1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
|
\chapter{Pre-proved Theorems}\input{theorems-intro}\section{The theory {\tt word\_base}}\THEOREM BIT0 word\_base
|- !b. BIT 0(WORD[b]) = b
\ENDTHEOREM
\THEOREM BIT\_DEF word\_base
|- !k l. BIT k(WORD l) = ELL k l
\ENDTHEOREM
\THEOREM BIT\_EQ\_IMP\_WORD\_EQ word\_base
|- !n.
!w1 w2 :: PWORDLEN n.
(!k. k < n ==> (BIT k w1 = BIT k w2)) ==> (w1 = w2)
\ENDTHEOREM
\THEOREM BIT\_WCAT1 word\_base
|- !n. !w :: PWORDLEN n. !b. BIT n(WCAT(WORD[b],w)) = b
\ENDTHEOREM
\THEOREM BIT\_WCAT\_FST word\_base
|- !n1 n2.
!w1 :: PWORDLEN n1.
!w2 :: PWORDLEN n2.
!k.
n2 <= k /\ k < (n1 + n2) ==> (BIT k(WCAT(w1,w2)) = BIT(k - n2)w1)
\ENDTHEOREM
\THEOREM BIT\_WCAT\_SND word\_base
|- !n1 n2.
!w1 :: PWORDLEN n1.
!w2 :: PWORDLEN n2. !k. k < n2 ==> (BIT k(WCAT(w1,w2)) = BIT k w2)
\ENDTHEOREM
\THEOREM BIT\_WSEG word\_base
|- !n.
!w :: PWORDLEN n.
!m k j.
(m + k) <= n ==> j < m ==> (BIT j(WSEG m k w) = BIT(j + k)w)
\ENDTHEOREM
\THEOREM LSB\_DEF word\_base
|- !l. LSB(WORD l) = LAST l
\ENDTHEOREM
\THEOREM LSB word\_base
|- !n. !w :: PWORDLEN n. 0 < n ==> (LSB w = BIT 0 w)
\ENDTHEOREM
\THEOREM MSB\_DEF word\_base
|- !l. MSB(WORD l) = HD l
\ENDTHEOREM
\THEOREM MSB word\_base
|- !n. !w :: PWORDLEN n. 0 < n ==> (MSB w = BIT(PRE n)w)
\ENDTHEOREM
\THEOREM PWORDLEN0 word\_base
|- !w. PWORDLEN 0 w ==> (w = WORD[])
\ENDTHEOREM
\THEOREM PWORDLEN1 word\_base
|- !x. PWORDLEN 1(WORD[x])
\ENDTHEOREM
\THEOREM PWORDLEN\_DEF word\_base
|- !n l. PWORDLEN n(WORD l) = (n = LENGTH l)
\ENDTHEOREM
\THEOREM PWORDLEN word\_base
|- !n w. PWORDLEN n w = (WORDLEN w = n)
\ENDTHEOREM
\THEOREM WCAT0 word\_base
|- !w. (WCAT(WORD[],w) = w) /\ (WCAT(w,WORD[]) = w)
\ENDTHEOREM
\THEOREM WCAT\_11 word\_base
|- !m n.
!wm1 wm2 :: PWORDLEN m.
!wn1 wn2 :: PWORDLEN n.
(WCAT(wm1,wn1) = WCAT(wm2,wn2)) = (wm1 = wm2) /\ (wn1 = wn2)
\ENDTHEOREM
\THEOREM WCAT\_ASSOC word\_base
|- !w1 w2 w3. WCAT(w1,WCAT(w2,w3)) = WCAT(WCAT(w1,w2),w3)
\ENDTHEOREM
\THEOREM WCAT\_DEF word\_base
|- !l1 l2. WCAT(WORD l1,WORD l2) = WORD(APPEND l1 l2)
\ENDTHEOREM
\THEOREM WCAT\_PWORDLEN word\_base
|- !n1.
!w1 :: PWORDLEN n1.
!n2. !w2 :: PWORDLEN n2. PWORDLEN(n1 + n2)(WCAT(w1,w2))
\ENDTHEOREM
\THEOREM WCAT\_WSEG\_WSEG word\_base
|- !n.
!w :: PWORDLEN n.
!m1 m2 k.
(m1 + (m2 + k)) <= n ==>
(WCAT(WSEG m2(m1 + k)w,WSEG m1 k w) = WSEG(m1 + m2)k w)
\ENDTHEOREM
\THEOREM WORD\_11 word\_base
|- !l l'. (WORD l = WORD l') = (l = l')
\ENDTHEOREM
\THEOREM word\_Ax word\_base
|- !f. ?! fn. !l. fn(WORD l) = f l
\ENDTHEOREM
\THEOREM word\_cases word\_base
|- !w. ?l. w = WORD l
\ENDTHEOREM
\THEOREM WORD\_CONS\_WCAT word\_base
|- !x l. WORD(CONS x l) = WCAT(WORD[x],WORD l)
\ENDTHEOREM
\THEOREM WORD\_DEF word\_base
|- !l. WORD l = ABS_word(Node l[])
\ENDTHEOREM
\THEOREM word\_induct word\_base
|- !P. (!l. P(WORD l)) ==> (!w. P w)
\ENDTHEOREM
\THEOREM word\_ISO\_DEF word\_base
|- (!a. ABS_word(REP_word a) = a) /\
(!r.
