}) /\ (t = {})
\ENDTHEOREM
\THEOREM IN\_INTER sets
|- !s t x. x IN (s INTER t) = x IN s /\ x IN t
\ENDTHEOREM
\THEOREM INTER\_ASSOC sets
|- !s t u. (s INTER t) INTER u = s INTER (t INTER u)
\ENDTHEOREM
\THEOREM INTER\_COMM sets
|- !s t. s INTER t = t INTER s
\ENDTHEOREM
\THEOREM INTER\_DEF sets
|- !s t. s INTER t = {x | x IN s /\ x IN t}
\ENDTHEOREM
\THEOREM INTER\_EMPTY sets
|- (!s. {} INTER s = {}) /\ (!s. s INTER {} = {})
\ENDTHEOREM
\THEOREM INTER\_IDEMPOT sets
|- !s. s INTER s = s
\ENDTHEOREM
\THEOREM INTER\_OVER\_UNION sets
|- !s t u. s UNION (t INTER u) = (s UNION t) INTER (s UNION u)
\ENDTHEOREM
\THEOREM INTER\_SUBSET sets
|- (!s t. (s INTER t) SUBSET s) /\ (!s t. (t INTER s) SUBSET s)
\ENDTHEOREM
\THEOREM INTER\_UNIV sets
|- (!s. UNIV INTER s = s) /\ (!s. s INTER UNIV = s)
\ENDTHEOREM
\THEOREM IN\_UNION sets
|- !s t x. x IN (s UNION t) = x IN s \/ x IN t
\ENDTHEOREM
\THEOREM SUBSET\_INTER\_ABSORPTION sets
|- !s t. s SUBSET t = (s INTER t = s)
\ENDTHEOREM
\THEOREM SUBSET\_UNION\_ABSORPTION sets
|- !s t. s SUBSET t = (s UNION t = t)
\ENDTHEOREM
\THEOREM SUBSET\_UNION sets
|- (!s t. s SUBSET (s UNION t)) /\ (!s t. s SUBSET (t UNION s))
\ENDTHEOREM
\THEOREM UNION\_ASSOC sets
|- !s t u. (s UNION t) UNION u = s UNION (t UNION u)
\ENDTHEOREM
\THEOREM UNION\_COMM sets
|- !s t. s UNION t = t UNION s
\ENDTHEOREM
\THEOREM UNION\_DEF sets
|- !s t. s UNION t = {x | x IN s \/ x IN t}
\ENDTHEOREM
\THEOREM UNION\_EMPTY sets
|- (!s. {} UNION s = s) /\ (!s. s UNION {} = s)
\ENDTHEOREM
\THEOREM UNION\_IDEMPOT sets
|- !s. s UNION s = s
\ENDTHEOREM
\THEOREM UNION\_OVER\_INTER sets
|- !s t u. s INTER (t UNION u) = (s INTER t) UNION (s INTER u)
\ENDTHEOREM
\THEOREM UNION\_UNIV sets
|- (!s. UNIV UNION s = UNIV) /\ (!s. s UNION UNIV = UNIV)
\ENDTHEOREM
\section{Set difference}\THEOREM DIFF\_DEF sets
|- !s t. s DIFF t = {x | x IN s /\ ~x IN t}
\ENDTHEOREM
\THEOREM DIFF\_DIFF sets
|- !s t. (s DIFF t) DIFF t = s DIFF t
\ENDTHEOREM
\THEOREM DIFF\_EMPTY sets
|- !s. s DIFF {} = s
\ENDTHEOREM
\THEOREM DIFF\_EQ\_EMPTY sets
|- !s. s DIFF s = {}
\ENDTHEOREM
\THEOREM DIFF\_UNIV sets
|- !s. s DIFF UNIV = {}
\ENDTHEOREM
\THEOREM EMPTY\_DIFF sets
|- !s. {} DIFF s = {}
\ENDTHEOREM
\THEOREM IN\_DIFF sets
|- !s t x. x IN (s DIFF t) = x IN s /\ ~x IN t
\ENDTHEOREM
\section{Disjoint sets}\THEOREM DISJOINT\_DEF sets
