1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922
|
\chapter{Pre-defined ML Identifiers}\input{entries-intro}\DOC{ABS\_CONV}
\TYPE {\small\verb%ABS_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion to the body of an abstraction.
\DESCRIBE
If {\small\verb%c%} is a conversion that maps a term {\small\verb%"t"%} to the theorem {\small\verb%|- t = t'%}, then
the conversion {\small\verb%ABS_CONV c%} maps abstractions of the form {\small\verb%"\x.t"%} to theorems
of the form:
{\par\samepage\setseps\small
\begin{verbatim}
|- (\x.t) = (\x.t')
\end{verbatim}
}
\noindent That is, {\small\verb%ABS_CONV c "\x.t"%} applies {\small\verb%c%} to the body of the
abstraction {\small\verb%"\x.t"%}.
\FAILURE
{\small\verb%ABS_CONV c tm%} fails if {\small\verb%tm%} is not an abstraction or if {\small\verb%tm%} has the form
{\small\verb%"\x.t"%} but the conversion {\small\verb%c%} fails when applied to the term {\small\verb%t%}. The
function returned by {\small\verb%ABS_CONV c%} may also fail if the ML function
{\small\verb%c:term->thm%} is not, in fact, a conversion (i.e. a function that maps a term
{\small\verb%t%} to a theorem {\small\verb%|- t = t'%}).
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ABS_CONV SYM_CONV "\x. 1 = x";;
|- (\x. 1 = x) = (\x. x = 1)
\end{verbatim}
}
\SEEALSO
RAND_CONV, RATOR_CONV, SUB_CONV.
\ENDDOC
\DOC{ABS}
\TYPE {\small\verb%ABS : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Abstracts both sides of an equation.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
------------------------ ABS "x" [Where x is not free in A]
A |- (\x.t1) = (\x.t2)
\end{verbatim}
}
\FAILURE
If the theorem is not an equation, or if the variable {\small\verb%x%} is free in the
assumptions {\small\verb%A%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ABS "m:num" (REFL "m:num");;
|- (\m. m) = (\m. m)
\end{verbatim}
}
\SEEALSO
ETA_CONV, EXT, MK_ABS.
\ENDDOC
\DOC{abs\_goals}
\TYPE {\small\verb%abs_goals : (subgoals list -> goalstack)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{ACCEPT\_TAC}
\TYPE {\small\verb%ACCEPT_TAC : thm_tactic%}\egroup
\SYNOPSIS
Solves a goal if supplied with the desired theorem (up to alpha-conversion).
\DESCRIBE
{\small\verb%ACCEPT_TAC%} maps a given theorem {\small\verb%th%} to a tactic that solves any goal whose
conclusion is alpha-convertible to the conclusion of {\small\verb%th%}.
\FAILURE
{\small\verb%ACCEPT_TAC th (A,g)%} fails if the term {\small\verb%g%} is not alpha-convertible to the
conclusion of the supplied theorem {\small\verb%th%}.
\EXAMPLE
{\small\verb%ACCEPT_TAC%} applied to the axiom
{\par\samepage\setseps\small
\begin{verbatim}
BOOL_CASES_AX = |- !t. (t = T) \/ (t = F)
\end{verbatim}
}
\noindent will solve the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- !x. (x = T) \/ (x = F)
\end{verbatim}
}
\noindent but will fail on the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- !x. (x = F) \/ (x = T)
\end{verbatim}
}
\USES
Used for completing proofs by supplying an existing theorem, such as an axiom,
or a lemma already proved.
\SEEALSO
MATCH_ACCEPT_TAC.
\ENDDOC
\DOC{AC\_CONV}
\TYPE {\small\verb%AC_CONV : ((thm # thm) -> conv)%}\egroup
\SYNOPSIS
Proves equality of terms using associative and commutative laws.
\DESCRIBE
Suppose {\small\verb%_%} is a function, which is assumed to be infix in the following syntax,
and {\small\verb%ath%} and {\small\verb%cth%} are theorems expressing its associativity and
commutativity; they must be of the following form, except that any free
variables may have arbitrary names and may be universally quantified:
{\par\samepage\setseps\small
\begin{verbatim}
ath = |- m _ (n _ p) = (m _ n) _ p
cth = |- m _ n = n _ m
\end{verbatim}
}
\noindent Then the conversion {\small\verb%AC_CONV(ath,cth)%} will prove equations whose
left and right sides can be made identical using these associative and
commutative laws.
\FAILURE
Fails if the associative or commutative law has an invalid form, or if the
term is not an equation between AC-equivalent terms.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#AC_CONV(ADD_ASSOC,ADD_SYM)
# "x + (SUC t) + ((3 + y) + z) = 3 + (SUC t) + x + y + z";;
|- (x + ((SUC t) + ((3 + y) + z)) = 3 + ((SUC t) + (x + (y + z)))) = T
\end{verbatim}
}
\COMMENTS
Note that the preproved associative and commutative laws for the operators {\small\verb%+%},
{\small\verb%*%}, {\small\verb%/\%} and {\small\verb%\/%} are already in the right form to give to {\small\verb%AC_CONV%}.
\SEEALSO
SYM_CONV.
\ENDDOC
\DOC{achieve\_first}
\TYPE {\small\verb%achieve_first : (subgoals -> thm -> subgoals)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{achieves}
\TYPE {\small\verb%achieves : (thm -> goal -> bool)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{aconv}
\TYPE {\small\verb%aconv : (term -> term -> bool)%}\egroup
\SYNOPSIS
Tests for alpha-convertibility of terms.
\DESCRIBE
When applied to two terms, {\small\verb%aconv%} returns {\small\verb%true%} if they are
alpha-convertible, and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\EXAMPLE
A simple case of alpha-convertibility is the renaming of a single quantified
variable:
{\par\samepage\setseps\small
\begin{verbatim}
#aconv "?x. x=T" "?y. y=T";;
true : bool
\end{verbatim}
}
\SEEALSO
ALPHA, ALPHA_CONV.
\ENDDOC
\DOC{activate\_binders}
\TYPE {\small\verb%activate_binders : (string -> string list)%}\egroup
\SYNOPSIS
Makes the quotation parser treat all binders in the current theory segment as
such.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
activate_binders `thy`
\end{verbatim}
}
\noindent where {\small\verb%thy%} is an ancestor theory ({\small\verb%`-`%} stands for the current
theory), will return a list of all binders on that theory, and make the parser
treat them all as binders, that is, for each binder {\small\verb%b%}, will allow the
syntactic sugaring {\small\verb%"b x. y"%} as a shorthand for {\small\verb%"b (\x. y)"%}. The special
syntactic status may be suppressed by preceding {\small\verb%b%} with a dollar sign. The
function returns a list of all the binders dealt with.
\FAILURE
Never fails.
\COMMENTS
This function is mainly intended for internal use. All binders declared by
{\small\verb%new_binder%} or {\small\verb%new_binder_definition%} are always parsed as such anyway.
\SEEALSO
activate_all_binders, binders, new_binder, parse_as_binder.
\ENDDOC
\DOC{ADD\_ASSUM}
\TYPE {\small\verb%ADD_ASSUM : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Adds an assumption to a theorem.
\DESCRIBE
When applied to a boolean term {\small\verb%s%} and a theorem {\small\verb%A |- t%}, the inference
rule {\small\verb%ADD_ASSUM%} returns the theorem {\small\verb%A u {s} |- t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
-------------- ADD_ASSUM "s"
A u {s} |- t
\end{verbatim}
}
\noindent {\small\verb%ADD_ASSUM%} performs straightforward set union with the new
assumption; it checks for identical assumptions, but not for alpha-equivalent
ones. The position at which the new assumption is inserted into the assumption
list should not be relied on.
\FAILURE
Fails unless the given term has type {\small\verb%bool%}.
\SEEALSO
ASSUME, UNDISCH.
\ENDDOC
\DOC{ADD\_CONV}
\TYPE {\small\verb%ADD_CONV : conv%}\egroup
\SYNOPSIS
Computes the sum of two natural number constants.
\DESCRIBE
If {\small\verb%n%} and {\small\verb%m%} are numeral constants (e.g. {\small\verb%0%}, {\small\verb%1%}, {\small\verb%2%}, {\small\verb%3%},...), then
{\small\verb%ADD_CONV "n + m"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- n + m = s
\end{verbatim}
}
\noindent where {\small\verb%s%} is the numeral that denotes the sum of the natural
numbers denoted by {\small\verb%n%} and {\small\verb%m%}.
\FAILURE
{\small\verb%ADD_CONV tm%} fails if {\small\verb%tm%} is not of the form {\small\verb%"n + m"%}, where {\small\verb%n%} and
{\small\verb%m%} are numerals.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ADD_CONV "75 + 25";;
|- 75 + 25 = 100
\end{verbatim}
}
\ENDDOC
\DOC{ALL\_CONV}
\TYPE {\small\verb%ALL_CONV : conv%}\egroup
\SYNOPSIS
Conversion that always succeeds and leaves a term unchanged.
\DESCRIBE
When applied to a term {\small\verb%"t"%}, the conversion {\small\verb%ALL_CONV%} returns the
theorem {\small\verb%|- t = t%}.
\FAILURE
Never fails.
\USES
Identity element for {\small\verb%THENC%}.
\SEEALSO
NO_CONV, REFL.
\ENDDOC
\DOC{ALL\_EL\_CONV}
\TYPE {\small\verb%ALL_EL_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a predicate to elements of a list.
\DESCRIBE
{\small\verb%ALL_EL_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
ALL_EL P [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- ALL_EL P [x0;...xn] = T
\end{verbatim}
}
\noindent if for every {\small\verb%xi%} occurred in the list, {\small\verb%conv "P xi"%} returns a theorem {\small\verb%|- P xi = T%}, otherwise, if for at least one {\small\verb%xi%}, evaluating
{\small\verb%conv "P xi"%} returns the theorem {\small\verb%|- P xi = F%}, then it returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- ALL_EL P [x0;...xn] = F
\end{verbatim}
}
\FAILURE
{\small\verb%ALL_EL_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above, or
failure occurs when evaluating {\small\verb%conv "P xi"%} for some {\small\verb%xi%}.
\EXAMPLE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
ALL_EL_CONV bool_EQ_CONV "ALL_EL ($= T) [T;F;T]";;
\end{verbatim}
}
\noindent returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ALL_EL($= T)[T;F;T] = F
\end{verbatim}
}
\noindent In general, if the predicate {\small\verb%P%} is an explicit lambda abstraction
{\small\verb%(\x. P x)%}, the conversion should be in the form
{\par\samepage\setseps\small
\begin{verbatim}
(BETA_CONV THENC conv')
\end{verbatim}
}
\SEEALSO
SOME_EL_CONV, IS_EL_CONV, FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{allowed\_constant}
\TYPE {\small\verb%allowed_constant : (string -> bool)%}\egroup
\SYNOPSIS
Tests if a string has a permissible name for a constant.
\DESCRIBE
When applied to a string, {\small\verb%allowed_constant%} returns {\small\verb%true%} if the string is a
permissible constant name, that is, if it is an identifier (see the DESCRIPTION
for more details), and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\EXAMPLE
The following shows how the lexical rules can be altered:
{\par\samepage\setseps\small
\begin{verbatim}
#map allowed_constant [`pi`; `@`; `a name`; `+++++`; `*`];;
[true; true; false; false; true] : bool list
#new_special_symbol `+++++`;;
() : void
#map allowed_constant [`pi`; `@`; `a name`; `+++++`; `*`];;
[true; true; false; true; true] : bool list
\end{verbatim}
}
\COMMENTS
Note that this function only performs a lexical test; it does not check whether
there is already a constant of that name in the current theory.
\SEEALSO
constants, is_constant, new_alphanum, new_special_symbol, special_symbols.
\ENDDOC
\DOC{ALL\_TAC}
\TYPE {\small\verb%ALL_TAC : tactic%}\egroup
\SYNOPSIS
Passes on a goal unchanged.
\DESCRIBE
{\small\verb%ALL_TAC%} applied to a goal {\small\verb%g%} simply produces the subgoal list {\small\verb%[g]%}. It is
the identity for the {\small\verb%THEN%} tactical.
\FAILURE
Never fails.
\EXAMPLE
The tactic {\small\verb%INDUCT_TAC THENL [ALL_TAC;tac]%}, applied to a goal {\small\verb%g%}, applies
{\small\verb%INDUCT_TAC%} to {\small\verb%g%} to give a basis and step subgoal; it then returns the
basis unchanged, along with the subgoals produced by applying {\small\verb%tac%} to the
step.
\USES
Used to write tacticals such as {\small\verb%REPEAT%}.
Often used as a place-holder in building compound tactics using tacticals
such as {\small\verb%THENL%}.
\SEEALSO
NO_TAC, REPEAT, THENL.
\ENDDOC
\DOC{ALL\_THEN}
\TYPE {\small\verb%ALL_THEN : thm_tactical%}\egroup
\SYNOPSIS
Passes a theorem unchanged to a theorem-tactic.
\DESCRIBE
For any theorem-tactic {\small\verb%ttac%} and theorem {\small\verb%th%}, the application {\small\verb%ALL_THEN ttac
th%} results simply in {\small\verb%ttac th%}, that is, the theorem is passed unchanged to
the theorem-tactic. {\small\verb%ALL_THEN%} is the identity theorem-tactical.
\FAILURE
The application of {\small\verb%ALL_THEN%} to a theorem-tactic never fails. The resulting
theorem-tactic fails under exactly the same conditions as the original one
\USES
Writing compound tactics or tacticals, e.g. terminating list iterations
of theorem-tacticals.
\SEEALSO
ALL_TAC, FAIL_TAC, NO_TAC, NO_THEN, THEN_TCL, ORELSE_TCL.
\ENDDOC
\DOC{ALPHA\_CONV}
\TYPE {\small\verb%ALPHA_CONV : (term -> conv)%}\egroup
\SYNOPSIS
Renames the bound variable of a lambda-abstraction.
\DESCRIBE
If {\small\verb%"x"%} is a variable of type {\small\verb%ty%} and {\small\verb%"\y.t"%} is an abstraction in which
the bound variable {\small\verb%y%} also has type {\small\verb%ty%}, then {\small\verb%ALPHA_CONV "x" "\y.t"%}
returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (\y.t) = (\x'. t[x'/y])
\end{verbatim}
}
\noindent where the variable {\small\verb%x':ty%} is a primed variant of {\small\verb%x%} chosen so
as not to be free in {\small\verb%"\y.t"%}.
\FAILURE
{\small\verb%ALPHA_CONV "x" "tm"%} fails if {\small\verb%x%} is not a variable, if {\small\verb%tm%} is not an
abstraction, or if {\small\verb%x%} is a variable {\small\verb%v%} and {\small\verb%tm%} is a lambda abstraction
{\small\verb%\y.t%} but the types of {\small\verb%v%} and {\small\verb%y%} differ.
\SEEALSO
ALPHA, GEN_ALPHA_CONV.
\ENDDOC
\DOC{ALPHA}
\TYPE {\small\verb%ALPHA : (term -> term -> thm)%}\egroup
\SYNOPSIS
Proves equality of alpha-equivalent terms.
\DESCRIBE
When applied to a pair of terms {\small\verb%t1%} and {\small\verb%t1'%} which are
alpha-equivalent, {\small\verb%ALPHA%} returns the theorem {\small\verb%|- t1 = t1'%}.
{\par\samepage\setseps\small
\begin{verbatim}
------------- ALPHA "t1" "t1'"
|- t1 = t1'
\end{verbatim}
}
\FAILURE
Fails unless the terms provided are alpha-equivalent.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ALPHA "!x:num. x = x" "!y:num. y = y";;
|- (!x. x = x) = (!y. y = y)
\end{verbatim}
}
\COMMENTS
The system shows the type of {\small\verb%ALPHA%} as {\small\verb%term -> conv%}.
\SEEALSO
aconv, ALPHA_CONV, GEN_ALPHA_CONV.
\ENDDOC
\DOC{ancestors}
\TYPE {\small\verb%ancestors : (string -> string list)%}\egroup
\SYNOPSIS
Gets a list of the (proper) ancestors of a theory.
\DESCRIBE
A call to {\small\verb%ancestors `th`%} returns a list of all the proper ancestors (i.e.
parents, parents of parents, etc.) of the theory {\small\verb%th%}.
\FAILURE
Fails if `th` is not an ancestor of the current theory.
\SEEALSO
ancestry, parents.
\ENDDOC
\DOC{ancestry}
\TYPE {\small\verb%ancestry : (void -> string list)%}\egroup
\SYNOPSIS
Gets a list of the ancestors of the current theory.
\DESCRIBE
A call {\small\verb%ancestry()%} returns a list of all the ancestors of the current theory,
i.e. the current theory itself, its parents, parents of parents, etc.
\FAILURE
Never fails.
\COMMENTS
The call {\small\verb%ancestry()%} is considerably more efficient than {\small\verb%ancestors `-`%}.
\SEEALSO
ancestors, parents.
\ENDDOC
\DOC{AND\_EXISTS\_CONV}
\TYPE {\small\verb%AND_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification outwards through a conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(?x.P) /\ (?x.Q)%}, where {\small\verb%x%} is free
in neither {\small\verb%P%} nor {\small\verb%Q%}, {\small\verb%AND_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P) /\ (?x. Q) = (?x. P /\ Q)
\end{verbatim}
}
\FAILURE
{\small\verb%AND_EXISTS_CONV%} fails if it is applied to a term not of the form
{\small\verb%(?x.P) /\ (?x.Q)%}, or if it is applied to a term {\small\verb%(?x.P) /\ (?x.Q)%}
in which the variable {\small\verb%x%} is free in either {\small\verb%P%} or {\small\verb%Q%}.
\SEEALSO
EXISTS_AND_CONV, LEFT_AND_EXISTS_CONV, RIGHT_AND_EXISTS_CONV.
\ENDDOC
\DOC{AND\_FORALL\_CONV}
\TYPE {\small\verb%AND_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification outwards through a conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(!x.P) /\ (!x.Q)%}, the conversion
{\small\verb%AND_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x.P) /\ (!x.Q) = (!x. P /\ Q)
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%(!x.P) /\ (!x.Q)%}.
\SEEALSO
FORALL_AND_CONV, LEFT_AND_FORALL_CONV, RIGHT_AND_FORALL_CONV.
\ENDDOC
\DOC{ANTE\_CONJ\_CONV}
\TYPE {\small\verb%ANTE_CONJ_CONV : conv%}\egroup
\SYNOPSIS
Eliminates a conjunctive antecedent in favour of implication.
\DESCRIBE
When applied to a term of the form {\small\verb%"(t1 /\ t2) ==> t"%}, the conversion
{\small\verb%ANTE_CONJ_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (t1 /\ t2 ==> t) = (t1 ==> t2 ==> t)
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%"(t1 /\ t2) ==> t"%}.