TRP(\v tl. (?l. v = l) /\ (LENGTH tl = 0))r =
(REP_word(ABS_word r) = r))
\ENDTHEOREM
\THEOREM WORDLEN\_DEF word\_base
|- !l. WORDLEN(WORD l) = LENGTH l
\ENDTHEOREM
\THEOREM WORDLEN\_SUC\_WCAT\_BIT\_WSEG word\_base
|- !n. !w :: PWORDLEN(SUC n). w = WCAT(WORD[BIT n w],WSEG n 0 w)
\ENDTHEOREM
\THEOREM WORDLEN\_SUC\_WCAT\_BIT\_WSEG\_RIGHT word\_base
|- !n. !w :: PWORDLEN(SUC n). w = WCAT(WSEG n 1 w,WORD[BIT 0 w])
\ENDTHEOREM
\THEOREM WORDLEN\_SUC\_WCAT word\_base
|- !n w.
PWORDLEN(SUC n)w ==>
(?b :: PWORDLEN 1. ?w' :: PWORDLEN n. w = WCAT(b,w'))
\ENDTHEOREM
\THEOREM WORDLEN\_SUC\_WCAT\_WSEG\_WSEG word\_base
|- !w :: PWORDLEN(SUC n). w = WCAT(WSEG 1 n w,WSEG n 0 w)
\ENDTHEOREM
\THEOREM WORDLEN\_SUC\_WCAT\_WSEG\_WSEG\_RIGHT word\_base
|- !w :: PWORDLEN(SUC n). w = WCAT(WSEG n 1 w,WSEG 1 0 w)
\ENDTHEOREM
\THEOREM WORD\_PARTITION word\_base
|- (!n. !w :: PWORDLEN n. !m. m <= n ==> (WCAT(WSPLIT m w) = w)) /\
(!n m.
!w1 :: PWORDLEN n. !w2 :: PWORDLEN m. WSPLIT m(WCAT(w1,w2)) = w1,w2)
\ENDTHEOREM
\THEOREM WORD\_SNOC\_WCAT word\_base
|- !x l. WORD(SNOC x l) = WCAT(WORD l,WORD[x])
\ENDTHEOREM
\THEOREM WORD\_SPLIT word\_base
|- !n1 n2. !w :: PWORDLEN(n1 + n2). w = WCAT(WSEG n1 n2 w,WSEG n2 0 w)
\ENDTHEOREM
\THEOREM word\_TY\_DEF word\_base
|- ?rep. TYPE_DEFINITION(TRP(\v tl. (?l. v = l) /\ (LENGTH tl = 0)))rep
\ENDTHEOREM
\THEOREM WSEG0 word\_base
|- !k w. WSEG 0 k w = WORD[]
\ENDTHEOREM
\THEOREM WSEG\_BIT word\_base
|- !n. !w :: PWORDLEN n. !k. k < n ==> (WSEG 1 k w = WORD[BIT k w])
\ENDTHEOREM
\THEOREM WSEG\_DEF word\_base
|- !m k l. WSEG m k(WORD l) = WORD(LASTN m(BUTLASTN k l))
\ENDTHEOREM
\THEOREM WSEG\_PWORDLEN word\_base
|- !n. !w :: PWORDLEN n. !m k. (m + k) <= n ==> PWORDLEN m(WSEG m k w)
\ENDTHEOREM
\THEOREM WSEG\_WCAT1 word\_base
|- !n1 n2.
!w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. WSEG n1 n2(WCAT(w1,w2)) = w1
\ENDTHEOREM
\THEOREM WSEG\_WCAT2 word\_base
|- !n1 n2.
!w1 :: PWORDLEN n1. !w2 :: PWORDLEN n2. WSEG n2 0(WCAT(w1,w2)) = w2
\ENDTHEOREM
\THEOREM WSEG\_WCAT\_WSEG1 word\_base
|- !n1 n2.
!w1 :: PWORDLEN n1.
!w2 :: PWORDLEN n2.
!m k.
m <= n1 /\ n2 <= k ==> (WSEG m k(WCAT(w1,w2)) = WSEG m(k - n2)w1)
\ENDTHEOREM
\THEOREM WSEG\_WCAT\_WSEG2 word\_base
|- !n1 n2.
!w1 :: PWORDLEN n1.
!w2 :: PWORDLEN n2.