|- !s t. DISJOINT s t = (s INTER t = {})
\ENDTHEOREM
\THEOREM DISJOINT\_DELETE\_SYM sets
|- !s t x. DISJOINT(s DELETE x)t = DISJOINT(t DELETE x)s
\ENDTHEOREM
\THEOREM DISJOINT\_EMPTY sets
|- !s. DISJOINT {} s /\ DISJOINT s {}
\ENDTHEOREM
\THEOREM DISJOINT\_EMPTY\_REFL sets
|- !s. (s = {}) = DISJOINT s s
\ENDTHEOREM
\THEOREM DISJOINT\_SYM sets
|- !s t. DISJOINT s t = DISJOINT t s
\ENDTHEOREM
\THEOREM DISJOINT\_UNION sets
|- !s t u. DISJOINT(s UNION t)u = DISJOINT s u /\ DISJOINT t u
\ENDTHEOREM
\THEOREM IN\_DISJOINT sets
|- !s t. DISJOINT s t = ~(?x. x IN s /\ x IN t)
\ENDTHEOREM
\section{Insertion and deletion of an element}\THEOREM ABSORPTION sets
|- !x s. x IN s = (x INSERT s = s)
\ENDTHEOREM
\THEOREM COMPONENT sets
|- !x s. x IN (x INSERT s)
\ENDTHEOREM
\THEOREM DECOMPOSITION sets
|- !s x. x IN s = (?t. (s = x INSERT t) /\ ~x IN t)
\ENDTHEOREM
\THEOREM DELETE\_COMM sets
|- !x y s. (s DELETE x) DELETE y = (s DELETE y) DELETE x
\ENDTHEOREM
\THEOREM DELETE\_DEF sets
|- !s x. s DELETE x = s DIFF {x}
\ENDTHEOREM
\THEOREM DELETE\_DELETE sets
|- !x s. (s DELETE x) DELETE x = s DELETE x
\ENDTHEOREM
\THEOREM DELETE\_INSERT sets
|- !x y s.
(x INSERT s) DELETE y =
((x = y) => s DELETE y | x INSERT (s DELETE y))
\ENDTHEOREM
\THEOREM DELETE\_INTER sets
|- !s t x. (s DELETE x) INTER t = (s INTER t) DELETE x
\ENDTHEOREM
\THEOREM DELETE\_NON\_ELEMENT sets
|- !x s. ~x IN s = (s DELETE x = s)
\ENDTHEOREM
\THEOREM DELETE\_SUBSET sets
|- !x s. (s DELETE x) SUBSET s
\ENDTHEOREM
\THEOREM DIFF\_INSERT sets
|- !s t x. s DIFF (x INSERT t) = (s DELETE x) DIFF t
\ENDTHEOREM
\THEOREM DISJOINT\_INSERT sets
|- !x s t. DISJOINT(x INSERT s)t = DISJOINT s t /\ ~x IN t
\ENDTHEOREM
\THEOREM EMPTY\_DELETE sets
|- !x. {} DELETE x = {}
\ENDTHEOREM
\THEOREM IN\_DELETE sets
|- !s x y. x IN (s DELETE y) = x IN s /\ ~(x = y)
\ENDTHEOREM
\THEOREM IN\_DELETE\_EQ sets
|- !s x x'.
(x IN s = x' IN s) = (x IN (s DELETE x') = x' IN (s DELETE x))
\ENDTHEOREM
\THEOREM IN\_INSERT sets
|- !x y s. x IN (y INSERT s) = (x = y) \/ x IN s
\ENDTHEOREM
\THEOREM INSERT\_COMM sets
|- !x y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)
\ENDTHEOREM
\THEOREM INSERT\_DEF sets
|- !x s. x INSERT s = {y | (y = x) \/ y IN s}
\ENDTHEOREM
\THEOREM INSERT\_DELETE sets
|- !x s. x IN s ==> (x INSERT (s DELETE x) = s)
\ENDTHEOREM
\THEOREM INSERT\_DIFF sets
|- !s t x.