\USES
Somewhat ad-hoc, but can be used (with {\small\verb%CONV_TAC%}) to transform a goal of the
form {\small\verb%?- (P /\ Q) ==> R%} into the subgoal {\small\verb%?- P ==> (Q ==> R)%}, so that only
the antecedent {\small\verb%P%} is moved into the assumptions by {\small\verb%DISCH_TAC%}.
\ENDDOC
\DOC{ANTE\_RES\_THEN}
\TYPE {\small\verb%ANTE_RES_THEN : thm_tactical%}\egroup
\SYNOPSIS
Resolves implicative assumptions with an antecedent.
\DESCRIBE
Given a theorem-tactic {\small\verb%ttac%} and a theorem {\small\verb%A |- t%}, the function
{\small\verb%ANTE_RES_THEN%} produces a tactic that attempts to match {\small\verb%t%} to the antecedent
of each implication
{\par\samepage\setseps\small
\begin{verbatim}
Ai |- !x1...xn. ui ==> vi
\end{verbatim}
}
\noindent (where {\small\verb%Ai%} is just {\small\verb%!x1...xn. ui ==> vi%}) that occurs among the
assumptions of a goal. If the antecedent {\small\verb%ui%} of any implication matches {\small\verb%t%},
then an instance of {\small\verb%Ai u A |- vi%} is obtained by specialization of the
variables {\small\verb%x1%}, ..., {\small\verb%xn%} and type instantiation, followed by an application of
modus ponens. Because all implicative assumptions are tried, this may result
in several modus-ponens consequences of the supplied theorem and the
assumptions. Tactics are produced using {\small\verb%ttac%} from all these theorems, and
these tactics are applied in sequence to the goal. That is,
{\par\samepage\setseps\small
\begin{verbatim}
ANTE_RES_THEN ttac (A |- t) g
\end{verbatim}
}
\noindent has the effect of:
{\par\samepage\setseps\small
\begin{verbatim}
MAP_EVERY ttac [A1 u A |- v1; ...; Am u A |- vm] g
\end{verbatim}
}
\noindent where the theorems {\small\verb%Ai u A |- vi%} are all the consequences that can
be drawn by a (single) matching modus-ponens inference from the implications
that occur among the assumptions of the goal {\small\verb%g%} and the supplied theorem
{\small\verb%A |- t%}. Any negation {\small\verb%~v%} that appears among the assumptions of the goal is
treated as an implication {\small\verb%v ==> F%}. The sequence in which the theorems
{\small\verb%Ai u A |- vi%} are generated and the corresponding tactics applied is
unspecified.
\FAILURE
{\small\verb%ANTE_RES_THEN ttac (A |- t)%} fails when applied to a goal {\small\verb%g%} if any of the
tactics produced by {\small\verb%ttac (Ai u A |- vi)%}, where {\small\verb%Ai u A |- vi%} is the {\small\verb%i%}th
resolvent obtained from the theorem {\small\verb%A |- t%} and the assumptions of {\small\verb%g%}, fails
when applied in sequence to {\small\verb%g%}.
\SEEALSO
IMP_RES_TAC, IMP_RES_THEN, MATCH_MP, RES_TAC, RES_THEN.
\ENDDOC
\DOC{APPEND\_CONV}
\TYPE {\small\verb%APPEND_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of appending two object-language lists.
\DESCRIBE
For any pair of object language lists of the form {\small\verb%"[x1;...;xn]"%} and
{\small\verb%"[y1;...;ym]"%}, the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
APPEND_CONV "APPEND [x1;...;xn] [y1;...;ym]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- APPEND [x1;...;xn] [y1;...;ym] = [x1;...;xn;y1;...;ym]
\end{verbatim}
}
\noindent The length of either list (or both) may be 0.
\FAILURE
{\small\verb%APPEND_CONV tm%} fails if {\small\verb%tm%} is not of the form {\small\verb%"APPEND l1 l2"%}, where
{\small\verb%l1%} and {\small\verb%l2%} are (possibly empty) object-language lists of the forms
{\small\verb%"[x1;...;xn]"%} and {\small\verb%"[y1;...;ym]"%}.
\ENDDOC
\DOC{append}
\TYPE {\small\verb%append : (* list -> * list -> * list)%}\egroup
\SYNOPSIS
Concatenates two lists.
\DESCRIBE
{\small\verb%append [x1;...;xn] [y1;...;ym]%} returns {\small\verb%[x1;...;xn;y1;...;ym]%}.
\FAILURE
Never fails.
\COMMENTS
Performs the same operation as {\small\verb%$@%}.
\ENDDOC
\DOC{append\_openw}
\TYPE {\small\verb%append_openw : (string -> string)%}\egroup
\SYNOPSIS
Opens a port for appending to a named file.
\DESCRIBE
When applied to a filename {\small\verb%`name`%}, the function {\small\verb%append_openw%} opens the file
{\small\verb%name%} for writing, such that existing contents are appended to rather than
overwritten. It returns a port descriptor string, which can be used by {\small\verb%write%}
to append to the file, and by {\small\verb%close%} to close it.
\EXAMPLE
The following example assumes that HOL is being run under Unix. It will
overwrite an existing file {\small\verb%test-file%} in the current directory.
{\par\samepage\setseps\small
\begin{verbatim}
#system `echo -n 'Hello ' >test-file`;;
0 : int
#let port = append_openw `test-file`;;
port = `%test-file` : string
#write(port,`world`);;
() : void
#close port;;
() : void
#system `cat test-file`;;
Hello world0 : int
\end{verbatim}
}
\SEEALSO
close, openi, openw, read, write.
\ENDDOC
\DOC{apply\_proof}
\TYPE {\small\verb%apply_proof : (subgoals -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{AP\_TERM}
\TYPE {\small\verb%AP_TERM : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Applies a function to both sides of an equational theorem.
\DESCRIBE
When applied to a term {\small\verb%f%} and a theorem {\small\verb%A |- x = y%}, the
inference rule {\small\verb%AP_TERM%} returns the theorem {\small\verb%A |- f x = f y%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- x = y
---------------- AP_TERM "f"
A |- f x = f y
\end{verbatim}
}
\FAILURE
Fails unless the theorem is equational and the supplied term is a function
whose domain type is the same as the type of both sides of the equation.
\SEEALSO
AP_THM, MK_COMB.
\ENDDOC
\DOC{AP\_TERM\_TAC}
\TYPE {\small\verb%AP_TERM_TAC : tactic%}\egroup
\SYNOPSIS
Strips a function application from both sides of an equational goal.
\DESCRIBE
{\small\verb%AP_TERM_TAC%} reduces a goal of the form {\small\verb%A ?- f x = f y%} by stripping away
the function applications, giving the new goal {\small\verb%A ?- x = y%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- f x = f y
================ AP_TERM_TAC
A ?- x = y
\end{verbatim}
}
\FAILURE
Fails unless the goal is equational, with both sides being applications
of the same function.
\SEEALSO
AP_TERM, AP_THM.
\ENDDOC
\DOC{AP\_THM}
\TYPE {\small\verb%AP_THM : (thm -> term -> thm)%}\egroup
\SYNOPSIS
Proves equality of equal functions applied to a term.
\DESCRIBE
When applied to a theorem {\small\verb%A |- f = g%} and a term {\small\verb%x%}, the inference
rule {\small\verb%AP_THM%} returns the theorem {\small\verb%A |- f x = g x%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- f = g
---------------- AP_THM (A |- f = g) "x"
A |- f x = g x
\end{verbatim}
}
\FAILURE
Fails unless the conclusion of the theorem is an equation, both sides
of which are functions whose domain type is the same as that of the
supplied term.
\COMMENTS
The type of {\small\verb%AP_THM%} is shown by the system as {\small\verb%thm -> conv%}.
\SEEALSO
AP_TERM, ETA_CONV, EXT, MK_COMB.
\ENDDOC
\DOC{AP\_THM\_TAC}
\TYPE {\small\verb%AP_THM_TAC : tactic%}\egroup
\SYNOPSIS
Strips identical operands from functions on both sides of an equation.
\DESCRIBE
When applied to a goal of the form {\small\verb%A ?- f x = g x%}, the tactic {\small\verb%AP_THM_TAC%}
strips away the operands of the function application:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- f x = g x
================ AP_THM_TAC
A ?- f = g
\end{verbatim}
}
\FAILURE
Fails unless the goal has the above form, namely an equation both sides of
which consist of function applications to the same arguments.
\SEEALSO
AP_TERM, AP_TERM_TAC, AP_THM, EXT.
\ENDDOC
\DOC{arb\_term}
\TYPE {\small\verb%arb_term : term%}\egroup
\SYNOPSIS
This identifier is bound for implementation reasons only.
\DESCRIBE
{\small\verb%arb_term%} is the term {\small\verb%"arb:*"%}, i.e. it is a variable named {\small\verb%arb%} of logical
type {\small\verb%":*"%}.
\ENDDOC
\DOC{arity}
\TYPE {\small\verb%arity : (string -> int)%}\egroup
\SYNOPSIS
Returns the arity of a type operator.
\DESCRIBE
{\small\verb%arity `op`%} returns {\small\verb%n%} if {\small\verb%op%} is the name of an {\small\verb%n%}-ary type operator ({\small\verb%n%}
can be 0), and otherwise fails.
\FAILURE
{\small\verb%arity st%} fails if {\small\verb%st%} is not the name of a type constant or type operator.
\SEEALSO
is_type.
\ENDDOC
\DOC{ascii\_code}
\TYPE {\small\verb%ascii_code : (string -> int)%}\egroup
\SYNOPSIS
Maps a character to corresponding ASCII numeric code.
\DESCRIBE
When given a string, {\small\verb%ascii_code%} returns the numeric encoding in the
ASCII character set of the first character of that string.
\FAILURE
Fails if the string is empty ({\small\verb%``%}).
\SEEALSO
ascii, int_of_string, is_alphanum, is_letter, string_of_int.
\ENDDOC
\DOC{ascii}
\TYPE {\small\verb%ascii : (int -> string)%}\egroup
\SYNOPSIS
Maps an integer to the corresponding ASCII character.
\DESCRIBE
When given an integer, {\small\verb%ascii%} returns a string consisting of
the single character corresponding to that integer under the ASCII
encoding.
\FAILURE
Fails unless the integer supplied is in the range {\small\verb%0 <= x < 128%}.
\SEEALSO
ascii_code, int_of_string, is_alphanum, is_letter, string_of_int.
\ENDDOC
\DOC{ASM\_CASES\_TAC}
\TYPE {\small\verb%ASM_CASES_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Given a term, produces a case split based on whether or not that
term is true.
\DESCRIBE
Given a term {\small\verb%u%}, {\small\verb%ASM_CASES_TAC%} applied to a goal produces two
subgoals, one with {\small\verb%u%} as an assumption and one with {\small\verb%~u%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
================================ ASM_CASES_TAC "u"
A u {u} ?- t A u {~u} ?- t
\end{verbatim}
}
\noindent {\small\verb%ASM_CASES_TAC u%} is implemented by
{\small\verb%DISJ_CASES_TAC(SPEC u EXCLUDED_MIDDLE)%}, where {\small\verb%EXCLUDED_MIDDLE%} is
the axiom {\small\verb%|- !u. u \/ ~u%}.
\FAILURE
By virtue of the implementation (see above), the decomposition fails if
{\small\verb%EXCLUDED_MIDDLE%} cannot be instantiated to {\small\verb%u%}, e.g. if {\small\verb%u%} does not
have boolean type.
\EXAMPLE
The tactic {\small\verb%ASM_CASES_TAC "u"%} can be used to produce a case analysis
on {\small\verb%"u"%}:
{\par\samepage\setseps\small
\begin{verbatim}
ASM_CASES_TAC "u:bool" ([],"(P:bool -> bool) u");;
([(["u"], "P u"); (["~u"], "P u")], -) : subgoals
\end{verbatim}
}
\USES
Performing a case analysis according to whether a given term is true or false.
\SEEALSO
BOOL_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC, SPEC, STRUCT_CASES_TAC.
\ENDDOC
\DOC{ASM\_REWRITE\_RULE}
\TYPE {\small\verb%ASM_REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem including built-in rewrites and the theorem's assumptions.
\DESCRIBE
{\small\verb%ASM_REWRITE_RULE%} rewrites with the tautologies in {\small\verb%basic_rewrites%},
the given list of theorems, and the set of hypotheses of the theorem. All
hypotheses are used. No ordering is specified among applicable rewrites.
Matching subterms are searched for recursively, starting with the entire term
of the conclusion and stopping when no rewritable expressions remain. For more
details about the rewriting process, see {\small\verb%GEN_REWRITE_RULE%}. To avoid using the
set of basic tautologies, see {\small\verb%PURE_ASM_REWRITE_RULE%}.
\FAILURE
{\small\verb%ASM_REWRITE_RULE%} does not fail, but may result in divergence. To
prevent divergence where it would occur, {\small\verb%ONCE_ASM_REWRITE_RULE%} can be
used.
\SEEALSO
GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{ASM\_REWRITE\_TAC}
\TYPE {\small\verb%ASM_REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal including built-in rewrites and the goal's assumptions.
\DESCRIBE
{\small\verb%ASM_REWRITE_TAC%} generates rewrites with the tautologies in {\small\verb%basic_rewrites%},
the set of assumptions, and a list of theorems supplied by the user. These are
applied top-down and recursively on the goal, until no more matches are found.
The order in which the set of rewrite equations is applied is an implementation
matter and the user should not depend on any ordering. Rewriting strategies are
described in more detail under {\small\verb%GEN_REWRITE_TAC%}. For omitting the common
tautologies, see the tactic {\small\verb%PURE_ASM_REWRITE_TAC%}. To rewrite with only a
subset of the assumptions use {\small\verb%FILTER_ASM_REWRITE_TAC%}.
\FAILURE
{\small\verb%ASM_REWRITE_TAC%} does not fail, but it can diverge in certain
situations. For rewriting to a limited depth, see
{\small\verb%ONCE_ASM_REWRITE_TAC%}. The resulting tactic may not be valid if the
applicable replacement introduces new assumptions into the theorem
eventually proved.
\EXAMPLE
The use of assumptions in rewriting, specially when they are not in an
obvious equational form, is illustrated below:
{\par\samepage\setseps\small
\begin{verbatim}
#ASM_REWRITE_TAC[](["P x"],"P x = Q x");;
([(["P x"], "Q x")], -) : subgoals
#ASM_REWRITE_TAC[](["~P x"],"P x = Q x");;
([(["~P x"], "~Q x")], -) : subgoals
\end{verbatim}
}
\SEEALSO
basic_rewrites, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_REWRITE_TAC,
REWRITE_TAC, SUBST_TAC.
\ENDDOC
\DOC{assert}
\TYPE {\small\verb%assert : ((* -> bool) -> * -> *)%}\egroup
\SYNOPSIS
Checks that a value satisfies a predicate.
\DESCRIBE
{\small\verb%assert p x%} returns {\small\verb%x%} if the application {\small\verb%p x%} yields {\small\verb%true%}. Otherwise,
{\small\verb%assert p x%} fails.
\FAILURE
{\small\verb%assert p x%} fails with the string {\small\verb%`fail`%} if the predicate {\small\verb%p%} yields
{\small\verb%false%} when applied to the value {\small\verb%x%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#null [];;
true : bool
#assert null [];;
[] : * list
#null [1];;
false : bool
#assert null [1];;
evaluation failed fail
\end{verbatim}
}
\SEEALSO
can.
\ENDDOC
\DOC{assignable\_print\_term}
\TYPE {\small\verb%assignable_print_term : (term -> void)%}\egroup
\SYNOPSIS
Assignable term-printing function used for printing goals.
\DESCRIBE
The printing of terms can be modified using the ML directive {\small\verb%top_print%}.
However the term printing functions used for printing goals are not affected
by {\small\verb%top_print%}. To make use of user-defined print functions in goals, the
assignable variable {\small\verb%assignable_print_term%} must be changed.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let my_print_term tm =
# do (print_string `<<`;print_term tm;print_string `>>`);;
my_print_term = - : (term -> void)
#"x ==> y";;
"x ==> y" : term
#top_print my_print_term;;
- : (term -> void)
#"x ==> y";;
<<"x ==> y">> : term
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#g "(x ==> y) /\ (y ==> x) ==> (x = y)";;
"(x ==> y) /\ (y ==> x) ==> (x = y)"
() : void
#expand (REPEAT STRIP_TAC);;
OK..
"x = y"
[ "x ==> y" ]
[ "y ==> x" ]
() : void
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#assignable_print_term := my_print_term;;
- : (term -> void)
#expand ALL_TAC;;
OK..
<<"x = y">>
[ <<"x ==> y">> ]
[ <<"y ==> x">> ]
() : void
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#assignable_print_term := print_term;;
- : (term -> void)
#expand ALL_TAC;;
OK..
"x = y"
[ "x ==> y" ]
[ "y ==> x" ]
() : void
\end{verbatim}
}
\SEEALSO
print_term, top_print.
\ENDDOC
\DOC{assoc}
\TYPE {\small\verb%assoc : (* -> (* # **) list -> (* # **))%}\egroup
\SYNOPSIS
Searches a list of pairs for a pair whose first component equals a specified
value.
\DESCRIBE
{\small\verb%assoc x [(x1,y1);...;(xn,yn)]%} returns the first {\small\verb%(xi,yi)%} in the list such
that {\small\verb%xi%} equals {\small\verb%x%}.
\FAILURE
Fails if no matching pair is found. This will always be the case if the list
is empty.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#assoc 2 [(1,4);(3,2);(2,5);(2,6)];;
(2, 5) : (int # int)
\end{verbatim}
}
\SEEALSO
rev_assoc, find, mem, tryfind, exists, forall.
\ENDDOC
\DOC{associate\_restriction}
\TYPE {\small\verb%associate_restriction : ((string # string) -> void)%}\egroup
\SYNOPSIS
Associates a restriction semantics with a binder.
\DESCRIBE
If {\small\verb%B%} is a binder and {\small\verb%RES_B%} a constant then
{\par\samepage\setseps\small
\begin{verbatim}
associate_restriction(`B`, `RES_B`)
\end{verbatim}
}
\noindent will cause the parser and pretty-printer to support:
{\par\samepage\setseps\small
\begin{verbatim}
---- parse ---->
Bv::P. B RES_B P (\v. B)
<---- print ----
\end{verbatim}
}
Anything can be written between the binder and {\small\verb%`::`%} that could be
written between the binder and {\small\verb%`.`%} in the old notation. See the
examples below.
Associations between user defined binders and their restrictions are not
stored in the theory, so they have to be set up for each hol session
(e.g. with a {\small\verb%hol-init.ml%} file).