!m k. (m + k) <= n2 ==> (WSEG m k(WCAT(w1,w2)) = WSEG m k w2)
\ENDTHEOREM
\THEOREM WSEG\_WCAT\_WSEG word\_base
|- !n1 n2.
!w1 :: PWORDLEN n1.
!w2 :: PWORDLEN n2.
!m k.
(m + k) <= (n1 + n2) /\ k < n2 /\ n2 <= (m + k) ==>
(WSEG m k(WCAT(w1,w2)) =
WCAT(WSEG((m + k) - n2)0 w1,WSEG(n2 - k)k w2))
\ENDTHEOREM
\THEOREM WSEG\_WORDLEN word\_base
|- !n.
!w :: PWORDLEN n. !m k. (m + k) <= n ==> (WORDLEN(WSEG m k w) = m)
\ENDTHEOREM
\THEOREM WSEG\_WORD\_LENGTH word\_base
|- !n. !w :: PWORDLEN n. WSEG n 0 w = w
\ENDTHEOREM
\THEOREM WSEG\_WSEG word\_base
|- !n.
!w :: PWORDLEN n.
!m1 k1 m2 k2.
(m1 + k1) <= n /\ (m2 + k2) <= m1 ==>
(WSEG m2 k2(WSEG m1 k1 w) = WSEG m2(k1 + k2)w)
\ENDTHEOREM
\THEOREM WSPLIT\_DEF word\_base
|- !m l. WSPLIT m(WORD l) = WORD(BUTLASTN m l),WORD(LASTN m l)
\ENDTHEOREM
\THEOREM WSPLIT\_PWORDLEN word\_base
|- !n.
!w :: PWORDLEN n.
!m.
m <= n ==>
PWORDLEN(n - m)(FST(WSPLIT m w)) /\ PWORDLEN m(SND(WSPLIT m w))
\ENDTHEOREM
\THEOREM WSPLIT\_WSEG1 word\_base
|- !n.
!w :: PWORDLEN n. !k. k <= n ==> (FST(WSPLIT k w) = WSEG(n - k)k w)
\ENDTHEOREM
\THEOREM WSPLIT\_WSEG2 word\_base
|- !n. !w :: PWORDLEN n. !k. k <= n ==> (SND(WSPLIT k w) = WSEG k 0 w)
\ENDTHEOREM
\THEOREM WSPLIT\_WSEG word\_base
|- !n.
!w :: PWORDLEN n.
!k. k <= n ==> (WSPLIT k w = WSEG(n - k)k w,WSEG k 0 w)
\ENDTHEOREM
\section{The theory {\tt word\_bitop}}\THEOREM EXISTSABIT\_DEF word\_bitop
|- !P l. EXISTSABIT P(WORD l) = SOME_EL P l
\ENDTHEOREM
\THEOREM EXISTSABIT word\_bitop
|- !n. !w :: PWORDLEN n. !P. EXISTSABIT P w = (?k. k < n /\ P(BIT k w))
\ENDTHEOREM
\THEOREM EXISTSABIT\_WCAT word\_bitop
|- !w1 w2 P.
EXISTSABIT P(WCAT(w1,w2)) = EXISTSABIT P w1 \/ EXISTSABIT P w2
\ENDTHEOREM
\THEOREM EXISTSABIT\_WSEG word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) <= n ==> (!P. EXISTSABIT P(WSEG m k w) ==> EXISTSABIT P w)
\ENDTHEOREM
\THEOREM FORALLBITS\_DEF word\_bitop
|- !P l. FORALLBITS P(WORD l) = ALL_EL P l
\ENDTHEOREM
\THEOREM FORALLBITS word\_bitop
|- !n. !w :: PWORDLEN n. !P. FORALLBITS P w = (!k. k < n ==> P(BIT k w))
\ENDTHEOREM
\THEOREM FORALLBITS\_WCAT word\_bitop
|- !w1 w2 P.
FORALLBITS P(WCAT(w1,w2)) = FORALLBITS P w1 /\ FORALLBITS P w2
\ENDTHEOREM
\THEOREM FORALLBITS\_WSEG word\_bitop
|- !n.
!w :: PWORDLEN n.
!P.
FORALLBITS P w ==>
(!m k. (m + k) <= n ==> FORALLBITS P(WSEG m k w))
\ENDTHEOREM
\THEOREM NOT\_EXISTSABIT word\_bitop
|- !P w. ~EXISTSABIT P w = FORALLBITS($~ o P)w
\ENDTHEOREM
\THEOREM NOT\_FORALLBITS word\_bitop
|- !P w. ~FORALLBITS P w = EXISTSABIT($~ o P)w
\ENDTHEOREM
\THEOREM PBITBOP\_DEF word\_bitop
|- !op.
PBITBOP op =
(!n.
!w1 :: PWORDLEN n.
!w2 :: PWORDLEN n.
PWORDLEN n(op w1 w2) /\
(!m k.