(x INSERT s) DIFF t = (x IN t => s DIFF t | x INSERT (s DIFF t))
\ENDTHEOREM
\THEOREM INSERT\_INSERT sets
|- !x s. x INSERT (x INSERT s) = x INSERT s
\ENDTHEOREM
\THEOREM INSERT\_INTER sets
|- !x s t.
(x INSERT s) INTER t = (x IN t => x INSERT (s INTER t) | s INTER t)
\ENDTHEOREM
\THEOREM INSERT\_SUBSET sets
|- !x s t. (x INSERT s) SUBSET t = x IN t /\ s SUBSET t
\ENDTHEOREM
\THEOREM INSERT\_UNION sets
|- !x s t.
(x INSERT s) UNION t = (x IN t => s UNION t | x INSERT (s UNION t))
\ENDTHEOREM
\THEOREM INSERT\_UNION\_EQ sets
|- !x s t. (x INSERT s) UNION t = x INSERT (s UNION t)
\ENDTHEOREM
\THEOREM INSERT\_UNIV sets
|- !x. x INSERT UNIV = UNIV
\ENDTHEOREM
\THEOREM NOT\_EMPTY\_INSERT sets
|- !x s. ~({} = x INSERT s)
\ENDTHEOREM
\THEOREM NOT\_INSERT\_EMPTY sets
|- !x s. ~(x INSERT s = {})
\ENDTHEOREM
\THEOREM PSUBSET\_INSERT\_SUBSET sets
|- !s t. s PSUBSET t = (?x. ~x IN s /\ (x INSERT s) SUBSET t)
\ENDTHEOREM
\THEOREM SET\_CASES sets
|- !s. (s = {}) \/ (?x t. (s = x INSERT t) /\ ~x IN t)
\ENDTHEOREM
\THEOREM SUBSET\_DELETE sets
|- !x s t. s SUBSET (t DELETE x) = ~x IN s /\ s SUBSET t
\ENDTHEOREM
\THEOREM SUBSET\_INSERT\_DELETE sets
|- !x s t. s SUBSET (x INSERT t) = (s DELETE x) SUBSET t
\ENDTHEOREM
\THEOREM SUBSET\_INSERT sets
|- !x s. ~x IN s ==> (!t. s SUBSET (x INSERT t) = s SUBSET t)
\ENDTHEOREM
\section{The {\tt CHOICE} and {\tt REST} functions}\THEOREM CHOICE\_DEF sets
|- !s. ~(s = {}) ==> (CHOICE s) IN s
\ENDTHEOREM
\THEOREM CHOICE\_INSERT\_REST sets
|- !s. ~(s = {}) ==> ((CHOICE s) INSERT (REST s) = s)
\ENDTHEOREM
\THEOREM CHOICE\_NOT\_IN\_REST sets
|- !s. ~(CHOICE s) IN (REST s)
\ENDTHEOREM
\THEOREM CHOICE\_SING sets
|- !x. CHOICE{x} = x
\ENDTHEOREM
\THEOREM REST\_DEF sets
|- !s. REST s = s DELETE (CHOICE s)
\ENDTHEOREM
\THEOREM REST\_PSUBSET sets
|- !s. ~(s = {}) ==> (REST s) PSUBSET s
\ENDTHEOREM
\THEOREM REST\_SING sets
|- !x. REST{x} = {}
\ENDTHEOREM
\THEOREM REST\_SUBSET sets
|- !s. (REST s) SUBSET s
\ENDTHEOREM
\THEOREM SING\_IFF\_EMPTY\_REST sets
|- !s. SING s = ~(s = {}) /\ (REST s = {})
\ENDTHEOREM
\section{Image of a function on a set}\THEOREM IMAGE\_COMPOSE sets
|- !f g s. IMAGE(f o g)s = IMAGE f(IMAGE g s)