The flag {\small\verb%`print_restrict`%} has default {\small\verb%true%}, but if set to {\small\verb%false%} will
disable the pretty printing. This is useful for seeing what the
semantics of particular restricted abstractions are.
The following associations are predefined:
{\par\samepage\setseps\small
\begin{verbatim}
\v::P. B <----> RES_ABSTRACT P (\v. B)
!v::P. B <----> RES_FORALL P (\v. B)
?v::P. B <----> RES_EXISTS P (\v. B)
@v::P. B <----> RES_SELECT P (\v. B)
\end{verbatim}
}
Where the constants {\small\verb%RES_ABSTRACT%}, {\small\verb%RES_FORALL%}, {\small\verb%RES_EXISTS%} and
{\small\verb%RES_SELECT%} are defined in the theory {\small\verb%`bool`%} by:
{\par\samepage\setseps\small
\begin{verbatim}
|- RES_ABSTRACT P B = \x:*. (P x => B x | ARB:**)
|- RES_FORALL P B = !x:*. P x ==> B x
|- RES_EXISTS P B = ?x:*. P x /\ B x
|- RES_SELECT P B = @x:*. P x /\ B x
\end{verbatim}
}
where {\small\verb%ARB%} is defined in the theory {\small\verb%`bool`%} by:
{\par\samepage\setseps\small
\begin{verbatim}
|- ARB = @x:*. T
\end{verbatim}
}
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_binder_definition(`DURING`, "DURING(p:num#num->bool) = $!p");;
|- !p. $DURING p = $! p
#"DURING x::(m,n). p x";;
no restriction constant associated with DURING
skipping: x " ;; parse failed
#new_definition
# (`RES_DURING`, "RES_DURING(m,n)p = !x. m<=x /\ x<=n ==> p x");;
|- !m n p. RES_DURING(m,n)p = (!x. m <= x /\ x <= n ==> p x)
#associate_restriction(`DURING`,`RES_DURING`);;
() : void
#"DURING x::(m,n). p x";;
"DURING x :: (m,n). p x" : term
#set_flag(`print_restrict`,false);;
true : bool
#"DURING x::(m,n). p x";;
"RES_DURING(m,n)(\x. p x)" : term
\end{verbatim}
}
\ENDDOC
\DOC{ASSUME}
\TYPE {\small\verb%ASSUME : (term -> thm)%}\egroup
\SYNOPSIS
Introduces an assumption.
\DESCRIBE
When applied to a term {\small\verb%t%}, which must have type {\small\verb%bool%}, the inference rule
{\small\verb%ASSUME%} returns the theorem {\small\verb%t |- t%}.
{\par\samepage\setseps\small
\begin{verbatim}
-------- ASSUME "t"
t |- t
\end{verbatim}
}
\FAILURE
Fails unless the term {\small\verb%t%} has type {\small\verb%bool%}.
\COMMENTS
The type of {\small\verb%ASSUME%} is shown by the system as {\small\verb%conv%}.
\SEEALSO
ADD_ASSUM, REFL.
\ENDDOC
\DOC{ASSUME\_TAC}
\TYPE {\small\verb%ASSUME_TAC : thm_tactic%}\egroup
\SYNOPSIS
Adds an assumption to a goal.
\DESCRIBE
Given a theorem {\small\verb%th%} of the form {\small\verb%A' |- u%}, and a goal, {\small\verb%ASSUME_TAC th%}
adds {\small\verb%u%} to the assumptions of the goal.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============== ASSUME_TAC (A' |- u)
A u {u} ?- t
\end{verbatim}
}
\noindent Note that unless {\small\verb%A'%} is a subset of {\small\verb%A%}, this tactic is invalid.
\FAILURE
Never fails.
\EXAMPLE
Given a goal {\small\verb%g%} of the form {\small\verb%{x = y, y = z} ?- P%},
where {\small\verb%"x"%}, {\small\verb%"y"%} and {\small\verb%"z"%} have type {\small\verb%":*"%},
the theorem {\small\verb%x = y, y = z |- x = z%} can, first, be inferred by
forward proof
{\par\samepage\setseps\small
\begin{verbatim}
TRANS(ASSUME "x = y")(ASSUME "y = z")
\end{verbatim}
}
\noindent and then added to the assumptions. This process requires
the explicit text of the assumptions, as well as invocation of
the rule {\small\verb%ASSUME%}:
{\par\samepage\setseps\small
\begin{verbatim}
ASSUME_TAC(TRANS(ASSUME "x = y")(ASSUME "y = z"))g;;
([(["x = z"; "x = y"; "y = z"], "P")], -) : subgoals
\end{verbatim}
}
\noindent This is the naive way of manipulating assumptions; there are more
advanced proof styles (more elegant and less transparent) that achieve the
same effect, but this is a perfectly correct technique in itself.
Alternatively, the axiom {\small\verb%EQ_TRANS%} could be added to the
assumptions of {\small\verb%g%}:
{\par\samepage\setseps\small
\begin{verbatim}
ASSUME_TAC EQ_TRANS g;;
([(["!x y z. (x = y) /\ (y = z) ==> (x = z)"; "x = y"; "y = z"], "P")],
-)
: subgoals
\end{verbatim}
}
\noindent A subsequent resolution (see {\small\verb%RES_TAC%}) would then be able to add
the assumption {\small\verb%"x = z"%} to the subgoal shown above. (Aside from purposes of
example, it would be more usual to use {\small\verb%IMP_RES_TAC%} than {\small\verb%ASSUME_TAC%}
followed by {\small\verb%RES_TAC%} in this context.)
\USES
{\small\verb%ASSUME_TAC%} is the naive way of manipulating assumptions (i.e. without
recourse to advanced tacticals); and it is useful for enriching the assumption
list with lemmas as a prelude to resolution ({\small\verb%RES_TAC%}, {\small\verb%IMP_RES_TAC%}),
rewriting with assumptions ({\small\verb%ASM_REWRITE_TAC%} and so on), and other operations
involving assumptions.
\SEEALSO
ACCEPT_TAC, IMP_RES_TAC, RES_TAC, STRIP_ASSUME_TAC.
\ENDDOC
\DOC{ASSUM\_LIST}
\TYPE {\small\verb%ASSUM_LIST : ((thm list -> tactic) -> tactic)%}\egroup
\SYNOPSIS
Applies a tactic generated from the goal's assumption list.
\DESCRIBE
When applied to a function of type {\small\verb%thm list -> tactic%} and a goal,
{\small\verb%ASSUM_LIST%} constructs a tactic by applying {\small\verb%f%} to a list of {\small\verb%ASSUME%}d
assumptions of the goal, then applies that tactic to the goal.
{\par\samepage\setseps\small
\begin{verbatim}
ASSUM_LIST f ({A1;...;An} ?- t)
= f [A1 |- A1; ... ; An |- An] ({A1;...;An} ?- t)
\end{verbatim}
}
\FAILURE
Fails if the function fails when applied to the list of {\small\verb%ASSUME%}d assumptions,
or if the resulting tactic fails when applied to the goal.
\COMMENTS
There is nothing magical about {\small\verb%ASSUM_LIST%}: the same effect can usually be
achieved just as conveniently by using {\small\verb%ASSUME a%} wherever the
assumption {\small\verb%a%} is needed. If {\small\verb%ASSUM_LIST%} is used, it is extremely unwise to
use a function which selects elements from its argument list by number, since
the ordering of assumptions should not be relied on.
\EXAMPLE
The tactic:
{\par\samepage\setseps\small
\begin{verbatim}
ASSUM_LIST SUBST_TAC
\end{verbatim}
}
\noindent makes a single parallel substitution using all the assumptions,
which can be useful if the rewriting tactics are too blunt for the required
task.
\USES
Making more careful use of the assumption list than simply rewriting or
using resolution.
\SEEALSO
ASM_REWRITE_TAC, EVERY_ASSUM, IMP_RES_TAC, POP_ASSUM, POP_ASSUM_LIST,
REWRITE_TAC.
\ENDDOC
\DOC{attempt\_first}
\TYPE {\small\verb%attempt_first : (subgoals -> tactic -> subgoals)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{autoload}
\TYPE {\small\verb%autoload : ((string # string # string list) -> void)%}\egroup
\SYNOPSIS
Sets up a general autoloading action.
\DESCRIBE
After a call {\small\verb%autoload(`name`,`f`,[`arg1`;...;`argn`])%}, a subsequent
occurrence of {\small\verb%name%} in an ML phrase will cause the ML expression
{\small\verb%f [`arg1`;...;`argn`]%} to be evaluated before any of the toplevel phrase
containing {\small\verb%name%} is evaluated. Notice that {\small\verb%f%} is interpreted as a single
identifier denoting a function, whereas the various arguments are string
literals.
\FAILURE
Never fails (obviously failure may occur when the action is actually performed;
the ML phrase could be nonsense).
\EXAMPLE
The following is a simple example:
{\par\samepage\setseps\small
\begin{verbatim}
#let action = tty_write o hd;;
action = - : (string list -> void)
#autoload(`key1`,`action`,[`Hello John!`]);;
() : void
#let key1 = 1;;
Hello John!() : void
key1 = 1 : int
\end{verbatim}
}
\COMMENTS
There is no obligation to use the argument list; an alternative to achieve the
same as the above is:
{\par\samepage\setseps\small
\begin{verbatim}
#let action (l:(string)list) = tty_write `Hello John!`;;
action = - : (string list -> void)
#autoload(`key2`,`action`,[]);;
() : void
#let key2 = 1;;
Hello John!() : void
key2 = 1 : int
\end{verbatim}
}
\noindent If a normal autoloading action is all that is required, the function
{\small\verb%autoload_theory%} provides a simpler way.
\SEEALSO
autoload_theory, let_after, let_before, undo_autoload.
\ENDDOC
\DOC{autoload\_theory}
\TYPE {\small\verb%autoload_theory : ((string # string # string) -> void)%}\egroup
\SYNOPSIS
Makes an axiom, definition or theorem autoload when mentioned.
\DESCRIBE
After a call {\small\verb%autoload_theory(`kind`,`thy`,`name`)%}, a subsequent occurrence of
the name {\small\verb%name%} in an ML phrase will cause the relevant autoloading action.
The {\small\verb%kind%} value should be one of {\small\verb%axiom%}, {\small\verb%definition%} (this includes type
definitions) or {\small\verb%theorem%}, and the appropriate entity called {\small\verb%name%} will be
loaded from theory {\small\verb%thy%} before the ML phrase containing {\small\verb%name%} is evaluated.
\FAILURE
Never fails, although the subsequent autoloading action may do.
\EXAMPLE
The following autoload is not necessary because {\small\verb%ETA_AX%} is already bound to an
identifier when HOL is started. However, it shows the general idea.
{\par\samepage\setseps\small
\begin{verbatim}
#autoload_theory(`axiom`,`bool`,`ETA_AX`);;
() : void
#ETA_AX;;
Axiom ETA_AX autoloaded from theory `bool`.
ETA_AX = |- !t. (\x. t x) = t
|- !t. (\x. t x) = t
\end{verbatim}
}
\COMMENTS
More general automatic actions can be achieved using {\small\verb%autoload%}.
\SEEALSO
autoload, undo_autoload.
\ENDDOC
\DOC{axiom}
\TYPE {\small\verb%axiom : (string -> string -> thm)%}\egroup
\SYNOPSIS
Loads an axiom from a given theory segment of the current theory.
\DESCRIBE
A call of {\small\verb%axiom `thy` `ax`%} returns axiom {\small\verb%ax%} from the theory segment {\small\verb%thy%}.
The theory segment {\small\verb%thy%} must be part of the current theory. The name {\small\verb%ax%} is
the name given to the axiom by the user when it was originally added to the
theory segment (by a call to {\small\verb%new_axiom%}). The name of the current theory
segment can be abbreviated by {\small\verb%`-`%}.
\FAILURE
The call {\small\verb%axiom `thy` `ax`%} will fail if the theory segment {\small\verb%thy%} is not part
of the current theory. It will fail if there does not exist an axiom of name
{\small\verb%ax%} in theory segment {\small\verb%thy%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#axiom `bool` `BOOL_CASES_AX`;;
|- !t. (t = T) \/ (t = F)
\end{verbatim}
}
\SEEALSO
axioms, definition, load_axiom, load_axioms, new_axiom, print_theory, theorem.
\ENDDOC
\DOC{axiom\_lfn}
\TYPE {\small\verb%axiom_lfn : (string list -> thm)%}\egroup
\SYNOPSIS
Loads a given axiom from a given theory.
\DESCRIBE
If {\small\verb%thy%} is an ancestor theory, and {\small\verb%ax%} one of its axioms, then the call
{\par\samepage\setseps\small
\begin{verbatim}
axiom_lfn [`thy`;`ax`]
\end{verbatim}
}
\noindent will return that axiom.
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%ax%} is not one of its
axioms.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#axiom_lfn [`bool`;`ETA_AX`];;
|- !t. (\x. t x) = t
\end{verbatim}
}
\COMMENTS
This call has the same effect as {\small\verb%axiom `thy` `ax`%}.
\SEEALSO
axiom, axioms, axiom_msg_lfn, load_axiom, load_axioms.
\ENDDOC
\DOC{axiom\_msg\_lfn}
\TYPE {\small\verb%axiom_msg_lfn : (string list -> thm)%}\egroup
\SYNOPSIS
Loads a given axiom from a given theory, with an autoload message.
\DESCRIBE
If {\small\verb%thy%} is an ancestor theory, and {\small\verb%ax%} one of its axioms, then the call
{\par\samepage\setseps\small
\begin{verbatim}
axiom_msg_lfn [`thy`;`ax`]
\end{verbatim}
}
\noindent will print a message of the form
{\par\samepage\setseps\small
\begin{verbatim}
Axiom ax autoloaded from theory `thy`
\end{verbatim}
}
\noindent and cancel any autoloading action associated with the name {\small\verb%ax%},
and will then return that axiom.
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%ax%} is not one of its
axioms.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#axiom_msg_lfn [`bool`;`ETA_AX`];;
Axiom ETA_AX autoloaded from theory `bool`.
|- !t. (\x. t x) = t
\end{verbatim}
}
\SEEALSO
autoload, autoload_theory, axiom, axioms, axiom_lfn, load_axiom, load_axioms,
undo_autoload.
\ENDDOC
\DOC{axioms}
\TYPE {\small\verb%axioms : (string -> (string # thm) list)%}\egroup
\SYNOPSIS
Returns the axioms of a given theory segment of the current theory.
\DESCRIBE
A call {\small\verb%axioms `thy`%} returns the axioms of the theory segment {\small\verb%thy%} together
with their names. The theory segment {\small\verb%thy%} must be part of the current theory.
The names are those given to the axioms by the user when they were originally
added to the theory segment (by a call to {\small\verb%new_axiom%}). The name of the current
theory segment can be abbreviated by {\small\verb%`-`%}.
\FAILURE
The call {\small\verb%axioms `thy`%} will fail if the theory segment {\small\verb%thy%} is not
part of the current theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#axioms `bool`;;
[(`SELECT_AX`, |- !P x. P x ==> P($@ P));
(`ETA_AX`, |- !t. (\x. t x) = t);
(`IMP_ANTISYM_AX`,
|- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2));
(`BOOL_CASES_AX`, |- !t. (t = T) \/ (t = F));
(`ARB_THM`, |- $= = $=)]
: (string # thm) list
\end{verbatim}
}
\SEEALSO
axiom, definitions, load_axiom, load_axioms, new_axiom, print_theory, theorems.
\ENDDOC
\DOC{backup}
\TYPE {\small\verb%backup : (void -> void)%}\egroup
\SYNOPSIS
Restores the proof state, undoing the effects of a previous expansion.
\DESCRIBE
The function {\small\verb%backup%} is part of the subgoal package. It allows backing up
from the last state change (caused by calls to {\small\verb%expand%}, {\small\verb%set_goal%}, {\small\verb%rotate%}
and their abbreviations, or to {\small\verb%set_state%}). The package maintains a backup
list of previous proof states. A call to {\small\verb%backup%} restores the state to the
previous state (which was on top of the backup list). The current state and the
state on top of the backup list are discarded. The maximum number of proof
states saved on the backup list is one greater than the value of the assignable
variable {\small\verb%backup_limit%}. This variable is initially set to 12. Adding new proof
states after the maximum is reached causes the earliest proof state on the list
to be discarded. The user may backup repeatedly until the list is exhausted.
The state restored includes all unproven subgoals or, if a goal had been
proved in the previous state, the corresponding theorem. {\small\verb%backup%} is
abbreviated by the function {\small\verb%b%}. For a description of the subgoal package, see
{\small\verb%set_goal%}.
\FAILURE
The function {\small\verb%backup%} will fail if the backup list is empty.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
#e CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"
"HD[1;2;3] = 1"
() : void
#backup();;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
#e (REWRITE_TAC[HD;TL]);;
OK..
goal proved
|- (HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])
Previous subproof:
goal proved
() : void
\end{verbatim}
}
\USES
Back tracking in a goal-directed proof to undo errors or try different tactics.
\SEEALSO
b, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{backup\_limit}
\TYPE {\small\verb%backup_limit : int%}\egroup
\SYNOPSIS
Limits the number of proof states saved on the subgoal package backup list.
\DESCRIBE
The assignable variable {\small\verb%backup_limit%} is initially set to 12. Its value is one
less than the maximum number of proof states that may be saved on the backup
list. Adding a new proof state (by, for example, a call to {\small\verb%expand%}) after the
maximum is reached causes the earliest proof state on the list to be discarded.
For a description of the subgoal package, see {\small\verb%set_goal%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#backup_limit := 0;;
0 : int
#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
#e CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"
"HD[1;2;3] = 1"
() : void
#e (REWRITE_TAC[HD]);;
OK..
goal proved
|- HD[1;2;3] = 1
Previous subproof:
"TL[1;2;3] = [2;3]"
() : void
#b();;
2 subgoals
"TL[1;2;3] = [2;3]"
"HD[1;2;3] = 1"
() : void
#b();;
evaluation failed backup: backup list is empty
\end{verbatim}
}
\SEEALSO
b, backup, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{backup\_list}
\TYPE {\small\verb%backup_list : goalstack list%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{basic\_rewrites}
\TYPE {\small\verb%basic_rewrites: thm list%}\egroup
\SYNOPSIS
Contains a number of built-in tautologies used, by default, in rewriting.
\DESCRIBE
The variable {\small\verb%basic_rewrites%} contains polymorphic tautologies which
are often used for simplifying and solving a goal through rewriting.
They include the clause for reflexivity:
{\par\samepage\setseps\small
\begin{verbatim}
|- !x. (x = x) = T;
\end{verbatim}
}
\noindent as well as rules to reason about equality:
{\par\samepage\setseps\small
\begin{verbatim}
|- !t.