(m + k) <= n ==>
(op(WSEG m k w1)(WSEG m k w2) = WSEG m k(op w1 w2))))
\ENDTHEOREM
\THEOREM PBITBOP\_EXISTS word\_bitop
|- !f. ?fn. !l1 l2. fn(WORD l1)(WORD l2) = WORD(MAP2 f l1 l2)
\ENDTHEOREM
\THEOREM PBITBOP\_PWORDLEN word\_bitop
|- !op :: PBITBOP.
!n. !w1 :: PWORDLEN n. !w2 :: PWORDLEN n. PWORDLEN n(op w1 w2)
\ENDTHEOREM
\THEOREM PBITBOP\_WSEG word\_bitop
|- !op :: PBITBOP.
!n.
!w1 :: PWORDLEN n.
!w2 :: PWORDLEN n.
!m k.
(m + k) <= n ==>
(op(WSEG m k w1)(WSEG m k w2) = WSEG m k(op w1 w2))
\ENDTHEOREM
\THEOREM PBITOP\_BIT word\_bitop
|- !op :: PBITOP.
!n.
!w :: PWORDLEN n.
!k. k < n ==> (op(WORD[BIT k w]) = WORD[BIT k(op w)])
\ENDTHEOREM
\THEOREM PBITOP\_DEF word\_bitop
|- !op.
PBITOP op =
(!n.
!w :: PWORDLEN n.
PWORDLEN n(op w) /\
(!m k. (m + k) <= n ==> (op(WSEG m k w) = WSEG m k(op w))))
\ENDTHEOREM
\THEOREM PBITOP\_PWORDLEN word\_bitop
|- !op :: PBITOP. !n. !w :: PWORDLEN n. PWORDLEN n(op w)
\ENDTHEOREM
\THEOREM PBITOP\_WSEG word\_bitop
|- !op :: PBITOP.
!n.
!w :: PWORDLEN n.
!m k. (m + k) <= n ==> (op(WSEG m k w) = WSEG m k(op w))
\ENDTHEOREM
\THEOREM SHL\_DEF word\_bitop
|- !f w b.
SHL f w b =
BIT(PRE(WORDLEN w))w,
WCAT(WSEG(PRE(WORDLEN w))0 w,(f => WSEG 1 0 w | WORD[b]))
\ENDTHEOREM
\THEOREM SHL\_WSEG\_1F word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) <= n ==>
0 < m ==>
(!b.
SHL F(WSEG m k w)b =
BIT(k + (m - 1))w,WCAT(WSEG(m - 1)k w,WORD[b]))
\ENDTHEOREM
\THEOREM SHL\_WSEG word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) <= n ==>
0 < m ==>
(!f b.
SHL f(WSEG m k w)b =
BIT(k + (m - 1))w,
(f =>
WCAT(WSEG(m - 1)k w,WSEG 1 k w) |
WCAT(WSEG(m - 1)k w,WORD[b])))
\ENDTHEOREM
\THEOREM SHL\_WSEG\_NF word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) <= n ==>
0 < m ==>
0 < k ==>
(SHL F(WSEG m k w)(BIT(k - 1)w) =
BIT(k + (m - 1))w,WSEG m(k - 1)w)
\ENDTHEOREM
\THEOREM SHR\_DEF word\_bitop
|- !f b w.
SHR f b w =
WCAT
((f => WSEG 1(PRE(WORDLEN w))w | WORD[b]),WSEG(PRE(WORDLEN w))1 w),
BIT 0 w
\ENDTHEOREM
\THEOREM SHR\_WSEG\_1F word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) <= n ==>
0 < m ==>
(!b.
SHR F b(WSEG m k w) = WCAT(WORD[b],WSEG(m - 1)(k + 1)w),BIT k w)
\ENDTHEOREM
\THEOREM SHR\_WSEG word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) <= n ==>
0 < m ==>
(!f b.
SHR f b(WSEG m k w) =
(f =>
WCAT(WSEG 1(k + (m - 1))w,WSEG(m - 1)(k + 1)w) |
WCAT(WORD[b],WSEG(m - 1)(k + 1)w)),BIT k w)
\ENDTHEOREM
\THEOREM SHR\_WSEG\_NF word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) < n ==>
0 < m ==>
(SHR F(BIT(m + k)w)(WSEG m k w) = WSEG m(k + 1)w,BIT k w)
\ENDTHEOREM
\THEOREM WMAP\_0 word\_bitop
|- !f. WMAP f(WORD[]) = WORD[]
\ENDTHEOREM
\THEOREM WMAP\_BIT word\_bitop
|- !n.