\ENDTHEOREM
\THEOREM IMAGE\_DEF sets
|- !f s. IMAGE f s = {f x | x IN s}
\ENDTHEOREM
\THEOREM IMAGE\_DELETE sets
|- !f x s. ~x IN s ==> (IMAGE f(s DELETE x) = IMAGE f s)
\ENDTHEOREM
\THEOREM IMAGE\_EMPTY sets
|- !f. IMAGE f{} = {}
\ENDTHEOREM
\THEOREM IMAGE\_EQ\_EMPTY sets
|- !s f. (IMAGE f s = {}) = (s = {})
\ENDTHEOREM
\THEOREM IMAGE\_ID sets
|- !s. IMAGE(\x. x)s = s
\ENDTHEOREM
\THEOREM IMAGE\_IN sets
|- !x s. x IN s ==> (!f. (f x) IN (IMAGE f s))
\ENDTHEOREM
\THEOREM IMAGE\_INSERT sets
|- !f x s. IMAGE f(x INSERT s) = (f x) INSERT (IMAGE f s)
\ENDTHEOREM
\THEOREM IMAGE\_INTER sets
|- !f s t. (IMAGE f(s INTER t)) SUBSET ((IMAGE f s) INTER (IMAGE f t))
\ENDTHEOREM
\THEOREM IMAGE\_SUBSET sets
|- !s t. s SUBSET t ==> (!f. (IMAGE f s) SUBSET (IMAGE f t))
\ENDTHEOREM
\THEOREM IMAGE\_UNION sets
|- !f s t. IMAGE f(s UNION t) = (IMAGE f s) UNION (IMAGE f t)
\ENDTHEOREM
\THEOREM IN\_IMAGE sets
|- !y s f. y IN (IMAGE f s) = (?x. (y = f x) /\ x IN s)
\ENDTHEOREM
\section{Mappings between sets}\THEOREM BIJ\_COMPOSE sets
|- !f g s t u. BIJ f s t /\ BIJ g t u ==> BIJ(g o f)s u
\ENDTHEOREM
\THEOREM BIJ\_DEF sets
|- !f s t. BIJ f s t = INJ f s t /\ SURJ f s t
\ENDTHEOREM
\THEOREM BIJ\_EMPTY sets
|- !f. (!s. BIJ f{}s = (s = {})) /\ (!s. BIJ f s{} = (s = {}))
\ENDTHEOREM
\THEOREM BIJ\_ID sets
|- !s. BIJ(\x. x)s s
\ENDTHEOREM
\THEOREM IMAGE\_SURJ sets
|- !f s t. SURJ f s t = (IMAGE f s = t)
\ENDTHEOREM
\THEOREM INJ\_COMPOSE sets
|- !f g s t u. INJ f s t /\ INJ g t u ==> INJ(g o f)s u
\ENDTHEOREM
\THEOREM INJ\_DEF sets
|- !f s t.
INJ f s t =
(!x. x IN s ==> (f x) IN t) /\
(!x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y))
\ENDTHEOREM
\THEOREM INJ\_EMPTY sets
|- !f. (!s. INJ f{}s) /\ (!s. INJ f s{} = (s = {}))
\ENDTHEOREM
\THEOREM INJ\_ID sets
|- !s. INJ(\x. x)s s
\ENDTHEOREM
\THEOREM LINV\_DEF sets
|- !f s t. INJ f s t ==> (!x. x IN s ==> (LINV f s(f x) = x))
\ENDTHEOREM
\THEOREM RINV\_DEF sets
|- !f s t. SURJ f s t ==> (!x. x IN t ==> (f(RINV f s x) = x))
\ENDTHEOREM
\THEOREM SURJ\_COMPOSE sets
|- !f g s t u. SURJ f s t /\ SURJ g t u ==> SURJ(g o f)s u
\ENDTHEOREM
\THEOREM SURJ\_DEF sets
|- !f s t.