((T = t) = t) /\ ((t = T) = t) /\ ((F = t) = ~t) /\ ((t = F) = ~t);
\end{verbatim}
}
Negations are manipulated by the following clauses:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!t. ~~t = t) /\ (~T = F) /\ (~F = T);
\end{verbatim}
}
The set of tautologies includes truth tables for conjunctions,
disjunctions, and implications:
{\par\samepage\setseps\small
\begin{verbatim}
|- !t.
(T /\ t = t) /\
(t /\ T = t) /\
(F /\ t = F) /\
(t /\ F = F) /\
(t /\ t = t);
|- !t.
(T \/ t = T) /\
(t \/ T = T) /\
(F \/ t = t) /\
(t \/ F = t) /\
(t \/ t = t);
|- !t.
(T ==> t = t) /\
(t ==> T = T) /\
(F ==> t = T) /\
(t ==> t = T) /\
(t ==> F = ~t);
\end{verbatim}
}
Simple rules for reasoning about conditionals are given by:
{\par\samepage\setseps\small
\begin{verbatim}
|- !t1 t2. ((T => t1 | t2) = t1) /\ ((F => t1 | t2) = t2);
\end{verbatim}
}
Rewriting with the following tautologies allows simplification of
universally and existentially quantified variables and abstractions:
{\par\samepage\setseps\small
\begin{verbatim}
|- !t. (!x. t) = t;
|- !t. (?x. t) = t;
|- !t1 t2. (\x. t1)t2 = t1;
\end{verbatim}
}
The list {\small\verb%basic_rewrites%} also includes rules for reasoning about
pairs in HOL:
{\par\samepage\setseps\small
\begin{verbatim}
|- !x. FST x,SND x = x;
|- !x y. FST(x,y) = x;
|- !x y. SND(x,y) = y]
\end{verbatim}
}
\USES
The {\small\verb%basic_rewrites%} are included in the set of equations used by some
of the rewriting tools.
\SEEALSO
ABS_SIMP, AND_CLAUSES, COND_CLAUSES, EQ_CLAUSES, EXISTS_SIMP,
FORALL_SIMP, FST, GEN_REWRITE_RULE, GEN_REWRITE_TAC, IMP_CLAUSES,
NOT_CLAUSES, OR_CLAUSES, PAIR, REFL_CLAUSE, REWRITE_RULE, REWRITE_TAC,
SND.
\ENDDOC
\DOC{b}
\TYPE {\small\verb%b : (void -> void)%}\egroup
\SYNOPSIS
Restores the proof state undoing the effects of a previous expansion.
\DESCRIBE
The function {\small\verb%b%} is part of the subgoal package. It is an abbreviation for the
function {\small\verb%backup%}. For a description of the subgoal package, see
{\small\verb%set_goal%}.
\FAILURE
As for {\small\verb%backup%}.
\USES
Back tracking in a goal-directed proof to undo errors or try different tactics.
\SEEALSO
backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{B}
\TYPE {\small\verb%B : ((* -> **) -> (*** -> *) -> *** -> **)%}\egroup
\SYNOPSIS
Performs curried function-composition: {\small\verb%B f g x%} = {\small\verb%f (g x)%}.
\FAILURE
Never fails.
\SEEALSO
\#, C, CB, Co, I, K, KI, o, oo, S, W.
\ENDDOC
\DOC{BETA\_CONV}
\TYPE {\small\verb%BETA_CONV : conv%}\egroup
\SYNOPSIS
Performs a simple beta-conversion.
\DESCRIBE
The conversion {\small\verb%BETA_CONV%} maps a beta-redex {\small\verb%"(\x.u)v"%} to the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- (\x.u)v = u[v/x]
\end{verbatim}
}
\noindent where {\small\verb%u[v/x]%} denotes the result of substituting {\small\verb%v%} for all free
occurrences of {\small\verb%x%} in {\small\verb%u%}, after renaming sufficient bound variables to avoid
variable capture. This conversion is one of the primitive inference rules of
the HOL system.
\FAILURE
{\small\verb%BETA_CONV tm%} fails if {\small\verb%tm%} is not a beta-redex.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#BETA_CONV "(\x.x+1)y";;
|- (\x. x + 1)y = y + 1
#BETA_CONV "(\x y. x+y)y";;
|- (\x y. x + y)y = (\y'. y + y')
\end{verbatim}
}
\COMMENTS
This primitive inference rule is actually not very primitive, since it does
automatic bound variable renaming. It would be logically cleaner for this
renaming to be derived rather than built-in, but since beta-reduction is so
common this would slow the system down a lot. It is hoped to document the
exact renaming algorithm used by {\small\verb%BETA_CONV%} in the future.
\SEEALSO
BETA_RULE, BETA_TAC, LIST_BETA_CONV, PAIRED_BETA_CONV, RIGHT_BETA,
RIGHT_LIST_BETA.
\ENDDOC
\DOC{BETA\_RULE}
\TYPE {\small\verb%BETA_RULE : (thm -> thm)%}\egroup
\SYNOPSIS
Beta-reduces all the beta-redexes in the conclusion of a theorem.
\DESCRIBE
When applied to a theorem {\small\verb%A |- t%}, the inference rule {\small\verb%BETA_RULE%} beta-reduces
all beta-redexes, at any depth, in the conclusion {\small\verb%t%}. Variables are renamed
where necessary to avoid free variable capture.
{\par\samepage\setseps\small
\begin{verbatim}
A |- ....((\x. s1) s2)....
---------------------------- BETA_RULE
A |- ....(s1[s2/x])....
\end{verbatim}
}
\FAILURE
Never fails, but will have no effect if there are no beta-redexes.
\EXAMPLE
The following example is a simple reduction which illustrates variable
renaming:
{\par\samepage\setseps\small
\begin{verbatim}
#top_print print_all_thm;;
- : (thm -> void)
#let x = ASSUME "f = ((\x y. x + y) y)";;
x = f = (\x y. x + y)y |- f = (\x y. x + y)y
#BETA_RULE x;;
f = (\x y. x + y)y |- f = (\y'. y + y')
\end{verbatim}
}
\SEEALSO
BETA_CONV, BETA_TAC, PAIRED_BETA_CONV, RIGHT_BETA.
\ENDDOC
\DOC{BETA\_TAC}
\TYPE {\small\verb%BETA_TAC : tactic%}\egroup
\SYNOPSIS
Beta-reduces all the beta-redexes in the conclusion of a goal.
\DESCRIBE
When applied to a goal {\small\verb%A ?- t%}, the tactic {\small\verb%BETA_TAC%} produces a new goal
which results from beta-reducing all beta-redexes, at any depth, in {\small\verb%t%}.
Variables are renamed where necessary to avoid free variable capture.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- ...((\x. s1) s2)...
========================== BETA_TAC
A ?- ...(s1[s2/x])...
\end{verbatim}
}
\FAILURE
Never fails, but will have no effect if there are no beta-redexes.
\SEEALSO
BETA_CONV, BETA_TAC, PAIRED_BETA_CONV.
\ENDDOC
\DOC{binders}
\TYPE {\small\verb%binders : (string -> term list)%}\egroup
\SYNOPSIS
Lists the binders in the named theory.
\DESCRIBE
The function {\small\verb%binders%} should be applied to a string which is the name of an
ancestor theory (including the current theory; the special string {\small\verb%`-`%} is
always interpreted as the current theory). It returns a list of all the binders
declared in the named theory.
\FAILURE
Fails unless the given theory is an ancestor of the current theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#binders `bool`;;
["$?!"; "$!"; "$@"] : term list
#binders `ind`;;
[] : term list
\end{verbatim}
}
\SEEALSO
ancestors, axioms, constants, definitions, infixes, new_binder, parents, types.
\ENDDOC
\DOC{bndvar}
\TYPE {\small\verb%bndvar : (term -> term)%}\egroup
\SYNOPSIS
Returns the bound variable of an abstraction.
\DESCRIBE
{\small\verb%bndvar "\var. t"%} returns {\small\verb%"var"%}.
\FAILURE
Fails unless the term is an abstraction.
\SEEALSO
body, dest_abs.
\ENDDOC
\DOC{BODY\_CONJUNCTS}
\TYPE {\small\verb%BODY_CONJUNCTS : (thm -> thm list)%}\egroup
\SYNOPSIS
Splits up conjuncts recursively, stripping away universal quantifiers.
\DESCRIBE
When applied to a theorem, {\small\verb%BODY_CONJUNCTS%} recursively strips off universal
quantifiers by specialization, and breaks conjunctions into a list of
conjuncts.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x1...xn. t1 /\ (!y1...ym. t2 /\ t3) /\ ...
-------------------------------------------------- BODY_CONJUNCTS
[A |- t1; A |- t2; A |- t3; ...]
\end{verbatim}
}
\FAILURE
Never fails, but has no effect if there are no top-level universal quantifiers
or conjuncts.
\EXAMPLE
The following illustrates how a typical term will be split:
{\par\samepage\setseps\small
\begin{verbatim}
#let x = ASSUME "!x:bool. A /\ (B \/ (C /\ D)) /\ ((!y:bool. E) /\ F)";;
x = . |- !x. A /\ (B \/ C /\ D) /\ (!y. E) /\ F
#BODY_CONJUNCTS x;;
[. |- A; . |- B \/ C /\ D; . |- E; . |- F] : thm list
\end{verbatim}
}
\SEEALSO
CONJ, CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_TAC.
\ENDDOC
\DOC{body}
\TYPE {\small\verb%body : (term -> term)%}\egroup
\SYNOPSIS
Returns the body of an abstraction.
\DESCRIBE
{\small\verb%body "\var. t"%} returns {\small\verb%"t"%}.
\FAILURE
Fails unless the term is an abstraction.
\SEEALSO
bndvar, dest_abs.
\ENDDOC
\DOC{BOOL\_CASES\_TAC}
\TYPE {\small\verb%BOOL_CASES_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Performs boolean case analysis on a (free) term in the goal.
\DESCRIBE
When applied to a term {\small\verb%x%} (which must be of type {\small\verb%bool%} but need not be simply
a variable), and a goal {\small\verb%A ?- t%}, the tactic {\small\verb%BOOL_CASES_TAC%} generates the two
subgoals corresponding to {\small\verb%A ?- t%} but with any free instances of {\small\verb%x%} replaced
by {\small\verb%F%} and {\small\verb%T%} respectively.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============================ BOOL_CASES_TAC "x"
A ?- t[F/x] A ?- t[T/x]
\end{verbatim}
}
\noindent The term given does not have to be free in the goal, but if it isn't,
{\small\verb%BOOL_CASES_TAC%} will merely duplicate the original goal twice.
\FAILURE
Fails unless the term {\small\verb%x%} has type {\small\verb%bool%}.
\EXAMPLE
The goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- (b ==> ~b) ==> (b ==> a)
\end{verbatim}
}
\noindent can be completely solved by using {\small\verb%BOOL_CASES_TAC%} on the variable
{\small\verb%b%}, then simply rewriting the two subgoals using only the inbuilt tautologies,
i.e. by applying the following tactic:
{\par\samepage\setseps\small
\begin{verbatim}
BOOL_CASES_TAC "b:bool" THEN REWRITE_TAC[]
\end{verbatim}
}
\USES
Avoiding fiddly logical proofs by brute-force case analysis, possibly only
over a key term as in the above example, possibly over all free boolean
variables.
\SEEALSO
ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC, STRUCT_CASES_TAC.
\ENDDOC
\DOC{bool\_EQ\_CONV}
\TYPE {\small\verb%bool_EQ_CONV : conv%}\egroup
\SYNOPSIS
Simplifies expressions involving boolean equality.
\DESCRIBE
The conversion {\small\verb%bool_EQ_CONV%} simplifies equations of the form {\small\verb%"t1 = t2"%},
where {\small\verb%t1%} and {\small\verb%t2%} are of type {\small\verb%:bool%}. When applied to a term of the form
{\small\verb%"t = t"%}, the conversion {\small\verb%bool_EQ_CONV%} returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- (t = t) = T
\end{verbatim}
}
\noindent When applied to a term of the form {\small\verb%"t = T"%}, the conversion returns
{\par\samepage\setseps\small
\begin{verbatim}
|- (t = T) = t
\end{verbatim}
}
\noindent And when applied to a term of the form {\small\verb%"T = t"%}, it returns
{\par\samepage\setseps\small
\begin{verbatim}
|- (T = t) = t
\end{verbatim}
}
\FAILURE
Fails unless applied to a term of the form {\small\verb%"t1 = t2"%}, where {\small\verb%t1%} and {\small\verb%t2%} are
boolean, and either {\small\verb%t1%} and {\small\verb%t2%} are syntactically identical terms or one of
{\small\verb%t1%} and {\small\verb%t2%} is the constant {\small\verb%"T"%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#bool_EQ_CONV "T = F";;
|- (T = F) = F
#bool_EQ_CONV "(0 < n) = T";;
|- (0 < n = T) = 0 < n
\end{verbatim}
}
\ENDDOC
\DOC{bool\_ty}
\TYPE {\small\verb%bool_ty : type%}\egroup
\SYNOPSIS
Holds the logical type {\small\verb%":bool"%}.
\ENDDOC
\DOC{BUTFIRSTN\_CONV}
\TYPE {\small\verb%BUTFIRSTN_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of dropping the initial n elements of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...x(n-k);...;x(n-1)]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
BUTFIRSTN_CONV "BUTFIRSTN k [x0;...x(n-k);...;x(n-1)]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- BUTFIRSTN k [x0;...;x(n-k);...;x(n-1)] = [x(n-k);...;x(n-1)]
\end{verbatim}
}
\FAILURE
{\small\verb%BUTFIRSTN_CONV tm%} fails if {\small\verb%tm%} is not of the form described above,
or {\small\verb%k%} is greater than the length of the list.
\ENDDOC
\DOC{BUTLAST\_CONV}
\TYPE {\small\verb%BUTLAST_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of stripping the last element of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...x(n-1)]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
BUTLAST_CONV "BUTLAST [x0;...;x(n-1)]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- BUTLAST [x0;...;x(n-1)] = [x0;...; x(n-2)]
\end{verbatim}
}
\FAILURE
{\small\verb%BUTLAST_CONV tm%} fails if {\small\verb%tm%} is an empty list.
\ENDDOC
\DOC{butlast}
\TYPE {\small\verb%butlast : (* list -> * list)%}\egroup
\SYNOPSIS
Computes the sub-list of a list consisting of all but the last element.
\DESCRIBE
{\small\verb%butlast [x1;...;xn]%} returns {\small\verb%[x1;...;x(n-1)]%}.
\FAILURE
Fails if the list is empty.
\SEEALSO
last, hd, tl, el, null.
\ENDDOC
\DOC{BUTLASTN\_CONV}
\TYPE {\small\verb%BUTLASTN_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of dropping the last n elements of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...x(n-k);...;x(n-1)]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
BUTLASTN_CONV "BUTLASTN k [x0;...x(n-k);...;x(n-1)]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- BUTLASTN k [x0;...;x(n-k);...;x(n-1)] = [x0;...;x(n-k-1)]
\end{verbatim}
}
\FAILURE
{\small\verb%BUTLASTN_CONV tm%} fails if {\small\verb%tm%} is not of the form described above,
or {\small\verb%k%} is greater than the length of the list.
\ENDDOC
\DOC{cached\_theories}
\TYPE {\small\verb%cached_theories : (void -> (string # bool) list)%}\egroup
\SYNOPSIS
Gives a list of cached and uncached theories.
\DESCRIBE
A call {\small\verb%cached_theories()%} returns a list pairs, one for each loaded theory,
associating the name of the theory with either {\small\verb%true%}, indicating that a theory
has been removed from the cache by {\small\verb%delete_cache%}, or {\small\verb%false%} otherwise. For
more details of the cacheing mechanism, see the DESCRIPTION.
\FAILURE
Never fails.
\SEEALSO
delete_cache.
\ENDDOC
\DOC{can}
\TYPE {\small\verb%can : ((* -> **) -> * -> bool)%}\egroup
\SYNOPSIS
Tests for failure.
\DESCRIBE
{\small\verb%can f x%} evaluates to {\small\verb%true%} if the application of {\small\verb%f%} to {\small\verb%x%} succeeds.
It evaluates to {\small\verb%false%} if the application fails.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#hd [];;
evaluation failed hd
#can hd [];;
false : bool
\end{verbatim}
}
\SEEALSO
assert.
\ENDDOC
\DOC{CASES\_THENL}
\TYPE {\small\verb%CASES_THENL : (thm_tactic list -> thm_tactic)%}\egroup
\SYNOPSIS
Applies the theorem-tactics in a list to corresponding disjuncts in a theorem.
\DESCRIBE
When given a list of theorem-tactics {\small\verb%[ttac1;...;ttacn]%} and a theorem whose
conclusion is a top-level disjunction of {\small\verb%n%} terms, {\small\verb%CASES_THENL%} splits a goal
into {\small\verb%n%} subgoals resulting from applying to the original goal the result of
applying the {\small\verb%i%}'th theorem-tactic to the {\small\verb%i%}'th disjunct. This can be
represented as follows, where the number of existentially quantified variables
in a disjunct may be zero. If the theorem {\small\verb%th%} has the form:
{\par\samepage\setseps\small
\begin{verbatim}
A' |- ?x11..x1m. t1 \/ ... \/ ?xn1..xnp. tn
\end{verbatim}
}
\noindent where the number of existential quantifiers may be zero,
and for all {\small\verb%i%} from {\small\verb%1%} to {\small\verb%n%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- s
========== ttaci (|- ti[xi1'/xi1]..[xim'/xim])
Ai ?- si
\end{verbatim}
}
\noindent where the primed variables have the same type as their unprimed
counterparts, then:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- s
========================= CASES_THENL [ttac1;...;ttacn] th
A1 ?- s1 ... An ?- sn
\end{verbatim}
}
\noindent Unless {\small\verb%A'%} is a subset of {\small\verb%A%}, this is an invalid tactic.
\FAILURE
Fails if the given theorem does not, at the top level,
have the same number of (possibly multiply existentially quantified) disjuncts
as the length of the theorem-tactic list (this includes the case where the
theorem-tactic list is empty), or if any of the tactics generated as specified
above fail when applied to the goal.
\USES
Performing very general disjunctive case splits.
\SEEALSO
DISJ_CASES_THENL, X_CASES_THENL.
\ENDDOC
\DOC{CB}
\TYPE {\small\verb%$CB : ((* -> **) -> (** -> ***) -> * -> ***)%}\egroup
\SYNOPSIS
Composes two functions: {\small\verb%(f CB g) x%} = {\small\verb%g (f x)%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, Co, I, K, KI, o, oo, S, W.