!w :: PWORDLEN n. !k. k < n ==> (!f. BIT k(WMAP f w) = f(BIT k w))
\ENDTHEOREM
\THEOREM WMAP\_DEF word\_bitop
|- !f l. WMAP f(WORD l) = WORD(MAP f l)
\ENDTHEOREM
\THEOREM WMAP\_o word\_bitop
|- !w f g. WMAP g(WMAP f w) = WMAP(g o f)w
\ENDTHEOREM
\THEOREM WMAP\_PBITOP word\_bitop
|- !f. PBITOP(WMAP f)
\ENDTHEOREM
\THEOREM WMAP\_PWORDLEN word\_bitop
|- !w :: PWORDLEN n. !f. PWORDLEN n(WMAP f w)
\ENDTHEOREM
\THEOREM WMAP\_WCAT word\_bitop
|- !w1 w2 f. WMAP f(WCAT(w1,w2)) = WCAT(WMAP f w1,WMAP f w2)
\ENDTHEOREM
\THEOREM WMAP\_WSEG word\_bitop
|- !n.
!w :: PWORDLEN n.
!m k.
(m + k) <= n ==> (!f. WMAP f(WSEG m k w) = WSEG m k(WMAP f w))
\ENDTHEOREM
\THEOREM WSEG\_SHL\_0 word\_bitop
|- !n.
!w :: PWORDLEN(SUC n).
!m b.
0 < m /\ m <= (SUC n) ==>
(WSEG m 0(SND(SHL f w b)) =
WCAT(WSEG(m - 1)0 w,(f => WSEG 1 0 w | WORD[b])))
\ENDTHEOREM
\THEOREM WSEG\_SHL word\_bitop
|- !n.
!w :: PWORDLEN(SUC n).
!m k.
0 < k /\ (m + k) <= (SUC n) ==>
(!b. WSEG m k(SND(SHL f w b)) = WSEG m(k - 1)w)
\ENDTHEOREM
\section{The theory {\tt word\_num}}\THEOREM LVAL\_DEF word\_num
|- !f b l. LVAL f b l = FOLDL(\e x. (b * e) + (f x))0 l
\ENDTHEOREM
\THEOREM LVAL word\_num
|- (!f b. LVAL f b[] = 0) /\
(!l f b x.
LVAL f b(CONS x l) = ((f x) * (b EXP (LENGTH l))) + (LVAL f b l))
\ENDTHEOREM
\THEOREM LVAL\_MAX word\_num
|- !l f b. (!x. (f x) < b) ==> (LVAL f b l) < (b EXP (LENGTH l))
\ENDTHEOREM
\THEOREM LVAL\_SNOC word\_num
|- !l h f b. LVAL f b(SNOC h l) = ((LVAL f b l) * b) + (f h)
\ENDTHEOREM
\THEOREM NLIST\_DEF word\_num
|- (!frep b m. NLIST 0 frep b m = []) /\
(!n frep b m.
NLIST(SUC n)frep b m = SNOC(frep(m MOD b))(NLIST n frep b(m DIV b)))
\ENDTHEOREM
\THEOREM NVAL0 word\_num
|- !f b. NVAL f b(WORD[]) = 0
\ENDTHEOREM
\THEOREM NVAL1 word\_num
|- !f b x. NVAL f b(WORD[x]) = f x
\ENDTHEOREM
\THEOREM NVAL\_DEF word\_num
|- !f b l. NVAL f b(WORD l) = LVAL f b l
\ENDTHEOREM
\THEOREM NVAL\_MAX word\_num
|- !f b.
(!x. (f x) < b) ==> (!n. !w :: PWORDLEN n. (NVAL f b w) < (b EXP n))
\ENDTHEOREM
\THEOREM NVAL\_WCAT1 word\_num
|- !w f b x. NVAL f b(WCAT(w,WORD[x])) = ((NVAL f b w) * b) + (f x)
\ENDTHEOREM
\THEOREM NVAL\_WCAT2 word\_num
|- !n.
!w :: PWORDLEN n.
!f b x.
NVAL f b(WCAT(WORD[x],w)) = ((f x) * (b EXP n)) + (NVAL f b w)
\ENDTHEOREM
\THEOREM NVAL\_WCAT word\_num
|- !n m.
!w1 :: PWORDLEN n.
!w2 :: PWORDLEN m.
!f b.