SURJ f s t =
(!x. x IN s ==> (f x) IN t) /\
(!x. x IN t ==> (?y. y IN s /\ (f y = x)))
\ENDTHEOREM
\THEOREM SURJ\_EMPTY sets
|- !f. (!s. SURJ f{}s = (s = {})) /\ (!s. SURJ f s{} = (s = {}))
\ENDTHEOREM
\THEOREM SURJ\_ID sets
|- !s. SURJ(\x. x)s s
\ENDTHEOREM
\section{Singleton sets}\THEOREM DELETE\_EQ\_SING sets
|- !s x. x IN s ==> ((s DELETE x = {}) = (s = {x}))
\ENDTHEOREM
\THEOREM DISJOINT\_SING\_EMPTY sets
|- !x. DISJOINT{x}{}
\ENDTHEOREM
\THEOREM EQUAL\_SING sets
|- !x y. ({x} = {y}) = (x = y)
\ENDTHEOREM
\THEOREM FINITE\_SING sets
|- !x. FINITE{x}
\ENDTHEOREM
\THEOREM INSERT\_SING\_UNION sets
|- !s x. x INSERT s = {x} UNION s
\ENDTHEOREM
\THEOREM IN\_SING sets
|- !x y. x IN {y} = (x = y)
\ENDTHEOREM
\THEOREM NOT\_EMPTY\_SING sets
|- !x. ~({} = {x})
\ENDTHEOREM
\THEOREM NOT\_SING\_EMPTY sets
|- !x. ~({x} = {})
\ENDTHEOREM
\THEOREM SING\_DEF sets
|- !s. SING s = (?x. s = {x})
\ENDTHEOREM
\THEOREM SING\_DELETE sets
|- !x. {x} DELETE x = {}
\ENDTHEOREM
\THEOREM SING sets
|- !x. SING{x}
\ENDTHEOREM
\THEOREM SING\_FINITE sets
|- !s. SING s ==> FINITE s
\ENDTHEOREM
\section{Finite and infinite sets}\THEOREM FINITE\_DEF sets
|- !s.
FINITE s = (!P. P{} /\ (!s'. P s' ==> (!e. P(e INSERT s'))) ==> P s)
\ENDTHEOREM
\THEOREM FINITE\_DELETE sets
|- !x s. FINITE(s DELETE x) = FINITE s
\ENDTHEOREM
\THEOREM FINITE\_DIFF sets
|- !s. FINITE s ==> (!t. FINITE(s DIFF t))
\ENDTHEOREM
\THEOREM FINITE\_EMPTY sets
|- FINITE{}
\ENDTHEOREM
\THEOREM FINITE\_INDUCT sets
|- !P.
P{} /\ (!s. FINITE s /\ P s ==> (!e. ~e IN s ==> P(e INSERT s))) ==>
(!s. FINITE s ==> P s)
\ENDTHEOREM
\THEOREM FINITE\_INSERT sets
|- !x s. FINITE(x INSERT s) = FINITE s
\ENDTHEOREM
\THEOREM FINITE\_ISO\_NUM sets
|- !s.
FINITE s ==>
(?f.
(!n m. n < (CARD s) /\ m < (CARD s) ==> (f n = f m) ==> (n = m)) /\
(s = {f n | n < (CARD s)}))
\ENDTHEOREM
\THEOREM FINITE\_PSUBSET\_INFINITE sets
|- !s. INFINITE s = (!t. FINITE t ==> t SUBSET s ==> t PSUBSET s)
\ENDTHEOREM
\THEOREM FINITE\_PSUBSET\_UNIV sets
|- INFINITE UNIV = (!s. FINITE s ==> s PSUBSET UNIV)
\ENDTHEOREM
\THEOREM FINITE\_UNION sets
|- !s t. FINITE(s UNION t) = FINITE s /\ FINITE t
\ENDTHEOREM
\THEOREM IMAGE\_11\_INFINITE sets
|- !f.