\ENDDOC
\DOC{CCONTR}
\TYPE {\small\verb%CCONTR : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Implements the classical contradiction rule.
\DESCRIBE
When applied to a term {\small\verb%t%} and a theorem {\small\verb%A |- F%}, the inference rule {\small\verb%CCONTR%}
returns the theorem {\small\verb%A - {~t} |- t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- F
--------------- CCONTR "t"
A - {~t} |- t
\end{verbatim}
}
\FAILURE
Fails unless the term has type {\small\verb%bool%} and the theorem has {\small\verb%F%} as its
conclusion.
\COMMENTS
The usual use will be when {\small\verb%~t%} exists in the assumption list; in this case,
{\small\verb%CCONTR%} corresponds to the classical contradiction rule: if {\small\verb%~t%} leads to
a contradiction, then {\small\verb%t%} must be true.
\SEEALSO
CONTR, CONTRAPOS, CONTR_TAC, NOT_ELIM.
\ENDDOC
\DOC{C}
\TYPE {\small\verb%C : ((* -> ** -> ***) -> ** -> * -> ***)%}\egroup
\SYNOPSIS
Permutes first two arguments to curried function: {\small\verb%C f x y%} = {\small\verb%f y x%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, CB, Co, I, K, KI, o, oo, S, W.
\ENDDOC
\DOC{CHANGED\_CONV}
\TYPE {\small\verb%CHANGED_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Makes a conversion fail if applying it leaves a term unchanged.
\DESCRIBE
If {\small\verb%c%} is a conversion that maps a term {\small\verb%"t"%} to a theorem {\small\verb%|- t = t'%}, where
{\small\verb%t'%} is alpha-equivalent to {\small\verb%t%}, then {\small\verb%CHANGED_CONV c%} is a conversion that
fails when applied to the term {\small\verb%"t"%}. If {\small\verb%c%} maps {\small\verb%"t"%} to {\small\verb%|- t = t'%}, where
{\small\verb%t'%} is not alpha-equivalent to {\small\verb%t%}, then {\small\verb%CHANGED_CONV c%} also maps {\small\verb%"t"%} to
{\small\verb%|- t = t'%}. That is, {\small\verb%CHANGED_CONV c%} is the conversion that behaves exactly
like {\small\verb%c%}, except that it fails whenever the conversion {\small\verb%c%} would leave its
input term unchanged (up to alpha-equivalence).
\FAILURE
{\small\verb%CHANGED_CONV c "t"%} fails if {\small\verb%c%} maps {\small\verb%"t"%} to {\small\verb%|- t = t'%}, where {\small\verb%t'%} is
alpha-equivalent to {\small\verb%t%}, or if {\small\verb%c%} fails when applied to {\small\verb%"t"%}. The function
returned by {\small\verb%CHANGED_CONV c%} may also fail if the ML function {\small\verb%c:term->thm%} is
not, in fact, a conversion (i.e. a function that maps a term {\small\verb%t%} to a theorem
{\small\verb%|- t = t'%}).
\USES
{\small\verb%CHANGED_CONV%} is used to transform a conversion that may leave terms
unchanged, and therefore may cause a nonterminating computation if repeated,
into one that can safely be repeated until application of it fails to
substantially modify its input term.
\ENDDOC
\DOC{CHANGED\_TAC}
\TYPE {\small\verb%CHANGED_TAC : (tactic -> tactic)%}\egroup
\SYNOPSIS
Makes a tactic fail if it has no effect.
\DESCRIBE
When applied to a tactic {\small\verb%T%}, the tactical {\small\verb%CHANGED_TAC%} gives a new tactic
which is the same as {\small\verb%T%} if that has any effect, and otherwise fails.
\FAILURE
The application of {\small\verb%CHANGED_TAC%} to a tactic never fails. The resulting
tactic fails if the basic tactic either fails or has no effect.
\SEEALSO
TRY, VALID.
\ENDDOC
\DOC{change\_state}
\TYPE {\small\verb%change_state : (goalstack -> void)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{CHECK\_ASSUME\_TAC}
\TYPE {\small\verb%CHECK_ASSUME_TAC : thm_tactic%}\egroup
\SYNOPSIS
Adds a theorem to the assumption list of goal, unless it solves the goal.
\DESCRIBE
When applied to a theorem {\small\verb%A' |- s%} and a goal {\small\verb%A ?- t%}, the tactic
{\small\verb%CHECK_ASSUME_TAC%} checks whether the theorem will solve the goal (this
includes the possibility that the theorem is just {\small\verb%A' |- F%}). If so, the goal
is duly solved. If not, the theorem is added to the assumptions of the goal,
unless it is already there.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============== CHECK_ASSUME_TAC (A' |- F) [special case 1]
A ?- t
============== CHECK_ASSUME_TAC (A' |- t) [special case 2]
A ?- t
============== CHECK_ASSUME_TAC (A' |- s) [general case]
A u {s} ?- t
\end{verbatim}
}
\noindent Unless {\small\verb%A'%} is a subset of {\small\verb%A%}, the tactic will be invalid, although
it will not fail.
\FAILURE
Never fails.
\SEEALSO
ACCEPT_TAC, ASSUME_TAC, CONTR_TAC, DISCARD_TAC, MATCH_ACCEPT_TAC.
\ENDDOC
\DOC{check\_lhs}
\TYPE {\small\verb%check_lhs : (term -> term list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{check\_specification}
\TYPE {\small\verb%check_specification : (* -> (string # string) list -> thm -> goal)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{check\_valid}
\TYPE {\small\verb%check_valid : (goal -> subgoals -> bool)%}\egroup
\SYNOPSIS
Checks whether a prospective proof is valid.
\DESCRIBE
{\small\verb%check_valid (A,t) ([A1,t1;...;An,tn],prf)%} checks whether the applying the
proof {\small\verb%prf%} to the list of theorems {\small\verb%[(A1 |- t1);...;(An |- tn)]%} would produce
a theorem alpha-equivalent to {\small\verb%A |- t%}. This check is done by creating this
list of theorems using {\small\verb%chktac%} and then applying the proof {\small\verb%prf%}.
\FAILURE
Never fails, unless the proof {\small\verb%prf%} fails or the assignable variable {\small\verb%chktac%}
has been rebound to a function that fails.
\SEEALSO
chktac, VALID.
\ENDDOC
\DOC{check\_varstruct}
\TYPE {\small\verb%check_varstruct : (term -> term list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{chktac}
\TYPE {\small\verb%chktac : (subgoals -> thm)%}\egroup
\SYNOPSIS
Applies a proof to a list of theorems created using {\small\verb%mk_thm%}.
\DESCRIBE
Evaluating {\small\verb%chktac ([A1,t1;...;An,tn],prf)%} applies the proof {\small\verb%prf%} to the list
of theorems {\small\verb%[(A1 |- t1);...;(An |- tn)]%}. The list is created by mapping
{\small\verb%mk_thm%} down the supplied list of subgoals.
{\small\verb%chktac%} is, in fact, an assignable variable in ML, bound when the system is
built to a function that uses {\small\verb%mk_thm%} Its presence therefore introduces a
potential insecurity into the system. But the function {\small\verb%chktac%} is used only
by {\small\verb%check_valid%} to check the validity of tactics, and users worried about
security can therefore eliminate this insecurity by doing:
{\par\samepage\setseps\small
\begin{verbatim}
chktak := \(gl,prf). fail
\end{verbatim}
}
\noindent This will disable the validity checking of tactics (using {\small\verb%VALID%}),
but will remove the insecurity.
\FAILURE
Never fails (unless the proof {\small\verb%prf%} fails).
\SEEALSO
check_valid, VALID.
\ENDDOC
\DOC{CHOOSE}
\TYPE {\small\verb%CHOOSE : ((term # thm) -> thm -> thm)%}\egroup
\SYNOPSIS
Eliminates existential quantification using deduction from a
particular witness.
\DESCRIBE
When applied to a term-theorem pair {\small\verb%(v,A1 |- ?x. s)%} and a second
theorem of the form {\small\verb%A2 u {s[v/x]} |- t%}, the inference rule {\small\verb%CHOOSE%}
produces the theorem {\small\verb%A1 u A2 |- t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- ?x. s[x] A2 u {s[v/x]} |- t
--------------------------------------- CHOOSE ("v",(A1 |- ?x. s))
A1 u A2 |- t
\end{verbatim}
}
\noindent Where {\small\verb%v%} is not free in {\small\verb%A2%} or {\small\verb%t%}.
\FAILURE
Fails unless the terms and theorems correspond as indicated above; in
particular, 1) {\small\verb%v%} must be a variable and have the same type as the variable
existentially quantified over, and it must not be free in {\small\verb%A2%} or {\small\verb%t%};
2) the second theorem must have {\small\verb%s[v/x]%} in its assumptions.
\SEEALSO
CHOOSE_TAC, EXISTS, EXISTS_TAC, SELECT_ELIM.
\ENDDOC
\DOC{CHOOSE\_TAC}
\TYPE {\small\verb%CHOOSE_TAC : thm_tactic%}\egroup
\SYNOPSIS
Adds the body of an existentially quantified theorem to the assumptions of
a goal.
\DESCRIBE
When applied to a theorem {\small\verb%A' |- ?x. t%} and a goal, {\small\verb%CHOOSE_TAC%} adds
{\small\verb%t[x'/x]%} to the assumptions of the goal, where {\small\verb%x'%} is a variant of {\small\verb%x%}
which is not free in the assumption list; normally {\small\verb%x'%} is just {\small\verb%x%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- u
==================== CHOOSE_TAC (A' |- ?x. t)
A u {t[x'/x]} ?- u
\end{verbatim}
}
\noindent Unless {\small\verb%A'%} is a subset of {\small\verb%A%}, this is not a valid tactic.
\FAILURE
Fails unless the given theorem is existentially quantified.
\EXAMPLE
Suppose we have a goal asserting that the output of an electrical circuit
(represented as a boolean-valued function) will become high at some time:
{\par\samepage\setseps\small
\begin{verbatim}
?- ?t. output(t)
\end{verbatim}
}
\noindent and we have the following theorems available:
{\par\samepage\setseps\small
\begin{verbatim}
t1 = |- ?t. input(t)
t2 = !t. input(t) ==> output(t+1)
\end{verbatim}
}
\noindent Then the goal can be solved by the application of:
{\par\samepage\setseps\small
\begin{verbatim}
CHOOSE_TAC t1 THEN EXISTS_TAC "t+1" THEN
UNDISCH_TAC "input (t:num) :bool" THEN MATCH_ACCEPT_TAC t2
\end{verbatim}
}
\SEEALSO
CHOOSE_THEN, X_CHOOSE_TAC.
\ENDDOC
\DOC{CHOOSE\_THEN}
\TYPE {\small\verb%CHOOSE_THEN : thm_tactical%}\egroup
\SYNOPSIS
Applies a tactic generated from the body of existentially quantified theorem.
\DESCRIBE
When applied to a theorem-tactic {\small\verb%ttac%}, an existentially quantified
theorem {\small\verb%A' |- ?x. t%}, and a goal, {\small\verb%CHOOSE_THEN%} applies the tactic {\small\verb%ttac
(t[x'/x] |- t[x'/x])%} to the goal, where {\small\verb%x'%} is a variant of {\small\verb%x%} chosen not to
be free in the assumption list of the goal. Thus if:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- s1
========= ttac (t[x'/x] |- t[x'/x])
B ?- s2
\end{verbatim}
}
\noindent then
{\par\samepage\setseps\small
\begin{verbatim}
A ?- s1
========== CHOOSE_THEN ttac (A' |- ?x. t)
B ?- s2
\end{verbatim}
}
\noindent This is invalid unless {\small\verb%A'%} is a subset of {\small\verb%A%}.
\FAILURE
Fails unless the given theorem is existentially quantified, or if the
resulting tactic fails when applied to the goal.
\EXAMPLE
This theorem-tactical and its relatives are very useful for using existentially
quantified theorems. For example one might use the inbuilt theorem
{\par\samepage\setseps\small
\begin{verbatim}
LESS_ADD_1 = |- !m n. n < m ==> (?p. m = n + (p + 1))
\end{verbatim}
}
\noindent to help solve the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- x < y ==> 0 < y * y
\end{verbatim}
}
\noindent by starting with the following tactic
{\par\samepage\setseps\small
\begin{verbatim}
DISCH_THEN (CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1)
\end{verbatim}
}
\noindent which reduces the goal to
{\par\samepage\setseps\small
\begin{verbatim}
?- 0 < ((x + (p + 1)) * (x + (p + 1)))
\end{verbatim}
}
\noindent which can then be finished off quite easily, by, for example:
{\par\samepage\setseps\small
\begin{verbatim}
REWRITE_TAC[ADD_ASSOC; SYM (SPEC_ALL ADD1);
MULT_CLAUSES; ADD_CLAUSES; LESS_0]
\end{verbatim}
}
\SEEALSO
CHOOSE_TAC, X_CHOOSE_THEN.
\ENDDOC
\DOC{chop\_list}
\TYPE {\small\verb%chop_list : (int -> * list -> (* list # * list))%}\egroup
\SYNOPSIS
Chops a list into two parts at a specified point.
\DESCRIBE
{\small\verb%chop_list i [x1;...;xn]%} returns {\small\verb%([x1;...;xi],[x(i+1);...;xn])%}.
\FAILURE
Fails with {\small\verb%chop_list%} if {\small\verb%i%} is negative or greater than the length of the
list.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#chop_list 3 [1;2;3;4;5];;
([1; 2; 3], [4; 5]) : (int list # int list)
\end{verbatim}
}
\SEEALSO
partition.
\ENDDOC
\DOC{close}
\TYPE {\small\verb%close : (string -> void)%}\egroup
\SYNOPSIS
Closes an {\small\verb%ML%} port.
\DESCRIBE
The function {\small\verb%close%} closes a port that had been opened for
reading (by {\small\verb%openi%}) or writing (by {\small\verb%openw%} or {\small\verb%append_openw%}).
Ports are represented by the strings that are returned by one of the
functions {\small\verb%append-openw%}, {\small\verb%openi%} and {\small\verb%openw%}.
\FAILURE
Fails when the named port is not open.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#openw `foo`;;
`%foo` : string
#close it;;
() : void
\end{verbatim}
}
\SEEALSO
append_openw, openi, openw, read, write
\ENDDOC
\DOC{close\_theory}
\TYPE {\small\verb%close_theory : (void -> void)%}\egroup
\SYNOPSIS
Finishes a session in draft mode, writing changes to the theory file.
\DESCRIBE
Executing {\small\verb%close_theory()%} finishes a session in draft mode. It switches the
system to proof mode. Changes made to the current theory segment are written to
the theory file associated with it. For a theory segment named {\small\verb%`thy`%}, the
associated file will be {\small\verb%thy.th%} in the directory from which HOL was called. If
the theory file does not exist, it will be created.
If HOL is quitted before {\small\verb%close_theory%} is invoked, the additions made to the
segment may not persist to future HOL sessions. Whilst in proof mode, the only
changes which may be made to the theory are the addition of theorems. The
theory segment may later be extended with {\small\verb%extend_theory%}.
\FAILURE
A call to {\small\verb%close_theory%} will fail if the system is not in draft mode.
Since it involves writing to the file system, if the write fails for
any reason {\small\verb%close_theory%} will fail.
\SEEALSO
extend_theory, new_theory, print_theory.
\ENDDOC
\DOC{Co}
\TYPE {\small\verb%$Co : (((* -> ** -> ***) # (**** -> *)) -> ** -> **** -> ***)%}\egroup
\SYNOPSIS
Performs permuted function composition: {\small\verb%(f Co g) x y%} = {\small\verb%f (g y) x%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, CB, I, K, KI, o, oo, S, W.
\ENDDOC
\DOC{combine}
\TYPE {\small\verb%combine : ((* list # ** list) -> (* # **) list)%}\egroup
\SYNOPSIS
Converts a pair of lists into a list of pairs.
\DESCRIBE
{\small\verb%combine ([x1;...;xn],[y1;...;yn])%} returns {\small\verb%[(x1,y1);...;(xn,yn)]%}.
\FAILURE
Fails if the two lists are of different lengths.
\COMMENTS
Has the same effect as {\small\verb%com%}.
\SEEALSO
com, split.
\ENDDOC
\DOC{com}
\TYPE {\small\verb%$com : ((* list # ** list) -> (* # **) list)%}\egroup
\SYNOPSIS
Converts a pair of lists into a list of pairs (infix version).
\DESCRIBE
{\small\verb%[x1;...;xn] com [y1;...;yn]%} returns {\small\verb%[(x1,y1);...;(xn,yn)]%}.
\FAILURE
Fails if the two lists are of different lengths.
\COMMENTS
Has the same effect as {\small\verb%combine%}.
\SEEALSO
combine, split.
\ENDDOC
\DOC{compile}
\TYPE {\small\verb%compile : ((string # bool) -> void)%}\egroup
\SYNOPSIS
Compiles the named ML source file.
\DESCRIBE
Given a pair {\small\verb%(`name`,flag)%}, {\small\verb%compile%} loads the named file and then compiles
it into LISP, generating a file {\small\verb%name_ml.l%}. It then calls the LISP compiler to
create an object file {\small\verb%name_ml.o%}. The intermediate LISP file is automatically
deleted once the {\small\verb%name_ml.o%} file has been generated. If {\small\verb%flag%} is {\small\verb%true%}, a
verbose account of the compilation is generated, if {\small\verb%flag%} is {\small\verb%false%},
compilation is silent.
\FAILURE
Fails if the named {\small\verb%ML%} source file does not exist, or if the load is
unsuccessful. In the latter case, the intermediate {\small\verb%name_ml.l%} file is
left undeleted.
\EXAMPLE
To compile two files {\small\verb%a.ml%} and {\small\verb%b.ml%}, where {\small\verb%b.ml%} depends on definitions
made in {\small\verb%a.ml%}, one can type:
{\par\samepage\setseps\small
\begin{verbatim}
#compile (`a`,true);;
#compile (`b`,true);;
\end{verbatim}
}
\noindent Suppose one exists the {\small\verb%HOL%} session and attempts to
load the files in a new session:
{\par\samepage\setseps\small
\begin{verbatim}
#load(`a`,false);;
[fasl a_ml.o]
#load(`b`,false);;
[fasl b_ml.o]
\end{verbatim}
}
\noindent Note that {\small\verb%load%} always loads an object file if one exists,
regardless of its creation date. Loading {\small\verb%a_ml.o%} sets up the static bindings
necessary for {\small\verb%b_ml.o%} to run. File {\small\verb%b.ml%} may be edited without recompilation
of {\small\verb%a.ml%}, however, if {\small\verb%a.ml%} is edited and recompiled, then {\small\verb%b.ml%} has to be
recompiled before being used. Consequently, if the {\small\verb%ML%} code built into the
system is recompiled, users have to recompile all their programs.