NVAL f b(WCAT(w1,w2)) =
((NVAL f b w1) * (b EXP m)) + (NVAL f b w2)
\ENDTHEOREM
\THEOREM NVAL\_WORDLEN\_0 word\_num
|- !w :: PWORDLEN 0. !fv r. NVAL fv r w = 0
\ENDTHEOREM
\THEOREM NWORD\_DEF word\_num
|- !n frep b m. NWORD n frep b m = WORD(NLIST n frep b m)
\ENDTHEOREM
\THEOREM NWORD\_LENGTH word\_num
|- !n f b m. WORDLEN(NWORD n f b m) = n
\ENDTHEOREM
\THEOREM NWORD\_PWORDLEN word\_num
|- !n f b m. PWORDLEN n(NWORD n f b m)
\ENDTHEOREM
\section{The theory {\tt bword\_bitop}}\THEOREM PBITBOP\_WAND bword\_bitop
|- PBITBOP $WAND
\ENDTHEOREM
\THEOREM PBITBOP\_WOR bword\_bitop
|- PBITBOP $WOR
\ENDTHEOREM
\THEOREM PBITBOP\_WXOR bword\_bitop
|- PBITBOP $WXOR
\ENDTHEOREM
\THEOREM PBITOP\_WNOT bword\_bitop
|- PBITOP WNOT
\ENDTHEOREM
\THEOREM WAND\_DEF bword\_bitop
|- !l1 l2. (WORD l1) WAND (WORD l2) = WORD(MAP2 $/\ l1 l2)
\ENDTHEOREM
\THEOREM WCAT\_WNOT bword\_bitop
|- !n1 n2.
!w1 :: PWORDLEN n1.
!w2 :: PWORDLEN n2. WCAT(WNOT w1,WNOT w2) = WNOT(WCAT(w1,w2))
\ENDTHEOREM
\THEOREM WNOT\_DEF bword\_bitop
|- !l. WNOT(WORD l) = WORD(MAP $~ l)
\ENDTHEOREM
\THEOREM WNOT\_WNOT bword\_bitop
|- !w. WNOT(WNOT w) = w
\ENDTHEOREM
\THEOREM WOR\_DEF bword\_bitop
|- !l1 l2. (WORD l1) WOR (WORD l2) = WORD(MAP2 $\/ l1 l2)
\ENDTHEOREM
\THEOREM WXOR\_DEF bword\_bitop
|- !l1 l2. (WORD l1) WXOR (WORD l2) = WORD(MAP2(\x y. ~(x = y))l1 l2)
\ENDTHEOREM
\section{The theory {\tt bword\_num}}\THEOREM ADD\_BNVAL\_LEFT bword\_num
|- !n.
!w1 w2 :: PWORDLEN(SUC n).
(BNVAL w1) + (BNVAL w2) =
(((BV(BIT n w1)) + (BV(BIT n w2))) * (2 EXP n)) +
((BNVAL(WSEG n 0 w1)) + (BNVAL(WSEG n 0 w2)))
\ENDTHEOREM
\THEOREM ADD\_BNVAL\_RIGHT bword\_num
|- !n.
!w1 w2 :: PWORDLEN(SUC n).
(BNVAL w1) + (BNVAL w2) =
(((BNVAL(WSEG n 1 w1)) + (BNVAL(WSEG n 1 w2))) * 2) +
((BV(BIT 0 w1)) + (BV(BIT 0 w2)))
\ENDTHEOREM
\THEOREM ADD\_BNVAL\_SPLIT bword\_num
|- !n1 n2.
!w1 w2 :: PWORDLEN(n1 + n2).
(BNVAL w1) + (BNVAL w2) =
(((BNVAL(WSEG n1 n2 w1)) + (BNVAL(WSEG n1 n2 w2))) * (2 EXP n2)) +
((BNVAL(WSEG n2 0 w1)) + (BNVAL(WSEG n2 0 w2)))
\ENDTHEOREM
\THEOREM BIT\_NBWORD0 bword\_num
|- !k n. k < n ==> (BIT k(NBWORD n 0) = F)
\ENDTHEOREM
\THEOREM BNVAL0 bword\_num
|- BNVAL(WORD[]) = 0
\ENDTHEOREM
\THEOREM BNVAL\_11 bword\_num
|- !w1 w2.
(WORDLEN w1 = WORDLEN w2) ==> (BNVAL w1 = BNVAL w2) ==> (w1 = w2)
\ENDTHEOREM
\THEOREM BNVAL\_DEF bword\_num
|- !l. BNVAL(WORD l) = LVAL BV 2 l
\ENDTHEOREM
\THEOREM BNVAL\_MAX bword\_num
|- !n. !w :: PWORDLEN n. (BNVAL w) < (2 EXP n)
\ENDTHEOREM
\THEOREM BNVAL\_NBWORD bword\_num
|- !n m. m < (2 EXP n) ==> (BNVAL(NBWORD n m) = m)
\ENDTHEOREM
\THEOREM BNVAL\_NVAL bword\_num
|- !w. BNVAL w = NVAL BV 2 w
\ENDTHEOREM
\THEOREM BNVAL\_ONTO bword\_num
|- !w. ?n. BNVAL w = n
\ENDTHEOREM
\THEOREM BNVAL\_WCAT1 bword\_num
|- !n.
!w :: PWORDLEN n.
!x. BNVAL(WCAT(w,WORD[x])) = ((BNVAL w) * 2) + (BV x)
\ENDTHEOREM
\THEOREM BNVAL\_WCAT2 bword\_num
|- !n.
!w :: PWORDLEN n.