(!x y. (f x = f y) ==> (x = y)) ==>
(!s. INFINITE s ==> INFINITE(IMAGE f s))
\ENDTHEOREM
\THEOREM IMAGE\_FINITE sets
|- !s. FINITE s ==> (!f. FINITE(IMAGE f s))
\ENDTHEOREM
\THEOREM INFINITE\_DEF sets
|- !s. INFINITE s = ~FINITE s
\ENDTHEOREM
\THEOREM INFINITE\_DIFF\_FINITE sets
|- !s t. INFINITE s /\ FINITE t ==> ~(s DIFF t = {})
\ENDTHEOREM
\THEOREM INFINITE\_SUBSET sets
|- !s. INFINITE s ==> (!t. s SUBSET t ==> INFINITE t)
\ENDTHEOREM
\THEOREM INFINITE\_UNIV sets
|- INFINITE (UNIV:(*)set) =
(?f:*->*. (!x y. (f x = f y) ==> (x = y)) /\ (?y. !x. ~(f x = y)))
\ENDTHEOREM
\THEOREM IN\_INFINITE\_NOT\_FINITE sets
|- !s t. INFINITE s /\ FINITE t ==> (?x. x IN s /\ ~x IN t)
\ENDTHEOREM
\THEOREM INTER\_FINITE sets
|- !s. FINITE s ==> (!t. FINITE(s INTER t))
\ENDTHEOREM
\THEOREM NOT\_IN\_FINITE sets
|- INFINITE UNIV = (!s. FINITE s ==> (?x. ~x IN s))
\ENDTHEOREM
\THEOREM PSUBSET\_FINITE sets
|- !s. FINITE s ==> (!t. t PSUBSET s ==> FINITE t)
\ENDTHEOREM
\THEOREM SUBSET\_FINITE sets
|- !s. FINITE s ==> (!t. t SUBSET s ==> FINITE t)
\ENDTHEOREM
\section{Cardinality of sets}\THEOREM CARD\_DEF sets
|- (CARD{} = 0) /\
(!s.
FINITE s ==>
(!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s))))
\ENDTHEOREM
\THEOREM CARD\_DELETE sets
|- !s.
FINITE s ==>
(!x. CARD(s DELETE x) = (x IN s => (CARD s) - 1 | CARD s))
\ENDTHEOREM
\THEOREM CARD\_DIFF sets
|- !t.
FINITE t ==>
(!s. FINITE s ==> (CARD(s DIFF t) = (CARD s) - (CARD(s INTER t))))
\ENDTHEOREM
\THEOREM CARD\_EMPTY sets
|- CARD{} = 0
\ENDTHEOREM
\THEOREM CARD\_EQ\_0 sets
|- !s. FINITE s ==> ((CARD s = 0) = (s = {}))
\ENDTHEOREM
\THEOREM CARD\_INSERT sets
|- !s.
FINITE s ==>
(!x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s)))
\ENDTHEOREM
\THEOREM CARD\_INTER\_LESS\_EQ sets
|- !s. FINITE s ==> (!t. (CARD(s INTER t)) <= (CARD s))
\ENDTHEOREM
\THEOREM CARD\_PSUBSET sets
|- !s. FINITE s ==> (!t. t PSUBSET s ==> (CARD t) < (CARD s))
\ENDTHEOREM
\THEOREM CARD\_SING sets
|- !x. CARD{x} = 1
\ENDTHEOREM
\THEOREM CARD\_SUBSET sets
|- !s. FINITE s ==> (!t. t SUBSET s ==> (CARD t) <= (CARD s))
\ENDTHEOREM
\THEOREM CARD\_UNION sets
|- !s.
FINITE s ==>
(!t.
FINITE t ==>
((CARD(s UNION t)) + (CARD(s INTER t)) = (CARD s) + (CARD t)))
\ENDTHEOREM
\THEOREM LESS\_CARD\_DIFF sets
|- !t.
FINITE t ==>
(!s. FINITE s ==> (CARD t) < (CARD s) ==> 0 < (CARD(s DIFF t)))
\ENDTHEOREM
\THEOREM SING\_IFF\_CARD1 sets
|- !s. SING s = (CARD s = 1) /\ FINITE s
\ENDTHEOREM
|