\COMMENTS
Compiled {\small\verb%ML%} runs faster than interpreted {\small\verb%ML%}, and loads almost
instantaneously.
There is a potential problem with compiling code that mentions the names of
theorems set up to be autoloaded. Suppose a file {\small\verb%f.ml%} is to be compiled and
contains the following code:
{\par\samepage\setseps\small
\begin{verbatim}
let f x = SPEC x num_CASES;;
\end{verbatim}
}
\noindent where {\small\verb%num_CASES%} is a built-in theorem which is set up to be
autoloaded on demand. If, in a given session, the theorem {\small\verb%num_CASES%} has
already been autoloaded before the file {\small\verb%f.ml%} is compiled, then the resulting
object code will not itself autoload this theorem; it will just evaluate a
compiled version of the identifier {\small\verb%num_CASES%} when the function {\small\verb%f%} is called.
In particular, an unbound identifier error will occur if the compiled file
{\small\verb%f_ml.o%} is loaded in a separate session and the function {\small\verb%f%} is then called.
To get around this problem, one should rewrite functions that refer to
autoloaded values so that they explicitly fetch the required theorems from
disk. In general, one must arrange for code to be compiled not to invoke any
autoloading action. For the example shown above, this could be done by
defining the function {\small\verb%f%} as follows.
{\par\samepage\setseps\small
\begin{verbatim}
let f =
let thm = theorem `arithmetic` `num_CASES` in
\x. SPEC x thm;;
\end{verbatim}
}
\noindent Note that {\small\verb%thm%} in this definition is not the name of any
automatically autoloaded theorem. Note also that it would be most
undesirable to define {\small\verb%f%} by:
{\par\samepage\setseps\small
\begin{verbatim}
let f x =
let thm = theorem `arithmetic` `num_CASES` in
SPEC x thm;;
\end{verbatim}
}
\noindent With this definition, function {\small\verb%f%} fetches {\small\verb%num_CASES%} off disk each
time it is called, rather than just once when it is defined.
\SEEALSO
compilef, compilet, load, loadf, loadt.
\ENDDOC
\DOC{compilef}
\TYPE {\small\verb%compilef : (string -> void)%}\egroup
\SYNOPSIS
Compiles an ML source file `silently'.
\DESCRIBE
Given a string {\small\verb%`name`%}, {\small\verb%compile%} loads the named file, and then compiles it
into LISP generating a file {\small\verb%name_ml.l%}. It then calls the LISP compiler to
create an object file {\small\verb%name_ml.o%}. The intermediate LISP file is automatically
deleted once the {\small\verb%name_ml.o%} file has been generated. Loading and compilation
are silent.
\FAILURE
Fails if the named ML source file does not exist, or if the load is
unsuccessful. In the latter case, the intermediate {\small\verb%name_ml.l%} file is
left undeleted.
\COMMENTS
The function call {\small\verb%compilef `foo`%} is the same as {\small\verb%compile (`foo`,false)%}.
\SEEALSO
compile, compilet, load, loadf, loadt
\ENDDOC
\DOC{compilet}
\TYPE {\small\verb%compilet : (string -> void)%}\egroup
\SYNOPSIS
Compiles the named ML source file with verbose messages.
\DESCRIBE
Given a string {\small\verb%`name`%}, {\small\verb%compile%} loads the named file, and then compiles it
into LISP generating a file {\small\verb%name_ml.l%}. It then calls the LISP compiler to
create an object file {\small\verb%name_ml.o%}. The intermediate LISP file is automatically
deleted once the {\small\verb%name_ml.o%} file has been generated. Loading and compilation
are verbose.
\FAILURE
Fails if the named ML source file does not exist, or if the load is
unsuccessful. In the latter case, the intermediate {\small\verb%name_ml.l%} file is left
undeleted.
\COMMENTS
The function call {\small\verb%compilet `foo`%} is the same as {\small\verb%compile (`foo`,true)%}.
\SEEALSO
compile, compilet, load, loadf, loadt
\ENDDOC
\DOC{compiling}
\TYPE {\small\verb%compiling : bool%}\egroup
\SYNOPSIS
Assignable variable: true when compiling, false when loading.
\DESCRIBE
The identifier {\small\verb%compiling%} is an assignable ML variable of type {\small\verb%bool%} which
used to indicate whether the expressions currently being evaluated by ML are
being compiled or loaded. At the start of the evaluation of a call to
{\small\verb%compile%} or its variants, the variable {\small\verb%compiling%} is set to {\small\verb%true%}; and at
the start of the evaluation of a call to {\small\verb%load%} or its variants, {\small\verb%compiling%} is
set to {\small\verb%false%}. In both cases, the previous value of {\small\verb%compiling%} is restored
at the end of evaluation. The initial value of {\small\verb%compiling%} when HOL is run is
{\small\verb%false%}.
\FAILURE
Evaluation of the variable {\small\verb%compiling%} never fails.
\USES
The main function of {\small\verb%compiling%} is to provide a mechanism by which expressions
may be conditionally evaluated, depending on whether they are being compiled or
not. In particular, the main purpose of {\small\verb%compiling%} is to allow conditional
loading of files in ML. For example, suppose that the line
{\par\samepage\setseps\small
\begin{verbatim}
if compiling then load(`foo`,false);;
\end{verbatim}
}
\noindent appears at the start of an ML file {\small\verb%bar.ml%}. Then whenever the file
{\small\verb%bar.ml%} is compiled, the file {\small\verb%foo.ml%} will be loaded. But whenever the file
{\small\verb%bar.ml%} is merely loaded (whether in compiled form or not) the file {\small\verb%bar.ml%}
will not be loaded.
\SEEALSO
compiling_stack.
\ENDDOC
\DOC{compiling\_stack}
\TYPE {\small\verb%compiling_stack : bool list%}\egroup
\SYNOPSIS
Keeps track of the value of the assignable variable {\small\verb%compiling%}.
\DESCRIBE
The identifier {\small\verb%compiling_stack%} is an assignable ML variable of type
{\small\verb%bool list%} which used internally by the system to keep track of the value of
the assignable variable {\small\verb%compiling%} during nested calls to {\small\verb%compile%} and {\small\verb%load%}
(and their variants). The {\small\verb%compiling_stack%} is not intended for general use,
and no value should be assigned by users to this variable.
\FAILURE
Evaluation of the variable {\small\verb%compiling_stack%} never fails.
\SEEALSO
compiling.
\ENDDOC
\DOC{concat}
\TYPE {\small\verb%concat : (string -> string -> string)%}\egroup
\SYNOPSIS
Concatenates two ML strings.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#concat `1` ``;;
`1` : string
#concat `hello` `world`;;
`helloworld` : string
#concat `hello` (concat ` ` `world`);;
`hello world` : string
\end{verbatim}
}
\SEEALSO
concatl, \char'136.
\ENDDOC
\DOC{concatl}
\TYPE {\small\verb%concatl : (string list -> string)%}\egroup
\SYNOPSIS
Concatenates a list of ML strings.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#concatl [];;
`` : string
#concatl [`hello`;`world`];;
`helloworld` : string
#concatl [`hello`;` `;`world`];;
`hello world` : string
\end{verbatim}
}
\SEEALSO
concat, \char'136.
\ENDDOC
\DOC{concl}
\TYPE {\small\verb%concl : (thm -> term)%}\egroup
\SYNOPSIS
Returns the conclusion of a theorem.
\DESCRIBE
When applied to a theorem {\small\verb%A |- t%}, the function {\small\verb%concl%} returns {\small\verb%t%}.
\FAILURE
Never fails.
\SEEALSO
dest_thm, hyp.
\ENDDOC
\DOC{COND\_CASES\_TAC}
\TYPE {\small\verb%COND_CASES_TAC : tactic%}\egroup
\SYNOPSIS
Induces a case split on a conditional expression in the goal.
\DESCRIBE
{\small\verb%COND_CASES_TAC%} searches for a conditional sub-term in the term of a goal,
i.e. a sub-term of the form {\small\verb%p=>u|v%}, choosing one by its own criteria if there
is more than one. It then induces a case split over {\small\verb%p%} as follows:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======================================================= COND_CASES_TAC
A u {p} ?- t[u/(p=>u|v)] A u {~p} ?- t[v/(p=>u|v)]]
\end{verbatim}
}
\noindent where {\small\verb%p%} is not a constant, and the term {\small\verb%p=>u|v%} is free in {\small\verb%t%}.
Note that it both enriches the assumptions and inserts the assumed value into
the conditional.
\FAILURE
{\small\verb%COND_CASES_TAC%} fails if there is no conditional sub-term as described above.
\EXAMPLE
For {\small\verb%"x"%}, {\small\verb%"y"%}, {\small\verb%"z1"%} and {\small\verb%"z2"%} of type {\small\verb%":*"%}, and {\small\verb%"P:*->bool"%},
{\par\samepage\setseps\small
\begin{verbatim}
COND_CASES_TAC ([], "x = (P y => z1 | z2)");;
([(["P y"], "x = z1"); (["~P y"], "x = z2")], -) : subgoals
\end{verbatim}
}
\noindent but it fails, for example, if {\small\verb%"y"%} is not free in the
term part of the goal:
{\par\samepage\setseps\small
\begin{verbatim}
COND_CASES_TAC ([], "!y. x = (P y => z1 | z2)");;
evaluation failed COND_CASES_TAC
\end{verbatim}
}
\noindent In contrast, {\small\verb%ASM_CASES_TAC%} does not perform the replacement:
{\par\samepage\setseps\small
\begin{verbatim}
ASM_CASES_TAC "P y" ([], "x = (P y => z1 | z2)");;
([(["P y"], "x = (P y => z1 | z2)"); (["~P y"], "x = (P y => z1 | z2)")],
-)
: subgoals
\end{verbatim}
}
\USES
Useful for case analysis and replacement in one step, when there is a
conditional sub-term in the term part of the goal. When there is more than
one such sub-term and one in particular is to be analyzed, {\small\verb%COND_CASES_TAC%}
cannot be depended on to choose the `desired' one. It can, however, be used
repeatedly to analyze all conditional sub-terms of a goal.
\SEEALSO
ASM_CASES_TAC, DISJ_CASES_TAC, STRUCT_CASES_TAC.
\ENDDOC
\DOC{COND\_CONV}
\TYPE {\small\verb%COND_CONV : conv%}\egroup
\SYNOPSIS
Simplifies conditional terms.
\DESCRIBE
The conversion {\small\verb%COND_CONV%} simplifies a conditional term {\small\verb%"c => u | v"%} if
the condition {\small\verb%c%} is either the constant {\small\verb%T%} or the constant {\small\verb%F%} or
if the two terms {\small\verb%u%} and {\small\verb%v%} are equivalent up to alpha-conversion.
The theorems returned in these three cases have the forms:
{\par\samepage\setseps\small
\begin{verbatim}
|- (T => u | v) = u
|- (F => u | v) = u
|- (c => u | u) = u
\end{verbatim}
}
\FAILURE
{\small\verb%COND_CONV tm%} fails if {\small\verb%tm%} is not a conditional {\small\verb%"c => u | v"%}, where
{\small\verb%c%} is {\small\verb%T%} or {\small\verb%F%}, or {\small\verb%u%} and {\small\verb%v%} are alpha-equivalent.
\ENDDOC
\DOC{CONJ\_DISCH}
\TYPE {\small\verb%CONJ_DISCH : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Discharges an assumption and conjoins it to both sides of an equation.
\DESCRIBE
Given an term {\small\verb%t%} and a theorem {\small\verb%A |- t1 = t2%}, which is an equation between
boolean terms, {\small\verb%CONJ_DISCH%} returns {\small\verb%A - {t} |- (t /\ t1) = (t /\ t2)%}, i.e.
conjoins {\small\verb%t%} to both sides of the equation, removing {\small\verb%t%} from the assumptions
if it was there.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
------------------------------ CONJ_DISCH "t"
A - {t} |- t /\ t1 = t /\ t2
\end{verbatim}
}
\FAILURE
Fails unless the theorem is an equation, both sides of which, and the term
provided are of type {\small\verb%bool%}.
\SEEALSO
CONJ_DISCHL.
\ENDDOC
\DOC{CONJ\_DISCHL}
\TYPE {\small\verb%CONJ_DISCHL : (term list -> thm -> thm)%}\egroup
\SYNOPSIS
Conjoins multiple assumptions to both sides of an equation.
\DESCRIBE
Given a term list {\small\verb%[t1;...;tn]%} and a theorem whose conclusion is an equation
between boolean terms, {\small\verb%CONJ_DISCHL%} conjoins all the terms
in the list to both sides of the equation, and removes any of the terms which
were in the assumption list.
{\par\samepage\setseps\small
\begin{verbatim}
A |- s = t
-------------------------------------------------------- CONJ_DISCHL
A - {t1,...,tn} |- (t1/\.../\tn/\s) = (t1/\.../\tn/\t) ["t1";...;"tn"]
\end{verbatim}
}
\FAILURE
Fails unless the theorem is an equation, both sides of which, and all the terms
provided, are of type {\small\verb%bool%}.
\SEEALSO
CONJ_DISCH.
\ENDDOC
\DOC{CONJ}
\TYPE {\small\verb%CONJ : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Introduces a conjunction.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 A2 |- t2
------------------------ CONJ
A1 u A2 |- t1 /\ t2
\end{verbatim}
}
\FAILURE
Never fails.
\SEEALSO
BODY_CONJUNCTS, CONJUNCT1, CONJUNCT2, CONJ_PAIR, LIST_CONJ, CONJ_LIST, CONJUNCTS.
\ENDDOC
\DOC{CONJ\_LIST}
\TYPE {\small\verb%CONJ_LIST : (int -> thm -> thm list)%}\egroup
\SYNOPSIS
Extracts a list of conjuncts from a theorem (non-flattening version).
\DESCRIBE
{\small\verb%CONJ_LIST%} is the proper inverse of {\small\verb%LIST_CONJ%}. Unlike {\small\verb%CONJUNCTS%} which
recursively splits as many conjunctions as possible both to the left and to
the right, {\small\verb%CONJ_LIST%} splits the top-level conjunction and then splits
(recursively) only the right conjunct. The integer argument is required
because the term {\small\verb%tn%} may itself be a conjunction. A list of {\small\verb%n%} theorems is
returned.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 /\ (t2 /\ ( ... /\ tn)...)
------------------------------------ CONJ_LIST n (A |- t1 /\ ... /\ tn)
A |- t1 A |- t2 ... A |- tn
\end{verbatim}
}
\FAILURE
Fails if the integer argument ({\small\verb%n%}) is less than one, or if the input theorem
has less than {\small\verb%n%} conjuncts.
\EXAMPLE
Suppose the identifier {\small\verb%th%} is bound to the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
A |- (x /\ y) /\ z /\ w
\end{verbatim}
}
\noindent Here are some applications of {\small\verb%CONJ_LIST%} to {\small\verb%th%}:
{\par\samepage\setseps\small
\begin{verbatim}
#CONJ_LIST 0 th;;
evaluation failed CONJ_LIST
#CONJ_LIST 1 th;;
[A |- (x /\ y) /\ z /\ w] : thm list
#CONJ_LIST 2 th;;
[A |- x /\ y; A |- z /\ w] : thm list
#CONJ_LIST 3 th;;
[A |- x /\ y; A |- z; A |- w] : thm list
#CONJ_LIST 4 th;;
evaluation failed CONJ_LIST
\end{verbatim}
}
\SEEALSO
BODY_CONJUNCTS, LIST_CONJ, CONJUNCTS, CONJ, CONJUNCT1, CONJUNCT2, CONJ_PAIR.
\ENDDOC
\DOC{CONJ\_PAIR}
\TYPE {\small\verb%CONJ_PAIR : (thm -> (thm # thm))%}\egroup
\SYNOPSIS
Extracts both conjuncts of a conjunction.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 /\ t2
---------------------- CONJ_PAIR
A |- t1 A |- t2
\end{verbatim}
}
\noindent The two resultant theorems are returned as a pair.
\FAILURE
Fails if the input theorem is not a conjunction.
\SEEALSO
BODY_CONJUNCTS, CONJUNCT1, CONJUNCT2, CONJ, LIST_CONJ, CONJ_LIST, CONJUNCTS.
\ENDDOC
\DOC{CONJ\_SET\_CONV}
\TYPE {\small\verb%CONJ_SET_CONV : (term list -> term list -> thm)%}\egroup
\SYNOPSIS
Proves the equivalence of the conjunctions of two equal sets of terms.
\DESCRIBE
The arguments to {\small\verb%CONJ_SET_CONV%} are two lists of terms {\small\verb%[t1;...;tn]%} and
{\small\verb%[u1;...;um]%}. If these are equal when considered as sets, that is if the sets
{\par\samepage\setseps\small
\begin{verbatim}
{t1,...,tn} and {u1,...,um}
\end{verbatim}
}
\noindent are equal, then {\small\verb%CONJ_SET_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (t1 /\ ... /\ tn) = (u1 /\ ... /\ um)
\end{verbatim}
}
\noindent Otherwise {\small\verb%CONJ_SET_CONV%} fails.
\FAILURE
{\small\verb%CONJ_SET_CONV [t1;...;tn] [u1;...;um]%} fails if {\small\verb%[t1,...,tn]%} and
{\small\verb%[u1,...,um]%}, regarded as sets of terms, are not equal. Also fails
if any {\small\verb%ti%} or {\small\verb%ui%} does not have type {\small\verb%bool%}.
\USES
Used to order conjuncts. First sort a list of conjuncts {\small\verb%l1%} into the
desired order to get a new list {\small\verb%l2%}, then call {\small\verb%CONJ_SET_CONV l1 l2%}.
\COMMENTS
This is not a true conversion, so perhaps it ought to be called something else.
\SEEALSO
CONJUNCTS_CONV.
\ENDDOC
\DOC{CONJ\_TAC}
\TYPE {\small\verb%CONJ_TAC : tactic%}\egroup
\SYNOPSIS
Reduces a conjunctive goal to two separate subgoals.
\DESCRIBE
When applied to a goal {\small\verb%A ?- t1 /\ t2%}, the tactic {\small\verb%CONJ_TAC%} reduces it to the
two subgoals corresponding to each conjunct separately.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t1 /\ t2
====================== CONJ_TAC
A ?- t1 A ?- t2
\end{verbatim}
}
\FAILURE
Fails unless the conclusion of the goal is a conjunction.
\SEEALSO
STRIP_TAC.