!x. BNVAL(WCAT(WORD[x],w)) = ((BV x) * (2 EXP n)) + (BNVAL w)
\ENDTHEOREM
\THEOREM BNVAL\_WCAT bword\_num
|- !n m.
!w1 :: PWORDLEN n.
!w2 :: PWORDLEN m.
BNVAL(WCAT(w1,w2)) = ((BNVAL w1) * (2 EXP m)) + (BNVAL w2)
\ENDTHEOREM
\THEOREM BV\_DEF bword\_num
|- !b. BV b = (b => SUC 0 | 0)
\ENDTHEOREM
\THEOREM BV\_LESS\_2 bword\_num
|- !x. (BV x) < 2
\ENDTHEOREM
\THEOREM BV\_VB bword\_num
|- !x. x < 2 ==> (BV(VB x) = x)
\ENDTHEOREM
\THEOREM DOUBL\_EQ\_SHL bword\_num
|- !n.
0 < n ==>
(!w :: PWORDLEN n.
!b. NBWORD n((BNVAL w) + ((BNVAL w) + (BV b))) = SND(SHL F w b))
\ENDTHEOREM
\THEOREM EQ\_NBWORD0\_SPLIT bword\_num
|- !n.
!w :: PWORDLEN n.
!m.
m <= n ==>
((w = NBWORD n 0) =
(WSEG(n - m)m w = NBWORD(n - m)0) /\ (WSEG m 0 w = NBWORD m 0))
\ENDTHEOREM
\THEOREM MSB\_NBWORD bword\_num
|- !n m. BIT n(NBWORD(SUC n)m) = VB((m DIV (2 EXP n)) MOD 2)
\ENDTHEOREM
\THEOREM NBWORD0 bword\_num
|- !m. NBWORD 0 m = WORD[]
\ENDTHEOREM
\THEOREM NBWORD\_BNVAL bword\_num
|- !n. !w :: PWORDLEN n. NBWORD n(BNVAL w) = w
\ENDTHEOREM
\THEOREM NBWORD\_DEF bword\_num
|- !n m. NBWORD n m = WORD(NLIST n VB 2 m)
\ENDTHEOREM
\THEOREM NBWORD\_MOD bword\_num
|- !n m. NBWORD n(m MOD (2 EXP n)) = NBWORD n m
\ENDTHEOREM
\THEOREM NBWORD\_SPLIT bword\_num
|- !n1 n2 m.
NBWORD(n1 + n2)m = WCAT(NBWORD n1(m DIV (2 EXP n2)),NBWORD n2 m)
\ENDTHEOREM
\THEOREM NBWORD\_SUC bword\_num
|- !n m. NBWORD(SUC n)m = WCAT(NBWORD n(m DIV 2),WORD[VB(m MOD 2)])
\ENDTHEOREM
\THEOREM NBWORD\_SUC\_FST bword\_num
|- !n m.
NBWORD(SUC n)m = WCAT(WORD[VB((m DIV (2 EXP n)) MOD 2)],NBWORD n m)
\ENDTHEOREM
\THEOREM NBWORD\_SUC\_WSEG bword\_num
|- !n. !w :: PWORDLEN(SUC n). NBWORD n(BNVAL w) = WSEG n 0 w
\ENDTHEOREM
\THEOREM PWORDLEN\_NBWORD bword\_num
|- !n m. PWORDLEN n(NBWORD n m)
\ENDTHEOREM
\THEOREM VB\_BV bword\_num
|- !x. VB(BV x) = x
\ENDTHEOREM
\THEOREM VB\_DEF bword\_num
|- !n. VB n = ~(n MOD 2 = 0)
\ENDTHEOREM
\THEOREM WCAT\_NBWORD\_0 bword\_num
|- !n1 n2. WCAT(NBWORD n1 0,NBWORD n2 0) = NBWORD(n1 + n2)0
\ENDTHEOREM
\THEOREM WORDLEN\_NBWORD bword\_num
|- !n m. WORDLEN(NBWORD n m) = n
\ENDTHEOREM
\THEOREM WSEG\_NBWORD bword\_num
|- !m k n.
(m + k) <= n ==>
(!l. WSEG m k(NBWORD n l) = NBWORD m(l DIV (2 EXP k)))
\ENDTHEOREM
\THEOREM WSEG\_NBWORD\_SUC bword\_num
|- !n m. WSEG n 0(NBWORD(SUC n)m) = NBWORD n m
\ENDTHEOREM
\THEOREM WSPLIT\_NBWORD\_0 bword\_num
|- !m n. m <= n ==> (WSPLIT m(NBWORD n 0) = NBWORD(n - m)0,NBWORD m 0)
\ENDTHEOREM
\THEOREM ZERO\_WORD\_VAL bword\_num
|- !n. !w :: PWORDLEN n. (w = NBWORD n 0) = (BNVAL w = 0)
\ENDTHEOREM
\section{The theory {\tt bword\_arith}}\THEOREM ACARRY\_ACARRY\_WSEG bword\_arith
|- !n.