\ENDDOC
\DOC{CONJUNCT1}
\TYPE {\small\verb%CONJUNCT1 : (thm -> thm)%}\egroup
\SYNOPSIS
Extracts left conjunct of theorem.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 /\ t2
--------------- CONJUNCT1
A |- t1
\end{verbatim}
}
\FAILURE
Fails unless the input theorem is a conjunction.
\SEEALSO
BODY_CONJUNCTS, CONJUNCT2, CONJ_PAIR, CONJ, LIST_CONJ, CONJ_LIST, CONJUNCTS.
\ENDDOC
\DOC{CONJUNCT2}
\TYPE {\small\verb%CONJUNCT2 : (thm -> thm)%}\egroup
\SYNOPSIS
Extracts right conjunct of theorem.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 /\ t2
--------------- CONJUNCT2
A |- t2
\end{verbatim}
}
\FAILURE
Fails unless the input theorem is a conjunction.
\SEEALSO
BODY_CONJUNCTS, CONJUNCT1, CONJ_PAIR, CONJ, LIST_CONJ, CONJ_LIST, CONJUNCTS.
\ENDDOC
\DOC{CONJUNCTS\_CONV}
\TYPE {\small\verb%CONJUNCTS_CONV : ((term # term) -> thm)%}\egroup
\SYNOPSIS
Prove equivalence under idempotence, symmetry and associativity of conjunction.
\DESCRIBE
{\small\verb%CONJUNCTS_CONV%} takes a pair of terms {\small\verb%"t1"%} and {\small\verb%"t2"%}, and proves
{\small\verb%|- t1 = t2%} if {\small\verb%t1%} and {\small\verb%t2%} are equivalent up to idempotence, symmetry and
associativity of conjunction. That is, if {\small\verb%t1%} and {\small\verb%t2%} are two (different)
arbitrarily-nested conjunctions of the same set of terms, then {\small\verb%CONJUNCTS_CONV
(t1,t2)%} returns {\small\verb%|- t1 = t2%}. Otherwise, it fails.
\FAILURE
Fails if {\small\verb%t1%} and {\small\verb%t2%} are not equivalent, as described above.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#CONJUNCTS_CONV ("(P /\ Q) /\ R", "R /\ (Q /\ R) /\ P");;
|- (P /\ Q) /\ R = R /\ (Q /\ R) /\ P
\end{verbatim}
}
\USES
Used to reorder a conjunction. First sort the conjuncts in a term {\small\verb%t1%} into
the desired order (e.g. lexicographic order, for normalization) to get a new
term {\small\verb%t2%}, then call {\small\verb%CONJUNCTS_CONV(t1,t2)%}.
\COMMENTS
This is not a true conversion, so perhaps it ought to be called something else.
\SEEALSO
CONJ_SET_CONV.
\ENDDOC
\DOC{conjuncts}
\TYPE {\small\verb%conjuncts : (term -> term list)%}\egroup
\SYNOPSIS
Iteratively splits conjunctions into a list of conjuncts.
\DESCRIBE
{\small\verb%conjuncts "t1 /\ ... /\ tn"%} returns {\small\verb%["t1";...;"tn"]%}.
The argument term may be any tree of conjunctions.
It need not have the form {\small\verb%"t1 /\ (t2 /\ ( ... /\ tn)...)"%}.
A term that is not a conjunction is simply returned as the sole element of a
list. Note that
{\par\samepage\setseps\small
\begin{verbatim}
conjuncts(list_mk_conj(["t1";...;"tn"]))
\end{verbatim}
}
\noindent will not return {\small\verb%["t1";...;"tn"]%} if any of {\small\verb%t1%},...,{\small\verb%tn%} are
conjunctions.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_conj ["a /\ b";"c /\ d";"e /\ f"];;
"(a /\ b) /\ (c /\ d) /\ e /\ f" : term
#conjuncts it;;
["a"; "b"; "c"; "d"; "e"; "f"] : term list
#list_mk_conj it;;
"a /\ b /\ c /\ d /\ e /\ f" : term
#conjuncts "1";;
["1"] : term list
\end{verbatim}
}
\COMMENTS
Because {\small\verb%conjuncts%} splits both the left and right sides of a conjunction,
this operation is not the inverse of {\small\verb%list_mk_conj%}. It may be useful to
introduce {\small\verb%list_dest_conj%} for splitting only the right tails of a conjunction.
\SEEALSO
list_mk_conj, dest_conj.
\ENDDOC
\DOC{CONJUNCTS}
\TYPE {\small\verb%CONJUNCTS : (thm -> thm list)%}\egroup
\SYNOPSIS
Recursively splits conjunctions into a list of conjuncts.
\DESCRIBE
Flattens out all conjuncts, regardless of grouping. Returns a singleton list
if the input theorem is not a conjunction.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 /\ t2 /\ ... /\ tn
----------------------------------- CONJUNCTS
A |- t1 A |- t2 ... A |- tn
\end{verbatim}
}
\FAILURE
Never fails.
\EXAMPLE
Suppose the identifier {\small\verb%th%} is bound to the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
A |- (x /\ y) /\ z /\ w
\end{verbatim}
}
\noindent Application of {\small\verb%CONJUNCTS%} to {\small\verb%th%} returns the following list of
theorems:
{\par\samepage\setseps\small
\begin{verbatim}
[A |- x; A |- y; A |- z; A |- w] : thm list
\end{verbatim}
}
\SEEALSO
BODY_CONJUNCTS, CONJ_LIST, LIST_CONJ, CONJ, CONJUNCT1, CONJUNCT2, CONJ_PAIR.
\ENDDOC
\DOC{CONJUNCTS\_THEN2}
\TYPE {\small\verb%CONJUNCTS_THEN2 : (thm_tactic -> thm_tactic -> thm_tactic)%}\egroup
\SYNOPSIS
Applies two theorem-tactics to the corresponding conjuncts of a theorem.
\DESCRIBE
{\small\verb%CONJUNCTS_THEN2%} takes two theorem-tactics, {\small\verb%f1%} and {\small\verb%f2%}, and a theorem {\small\verb%t%}
whose conclusion must be a conjunction. {\small\verb%CONJUNCTS_THEN2%} breaks {\small\verb%t%} into two
new theorems, {\small\verb%t1%} and {\small\verb%t2%} which are {\small\verb%CONJUNCT1%} and {\small\verb%CONJUNCT2%} of {\small\verb%t%}
respectively, and then returns the tactic {\small\verb%f1 t1 THEN f2 t2%}. Thus
{\par\samepage\setseps\small
\begin{verbatim}
CONJUNCTS_THEN2 f1 f2 (A |- l /\ r) = f1 (A |- l) THEN f2 (A |- r)
\end{verbatim}
}
\noindent so if
{\par\samepage\setseps\small
\begin{verbatim}
A1 ?- t1 A2 ?- t2
========== f1 (A |- l) ========== f2 (A |- r)
A2 ?- t2 A3 ?- t3
\end{verbatim}
}
\noindent then
{\par\samepage\setseps\small
\begin{verbatim}
A1 ?- t1
========== CONJUNCTS_THEN2 f1 f2 (A |- l /\ r)
A3 ?- t3
\end{verbatim}
}
\FAILURE
{\small\verb%CONJUNCTS_THEN f%} will fail if applied to a theorem whose conclusion is not a
conjunction.
\COMMENTS
The system shows the type as {\small\verb%(thm_tactic -> thm_tactical)%}.
\USES
The construction of complex {\small\verb%tactical%}s like {\small\verb%CONJUNCTS_THEN%}.
\SEEALSO
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJUNCTS_TAC, CONJUNCTS_THEN2,
STRIP_THM_THEN.
\ENDDOC
\DOC{CONJUNCTS\_THEN}
\TYPE {\small\verb%CONJUNCTS_THEN : thm_tactical%}\egroup
\SYNOPSIS
Applies a theorem-tactic to each conjunct of a theorem.
\DESCRIBE
{\small\verb%CONJUNCTS_THEN%} takes a theorem-tactic {\small\verb%f%}, and a theorem {\small\verb%t%} whose conclusion
must be a conjunction. {\small\verb%CONJUNCTS_THEN%} breaks {\small\verb%t%} into two new theorems, {\small\verb%t1%}
and {\small\verb%t2%} which are {\small\verb%CONJUNCT1%} and {\small\verb%CONJUNCT2%} of {\small\verb%t%} respectively, and then
returns a new tactic: {\small\verb%f t1 THEN f t2%}. That is,
{\par\samepage\setseps\small
\begin{verbatim}
CONJUNCTS_THEN f (A |- l /\ r) = f (A |- l) THEN f (A |- r)
\end{verbatim}
}
\noindent so if
{\par\samepage\setseps\small
\begin{verbatim}
A1 ?- t1 A2 ?- t2
========== f (A |- l) ========== f (A |- r)
A2 ?- t2 A3 ?- t3
\end{verbatim}
}
\noindent then
{\par\samepage\setseps\small
\begin{verbatim}
A1 ?- t1
========== CONJUNCTS_THEN f (A |- l /\ r)
A3 ?- t3
\end{verbatim}
}
\FAILURE
{\small\verb%CONJUNCTS_THEN f%} will fail if applied to a theorem whose conclusion is not a
conjunction.
\COMMENTS
{\small\verb%CONJUNCTS_THEN f (A |- u1 /\ ... /\ un)%} results in the tactic:
{\par\samepage\setseps\small
\begin{verbatim}
f (A |- u1) THEN f (A |- u2 /\ ... /\ un)
\end{verbatim}
}
\noindent Unfortunately, it is more likely that the user had wanted the tactic:
{\par\samepage\setseps\small
\begin{verbatim}
f (A |- u1) THEN ... THEN f(A |- un)
\end{verbatim}
}
\noindent Such a tactic could be defined as follows:
{\par\samepage\setseps\small
\begin{verbatim}
let CONJUNCTS_THENL (f:thm_tactic) thm =
itlist $THEN (map f (CONJUNCTS thm)) ALL_TAC;;
\end{verbatim}
}
\noindent or by using {\small\verb%REPEAT_TCL%}.
\SEEALSO
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJUNCTS_TAC, CONJUNCTS_THEN2,
STRIP_THM_THEN.
\ENDDOC
\DOC{constants}
\TYPE {\small\verb%constants : (string -> term list)%}\egroup
\SYNOPSIS
Returns a list of the constants defined in a named theory.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
constants `thy`
\end{verbatim}
}
\noindent where {\small\verb%thy%} is an ancestor theory (the special string {\small\verb%`-`%} means the
current theory), returns a list of all the constants in that theory.
\FAILURE
Fails if the named theory does not exist, or is not an ancestor of the
current theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#constants `combin`;;
["I"; "S"; "K"; "$o"] : term list
\end{verbatim}
}
\SEEALSO
axioms, binders, definitions, infixes, theorems
\ENDDOC
\DOC{CONTRAPOS\_CONV}
\TYPE {\small\verb%CONTRAPOS_CONV : conv%}\egroup
\SYNOPSIS
Proves the equivalence of an implication and its contrapositive.
\DESCRIBE
When applied to an implication {\small\verb%P ==> Q%}, the conversion {\small\verb%CONTRAPOS_CONV%}
returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (P ==> Q) = (~Q ==> ~P)
\end{verbatim}
}
\FAILURE
Fails if applied to a term that is not an implication.
\SEEALSO
CONTRAPOS.
\ENDDOC
\DOC{CONTRAPOS}
\TYPE {\small\verb%CONTRAPOS : (thm -> thm)%}\egroup
\SYNOPSIS
Deduces the contrapositive of an implication.
\DESCRIBE
When applied to a theorem {\small\verb%A |- s ==> t%}, the inference rule {\small\verb%CONTRAPOS%}
returns its contrapositive, {\small\verb%A |- ~t ==> ~s%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- s ==> t
---------------- CONTRAPOS
A |- ~t ==> ~s
\end{verbatim}
}
\FAILURE
Fails unless the theorem is an implication.
\SEEALSO
CCONTR, CONTR, CONTRAPOS_CONV, NOT_ELIM.
\ENDDOC
\DOC{CONTR}
\TYPE {\small\verb%CONTR : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Implements the intuitionistic contradiction rule.
\DESCRIBE
When applied to a term {\small\verb%t%} and a theorem {\small\verb%A |- F%}, the inference rule {\small\verb%CONTR%}
returns the theorem {\small\verb%A |- t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- F
-------- CONTR "t"
A |- t
\end{verbatim}
}
\FAILURE
Fails unless the term has type {\small\verb%bool%} and the theorem has {\small\verb%F%} as its
conclusion.
\SEEALSO
CCONTR, CONTRAPOS, CONTR_TAC, NOT_ELIM.
\ENDDOC
\DOC{CONTR\_TAC}
\TYPE {\small\verb%CONTR_TAC : thm_tactic%}\egroup
\SYNOPSIS
Solves any goal from contradictory theorem.
\DESCRIBE
When applied to a contradictory theorem {\small\verb%A' |- F%}, and a goal {\small\verb%A ?- t%},
the tactic {\small\verb%CONTR_TAC%} completely solves the goal. This is an invalid
tactic unless {\small\verb%A'%} is a subset of {\small\verb%A%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======== CONTR_TAC (A' |- F)
\end{verbatim}
}
\FAILURE
Fails unless the theorem is contradictory, i.e. has {\small\verb%F%} as its conclusion.
\SEEALSO
CHECK_ASSUME_TAC, CONTR, CCONTR, CONTRAPOS, NOT_ELIM.
\ENDDOC
\DOC{CONV\_RULE}
\TYPE {\small\verb%CONV_RULE : (conv -> thm -> thm)%}\egroup
\SYNOPSIS
Makes an inference rule from a conversion.
\DESCRIBE
If {\small\verb%c%} is a conversion, then {\small\verb%CONV_RULE c%} is an inference rule that applies
{\small\verb%c%} to the conclusion of a theorem. That is, if {\small\verb%c%} maps a term {\small\verb%"t"%} to the
theorem {\small\verb%|- t = t'%}, then the rule {\small\verb%CONV_RULE c%} infers {\small\verb%|- t'%} from the
theorem {\small\verb%|- t%}. More precisely, if {\small\verb%c "t"%} returns {\small\verb%A' |- t = t'%}, then:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
-------------- CONV_RULE c
A u A' |- t'
\end{verbatim}
}
\noindent Note that if the conversion {\small\verb%c%} returns a theorem with assumptions,
then the resulting inference rule adds these to the assumptions of the
theorem it returns.
\FAILURE
{\small\verb%CONV_RULE c th%} fails if {\small\verb%c%} fails when applied to the conclusion of {\small\verb%th%}. The
function returned by {\small\verb%CONV_RULE c%} will also fail if the ML function
{\small\verb%c:term->thm%} is not, in fact, a conversion (i.e. a function that maps a term
{\small\verb%t%} to a theorem {\small\verb%|- t = t'%}).
\SEEALSO
CONV_TAC, RIGHT_CONV_RULE.
\ENDDOC
\DOC{CONV\_TAC}
\TYPE {\small\verb%CONV_TAC : (conv -> tactic)%}\egroup
\SYNOPSIS
Makes a tactic from a conversion.
\DESCRIBE
If {\small\verb%c%} is a conversion, then {\small\verb%CONV_TAC c%} is a tactic that applies {\small\verb%c%} to the
goal. That is, if {\small\verb%c%} maps a term {\small\verb%"g"%} to the theorem {\small\verb%|- g = g'%}, then the
tactic {\small\verb%CONV_TAC c%} reduces a goal {\small\verb%g%} to the subgoal {\small\verb%g'%}. More precisely, if
{\small\verb%c "g"%} returns {\small\verb%A' |- g = g'%}, then:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- g
=============== CONV_TAC c
A ?- g'
\end{verbatim}
}
\noindent Note that the conversion {\small\verb%c%} should return a theorem whose
assumptions are also among the assumptions of the goal (normally, the
conversion will returns a theorem with no assumptions). {\small\verb%CONV_TAC%} does not
fail if this is not the case, but the resulting tactic will be invalid, so the
theorem ultimately proved using this tactic will have more assumptions than
those of the original goal.
\FAILURE
{\small\verb%CONV_TAC c%} applied to a goal {\small\verb%A ?- g%} fails if {\small\verb%c%} fails when applied to the
term {\small\verb%g%}. The function returned by {\small\verb%CONV_TAC c%} will also fail if the ML
function {\small\verb%c:term->thm%} is not, in fact, a conversion (i.e. a function that maps
a term {\small\verb%t%} to a theorem {\small\verb%|- t = t'%}).
\USES
{\small\verb%CONV_TAC%} is used to apply simplifications that can't be expressed as
equations (rewrite rules). For example, a goal can be simplified by
beta-reduction, which is not expressible as a single equation, using the tactic
{\par\samepage\setseps\small
\begin{verbatim}
CONV_TAC(DEPTH_CONV BETA_CONV)
\end{verbatim}
}
\noindent The conversion {\small\verb%BETA_CONV%} maps a beta-redex {\small\verb%"(\x.u)v"%} to the
theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- (\x.u)v = u[v/x]
\end{verbatim}
}
\noindent and the ML expression {\small\verb%(DEPTH_CONV BETA_CONV)%} evaluates to a
conversion that maps a term {\small\verb%"t"%} to the theorem {\small\verb%|- t=t'%} where {\small\verb%t'%} is
obtained from {\small\verb%t%} by beta-reducing all beta-redexes in {\small\verb%t%}. Thus
{\small\verb%CONV_TAC(DEPTH_CONV BETA_CONV)%} is a tactic which reduces beta-redexes
anywhere in a goal.
\SEEALSO
CONV_RULE.
\ENDDOC
\DOC{current\_theory}
\TYPE {\small\verb%current_theory : (void -> string)%}\egroup
\SYNOPSIS
Returns the name of the current theory.
\DESCRIBE
Within a HOL session there is always a current theory. It is the theory
represented by the current theory segment together with its ancestry. A call
of {\small\verb%current_theory()%} returns the name of the current theory. Initially HOL
has current theory {\small\verb%HOL%}.
\FAILURE
Never fails.
\SEEALSO
close_theory, extend_theory, load_theory, new_theory, print_theory.
\ENDDOC
\DOC{curry}
\TYPE {\small\verb%curry : (((* # **) -> ***) -> * -> ** -> ***)%}\egroup
\SYNOPSIS
Converts a function on a pair to a corresponding curried function.
\DESCRIBE
The application {\small\verb%curry f%} returns {\small\verb%\x y. f(x,y)%}, so that
{\par\samepage\setseps\small
\begin{verbatim}
curry f x y = f(x,y)
\end{verbatim}
}
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let increment = curry $+ 1;;
increment = - : (int -> int)
#increment 6;;
7 : int
\end{verbatim}
}
\SEEALSO
uncurry.
\ENDDOC
\DOC{DEF\_EXISTS\_RULE}
\TYPE {\small\verb%DEF_EXISTS_RULE : (term -> thm)%}\egroup
\SYNOPSIS
Proves that a function defined by a definitional equation exists.