!w1 w2 :: PWORDLEN n.
!cin m k1 k2.
k1 < m /\ k2 < n /\ (m + k2) <= n ==>
(ACARRY k1(WSEG m k2 w1)(WSEG m k2 w2)(ACARRY k2 w1 w2 cin) =
ACARRY(k1 + k2)w1 w2 cin)
\ENDTHEOREM
\THEOREM ACARRY\_DEF bword\_arith
|- (!w1 w2 cin. ACARRY 0 w1 w2 cin = cin) /\
(!n w1 w2 cin.
ACARRY(SUC n)w1 w2 cin =
VB
(((BV(BIT n w1)) + ((BV(BIT n w2)) + (BV(ACARRY n w1 w2 cin)))) DIV
2))
\ENDTHEOREM
\THEOREM ACARRY\_EQ\_ADD\_DIV bword\_arith
|- !n.
!w1 w2 :: PWORDLEN n.
!k.
k < n ==>
(BV(ACARRY k w1 w2 cin) =
((BNVAL(WSEG k 0 w1)) + ((BNVAL(WSEG k 0 w2)) + (BV cin))) DIV
(2 EXP k))
\ENDTHEOREM
\THEOREM ACARRY\_EQ\_ICARRY bword\_arith
|- !n.
!w1 w2 :: PWORDLEN n.
!cin k. k <= n ==> (ACARRY k w1 w2 cin = ICARRY k w1 w2 cin)
\ENDTHEOREM
\THEOREM ACARRY\_MSB bword\_arith
|- !n.
!w1 w2 :: PWORDLEN n.
!cin.
ACARRY n w1 w2 cin =
BIT n(NBWORD(SUC n)((BNVAL w1) + ((BNVAL w2) + (BV cin))))
\ENDTHEOREM
\THEOREM ACARRY\_WSEG bword\_arith
|- !n.
!w1 w2 :: PWORDLEN n.
!cin k m.
k < m /\ m <= n ==>
(ACARRY k(WSEG m 0 w1)(WSEG m 0 w2)cin = ACARRY k w1 w2 cin)
\ENDTHEOREM
\THEOREM ADD\_NBWORD\_EQ0\_SPLIT bword\_arith
|- !n1 n2.
!w1 w2 :: PWORDLEN(n1 + n2).
!cin.
(NBWORD(n1 + n2)((BNVAL w1) + ((BNVAL w2) + (BV cin))) =
NBWORD(n1 + n2)0) =
(NBWORD
n1
((BNVAL(WSEG n1 n2 w1)) +
((BNVAL(WSEG n1 n2 w2)) + (BV(ACARRY n2 w1 w2 cin)))) =
NBWORD n1 0) /\
(NBWORD
n2
((BNVAL(WSEG n2 0 w1)) + ((BNVAL(WSEG n2 0 w2)) + (BV cin))) =
NBWORD n2 0)
\ENDTHEOREM
\THEOREM ADD\_WORD\_SPLIT bword\_arith
|- !n1 n2.
!w1 w2 :: PWORDLEN(n1 + n2).
!cin.
NBWORD(n1 + n2)((BNVAL w1) + ((BNVAL w2) + (BV cin))) =
WCAT
(NBWORD
n1
((BNVAL(WSEG n1 n2 w1)) +
((BNVAL(WSEG n1 n2 w2)) + (BV(ACARRY n2 w1 w2 cin)))),
NBWORD
n2
((BNVAL(WSEG n2 0 w1)) + ((BNVAL(WSEG n2 0 w2)) + (BV cin))))
\ENDTHEOREM
\THEOREM ICARRY\_DEF bword\_arith
|- (!w1 w2 cin. ICARRY 0 w1 w2 cin = cin) /\
(!n w1 w2 cin.
ICARRY(SUC n)w1 w2 cin =
BIT n w1 /\ BIT n w2 \/
(BIT n w1 \/ BIT n w2) /\ ICARRY n w1 w2 cin)
\ENDTHEOREM
\THEOREM ICARRY\_WSEG bword\_arith
|- !n.
!w1 w2 :: PWORDLEN n.
!cin k m.
k < m /\ m <= n ==>
(ICARRY k(WSEG m 0 w1)(WSEG m 0 w2)cin = ICARRY k w1 w2 cin)
\ENDTHEOREM
\THEOREM WSEG\_NBWORD\_ADD bword\_arith
|- !n.
!w1 w2 :: PWORDLEN n.
!m k cin.
(m + k) <= n ==>
(WSEG m k(NBWORD n((BNVAL w1) + ((BNVAL w2) + (BV cin)))) =
NBWORD
m
((BNVAL(WSEG m k w1)) +
((BNVAL(WSEG m k w2)) + (BV(ACARRY k w1 w2 cin)))))
\ENDTHEOREM
|