\DESCRIBE
This rule accepts a term of the form {\small\verb%"c = ..."%} or {\small\verb%"f x1 ... xn = ..."%}, the
variables of which may be universally quantified, and returns an existential
theorem. The resulting theorem is typically used for generating HOL
specifications.
\FAILURE
{\small\verb%DEF_EXISTS_RULE%} fails if the definition is not an equation, if there
is any variable in the right-hand side which does not occur in the
left-hand side, if the definition is recursive, if there is a free type
variable, or if the name being defined by the function is not allowed.
\EXAMPLE
The effect of this rule can be understood more clearly through an
example:
{\par\samepage\setseps\small
\begin{verbatim}
#DEF_EXISTS_RULE "max a b = ((a < b) => b | a)" ;;
|- ?max. !a b. max a b = (a < b => b | a)
\end{verbatim}
}
\COMMENTS
In later versions of HOL this function may be made internal.
\SEEALSO
new_definition, new_gen_definition, new_specification.
\ENDDOC
\DOC{define\_finite\_set\_syntax}
\TYPE {\small\verb%define_finite_set_syntax : ((string # string) -> void)%}\egroup
\SYNOPSIS
Sets up an interpretation of finite set syntax.
\DESCRIBE
The HOL quotation parser supports the notation {\small\verb%"{x1,...,xn}"%}. This is
primarily intended to support the {\small\verb%sets%} library and dependent work,
meaning `the set consisting just of the elements {\small\verb%x1...xn%}', but
this function allows the interpretation of the notation to be changed. A call
{\par\samepage\setseps\small
\begin{verbatim}
define_finite_set_syntax(`base`,`cons`)
\end{verbatim}
}
\noindent causes
{\par\samepage\setseps\small
\begin{verbatim}
"{x1,x2,...,xn}"
\end{verbatim}
}
\noindent to be parsed as
{\par\samepage\setseps\small
\begin{verbatim}
"cons x1 (cons x2 (cons ... (cons xn base) ... ))"
\end{verbatim}
}
\noindent where {\small\verb%base%} and {\small\verb%cons%} should be the names of constants, the former
of which may be an infix. The printer will invert this transformation.
\FAILURE
Fails unless both argument strings are the names of constants of the current
theory.
\EXAMPLE
We can use set notation for special boolean lists as follows
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `snork`;;
() : void
#new_definition(`cons`,"cons (x:bool) (l:bool list) = CONS x l");;
|- !x l. cons x l = CONS x l
#new_definition(`nil`,"nil = ([]:bool list)");;
|- nil = []
#define_finite_set_syntax(`nil`,`cons`);;
() : void
#"{F,T,T}";;
"{F,T,T}" : term
#it = "cons F (cons T (cons T nil))";;
true : bool
\end{verbatim}
}
\COMMENTS
For more details about the use of set notation, refer to the DESCRIPTION.
\SEEALSO
define_set_abstraction_syntax, load_library.
\ENDDOC
\DOC{define\_load\_lib\_function}
\TYPE {\small\verb%define_load_lib_function = - : (string list -> void -> void)%}\egroup
\SYNOPSIS
Defines a function for loading the contents of a library.
\DESCRIBE
If a library is loaded while the system is not in draft mode, it may
not be loaded completely.
In such case, a function whose name is created by prefixing the name
of the library with `{\small\verb%load_%}' is defined. This function can be called
later to complete the loading.
The function {\small\verb%define_load_lib_function%} dynamically defines such a
function. It is called in the generic library loader {\small\verb%library_loader%}.
Due to the way it is called using {\small\verb%let_before%}, it can take only a
single argument, a string list. The information passed in this list
consists of the library name, the names of theories and the names of
the code files. The library name is the first string in the list and
it is mandatory. The theory names and code file names follow, and they
are separated by a null string. Both of these are optional. E.g. the
simplest case is {\small\verb%[`lib_name`; ``]%}.
When the loading function defined by {\small\verb%define_load_lib_function%} is
called, the code files will be loaded, and the theorems and
definitions in the theories will be set up for autoloading.
\FAILURE
The function {\small\verb%define_load_lib_function%} fails if called with an
argument not in the form described above.
The loading function defined by it will fail if any of the code files
cannot be loaded successfully, or any of the theories is not in the ancestry
of the current theory.
\SEEALSO
library_loader, load_library.
\ENDDOC
\DOC{define\_new\_type\_bijections}
\TYPE {\small\verb%define_new_type_bijections : (string -> string -> string -> thm -> thm)%}\egroup
\SYNOPSIS
Introduces abstraction and representation functions for a defined type.
\DESCRIBE
The result of making a type definition using {\small\verb%new_type_definition%} is a
theorem of the following form:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?rep:nty->ty. TYPE_DEFINITION P rep
\end{verbatim}
}
\noindent which asserts only the existence of a bijection from the type it
defines (in this case, {\small\verb%nty%}) to the corresponding subset of an existing type
(here, {\small\verb%ty%}) whose characteristic function is specified by {\small\verb%P%}. To
automatically introduce constants that in fact denote this bijection and its
inverse, the ML function {\small\verb%define_new_type_bijections%} is provided.
This function takes three string arguments and a theorem argument. The theorem
argument must be a definitional axiom of the form returned by
{\small\verb%new_type_definition%}. The first string argument is the name under which the
constant definition (a constant specification, in fact) made by
{\small\verb%define_new_type_bijections%} will be stored in the current theory segment. The
second and third string arguments are user-specified names for the two
constants that are to be defined. These constants are defined so as to denote
mutually inverse bijections between the defined type, whose definition is given
by the supplied theorem, and the representing type of this defined type.
If {\small\verb%th%} is a theorem of the form returned by {\small\verb%new_type_definition%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?rep:newty->ty. TYPE_DEFINITION P rep
\end{verbatim}
}
\noindent then evaluating:
{\par\samepage\setseps\small
\begin{verbatim}
define_new_type_bijections `name` `abs` `rep` th
\end{verbatim}
}
\noindent automatically defines two new constants {\small\verb%abs:ty->newty%} and
{\small\verb%rep:newty->ty%} such that:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))
\end{verbatim}
}
\noindent This theorem, which is the defining property for the constants {\small\verb%abs%}
and {\small\verb%rep%}, is stored under the name {\small\verb%name%} in the current theory segment. It
is also the value returned by {\small\verb%define_new_type_bijections%}. The theorem states
that {\small\verb%abs%} is the left inverse of {\small\verb%rep%} and, for values satisfying {\small\verb%P%}, that
{\small\verb%rep%} is the left inverse of {\small\verb%abs%}.
\FAILURE
A call to {\small\verb%define_new_type_bijections name abs rep th%} fails if {\small\verb%th%} is not a
theorem of the form returned by {\small\verb%new_type_definition%}, or if either {\small\verb%abs%} or
{\small\verb%rep%} is already the name of a constant in the current theory, or there already
exists a constant definition, constant specification, type definition or axiom
named {\small\verb%name%} in the current theory, or HOL is not in draft mode.
\SEEALSO
new_type_definition, prove_abs_fn_one_one, prove_abs_fn_onto,
prove_rep_fn_one_one, prove_rep_fn_onto.
\ENDDOC
\DOC{define\_set\_abstraction\_syntax}
\TYPE {\small\verb%define_set_abstraction_syntax : (string -> void)%}\egroup
\SYNOPSIS
Sets up an interpretation of set abstraction syntax.
\DESCRIBE
The HOL quotation parser supports the notation {\small\verb%"{x | P}"%}. This is primarily
intended for use in the {\small\verb%sets%} library and dependent work, meaning `the set of
elements {\small\verb%x%} such that {\small\verb%P%} is true' (presumably {\small\verb%x%} will be free in {\small\verb%P%}), but
this function allows the interpretation to be changed. A call
{\par\samepage\setseps\small
\begin{verbatim}
define_set_abstraction_syntax `c`
\end{verbatim}
}
\noindent where {\small\verb%c%} is a constant of the current theory, will make the
quotation parser interpret
{\par\samepage\setseps\small
\begin{verbatim}
{x | P}
\end{verbatim}
}
\noindent as
{\par\samepage\setseps\small
\begin{verbatim}
c (\(x1...xn). (x,P))
\end{verbatim}
}
\noindent where the {\small\verb%x1...xn%} are all the variables that occur free in both
{\small\verb%x%} or {\small\verb%P%}. The printer will invert this transformation.
\FAILURE
Fails if {\small\verb%c%} is not a constant of the current theory.
\COMMENTS
For further details about the use of this function in the {\small\verb%sets%} library, refer
to the DESCRIPTION.
\SEEALSO
define_finite_set_syntax, load_library.
\ENDDOC
\DOC{define\_type}
\TYPE {\small\verb%define_type : (string -> string -> thm)%}\egroup
\SYNOPSIS
Automatically defines a user-specified concrete recursive data type.
\DESCRIBE
The ML function {\small\verb%define_type%} automatically defines any required concrete
recursive type in the logic. The first argument is the name under which the
results of making the definition will be stored in the current theory segment.
The second argument is a user-supplied specification of the type to be defined.
This specification (explained below) simply states the names of the new type's
constructors and the logical types of their arguments. The theorem returned by
{\small\verb%define_type%} is an automatically-proved abstract characterization of the
concrete data type described by this specification.
The type specification given as the second argument to {\small\verb%define_type%} must be a
string of the form:
{\par\samepage\setseps\small
\begin{verbatim}
`op = C1 ty ... ty | C2 ty ... ty | ... | Cn ty ... ty`
\end{verbatim}
}
\noindent where {\small\verb%op%} is the name of the type constant or type operator to be
defined, {\small\verb%C1%}, ..., {\small\verb%Cn%} are identifiers, and each {\small\verb%ty%} is either a (logical)
type expression valid in the current theory (in which case {\small\verb%ty%} must not
contain {\small\verb%op%}) or just the identifier `{\small\verb%op%}' itself.
A string of this form describes an n-ary type operator {\small\verb%op%}, where n is the
number of distinct type variables in the types {\small\verb%ty%} on the right hand side of
the equation. If n is zero then {\small\verb%op%} is a type constant; otherwise {\small\verb%op%} is an
n-ary type operator. The type described by the specification has {\small\verb%n%} distinct
constructors {\small\verb%C1%}, ..., {\small\verb%Cn%}. Each constructor {\small\verb%Ci%} is a function that takes
arguments whose types are given by the associated type expressions {\small\verb%ty%} in the
specification. If one or more of the type expressions {\small\verb%ty%} is the type {\small\verb%op%}
itself, then the equation specifies a recursive data type. In any
specification, at least one constructor must be non-recursive, i.e. all its
arguments must have types which already exist in the current theory.
Given a type specification of the form described above, {\small\verb%define_type%} makes an
appropriate type definition for the type operator {\small\verb%op%}. It then makes
appropriate definitions for the constants {\small\verb%C1%}, ..., {\small\verb%Cn%}, and automatically
proves a theorem that states an abstract characterization of the newly-defined
type {\small\verb%op%}. This theorem, which is stored in the current theory segment under
the name supplied as the first argument and also returned by {\small\verb%define_type%}, has
the form of a `primitive recursion theorem' for the concrete type {\small\verb%op%} (see the
examples given below). This property provides an abstract characterization of
the type {\small\verb%op%} which is both succinct and complete, in the sense that it
completely determines the structure of the values of {\small\verb%op%} up to isomorphism.
\FAILURE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
define_type `name` `op = C1 ty ... ty | ... | Cn ty ... ty`
\end{verbatim}
}
\noindent fails if HOL is not in draft mode; if {\small\verb%op%} is already the name of a
type constant or type operator in the current theory; if the supplied constant
names {\small\verb%C1%}, ..., {\small\verb%Cn%} are not distinct; if any one of {\small\verb%C1%}, ..., {\small\verb%Cn%} is
already a constant in the current theory or is not an allowed name for a
constant; if {\small\verb%ABS_op%} or {\small\verb%REP_op%} are already constants in the current theory;
if there is already an axiom, definition, constant specification or type
definition stored under either the name {\small\verb%op_TY_DEF%} or the name {\small\verb%op_ISO_DEF%} in
the current theory segment; if there is already a theorem stored under the name
{\small\verb%`name`%} in the current theory segment; or (finally) if the input type
specification does not conform in any other respect to the syntax described
above.
\EXAMPLE
The following call to {\small\verb%define_type%} defines {\small\verb%tri%} to be a simple enumerated
type with exactly three distinct values:
{\par\samepage\setseps\small
\begin{verbatim}
#define_type `tri_DEF` `tri = ONE | TWO | THREE`;;
|- !e0 e1 e2. ?! fn. (fn ONE = e0) /\ (fn TWO = e1) /\ (fn THREE = e2)
\end{verbatim}
}
\noindent The theorem returned is a degenerate `primitive recursion' theorem
for the concrete type {\small\verb%tri%}. An example of a recursive type that can be
defined using {\small\verb%define_type%} is a type of binary trees:
{\par\samepage\setseps\small
\begin{verbatim}
#define_type `btree_DEF` `btree = LEAF * | NODE btree btree`;;
|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)
\end{verbatim}
}
\noindent The theorem returned by {\small\verb%define_type%} in this case asserts the unique
existence of functions defined by primitive recursion over labelled binary
trees.
Note that the type being defined may not occur as a proper subtype in
any of the types of the arguments of the constructors:
{\par\samepage\setseps\small
\begin{verbatim}
#define_type `name` `ty = NUM num | FUN (ty -> ty)`;;
evaluation failed ill-formed type expression(s)
\end{verbatim}
}
\noindent In this example, there is an error because {\small\verb%ty%} occurs within the
type expression {\small\verb%(ty -> ty)%}.
\SEEALSO
INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.
\ENDDOC
\DOC{definition}
\TYPE {\small\verb%definition : (string -> string -> thm)%}\egroup
\SYNOPSIS
Reads a constant definition from a given theory segment of the current theory.
\DESCRIBE
A call {\small\verb%definition `thy` `def`%} returns constant definition {\small\verb%def%} from the
theory segment {\small\verb%thy%}. The theory segment {\small\verb%thy%} must be part of the current
theory. The name {\small\verb%def%} is the one given to the definition by the user when it
was originally added to the theory segment (by a call to {\small\verb%new_definition%}).
The name of the current theory segment can be abbreviated by {\small\verb%`-`%}.
\FAILURE
The call {\small\verb%definition `thy` `def`%} will fail if the theory segment {\small\verb%thy%} is not
part of the current theory. It will fail if there does not exist a constant
definition of name {\small\verb%def%} in theory segment {\small\verb%thy%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#definition `bool` `ONTO_DEF`;;
|- !f. ONTO f = (!y. ?x. y = f x)
\end{verbatim}
}
\SEEALSO
axiom, definitions, load_definition, load_definitions, new_definition, print_theory, theorem.
\ENDDOC
\DOC{definition\_lfn}
\TYPE {\small\verb%definition_lfn : (string list -> thm)%}\egroup
\SYNOPSIS
Loads a given definition from a given theory.
\DESCRIBE
If {\small\verb%thy%} is an ancestor theory, and {\small\verb%def%} one of its definitions, then the
call
{\par\samepage\setseps\small
\begin{verbatim}
definition_lfn [`thy`;`def`]
\end{verbatim}
}
\noindent will return that definition.
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%def%} is not one of its
definitions.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#definition_lfn [`bool`; `EXISTS_DEF`];;
|- $? = (\P. P($@ P))
\end{verbatim}
}
\COMMENTS
This call has the same effect as {\small\verb%definition `thy` `def`%}.
\SEEALSO
definition, definitions, definition_msg_lfn, load_definition, load_definitions.
\ENDDOC
\DOC{definition\_msg\_lfn}
\TYPE {\small\verb%definition_msg_lfn : (string list -> thm)%}\egroup
\SYNOPSIS
Loads a given definition from a given theory, with an autoload message.
\DESCRIBE
If {\small\verb%thy%} is an ancestor theory, and {\small\verb%def%} one of its definitions, then the
call
{\par\samepage\setseps\small
\begin{verbatim}
definition_msg_lfn [`thy`;`def`]
\end{verbatim}
}
\noindent will print out a message of the form
{\par\samepage\setseps\small
\begin{verbatim}
Definition def autoloaded from theory `thy`
\end{verbatim}
}
\noindent and cancel any autoloading action associated with the name {\small\verb%def%},
and return that definition.
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%def%} is not one of its
definitions.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#definition_msg_lfn [`bool`;`NOT_DEF`];;
Definition NOT_DEF autoloaded from theory `bool`.
|- $~ = (\t. t ==> F)
\end{verbatim}
}
\SEEALSO
autoload, autoload_theory, definition, definitions, definition_lfn,
load_definition, load_definitions, undo_autoload.
\ENDDOC
\DOC{definitions}
\TYPE {\small\verb%definitions : (string -> (string # thm) list)%}\egroup
\SYNOPSIS
Returns the constant definitions, type definitions and constant specifications
of a given theory segment of the current theory.
\DESCRIBE
A call of {\small\verb%definitions `thy`%} returns the definitions of the theory segment
{\small\verb%thy%} together with their names. Constant definitions, type definitions and
constant specifications are all retrieved by the function {\small\verb%definitions%}. The
theory segment {\small\verb%thy%} must be part of the current theory. The names are those
given to the definitions by the user when they were originally added to the
theory segment (by a call, for example, to {\small\verb%new_definition%}). The name of the
current theory segment can be abbreviated by {\small\verb%`-`%}.
\FAILURE
The call {\small\verb%definitions `thy`%} will fail if the theory segment {\small\verb%thy%} is not
part of the current theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#definitions `combin`;;
[(`I_DEF`, |- I = S K K);
(`S_DEF`, |- S = (\f g x. f x(g x)));
(`K_DEF`, |- K = (\x y. x));
(`o_DEF`, |- !f g. f o g = (\x. f(g x)))]
: (string # thm) list
\end{verbatim}
}
\SEEALSO
axioms, definition, load_definition, load_definitions, new_definition, print_theory, theorems.
\ENDDOC
\DOC{delete\_cache}
\TYPE {\small\verb%delete_cache : (string -> void)%}\egroup
\SYNOPSIS
Deletes a theory from the theory cache.
\DESCRIBE
A call {\small\verb%delete_cache thy%} deletes the named theory from the theory cache.
For more details of the cacheing mechanism, see the DESCRIPTION.
\FAILURE
Never fails, even if the name is not the name of a loaded theory.
\SEEALSO
cached_theories.
\ENDDOC
\DOC{delete\_thm}
\TYPE {\small\verb%delete_thm : (string -> string -> thm)%}\egroup
\SYNOPSIS
Deletes a theorem from a theory.
\DESCRIBE
If {\small\verb%thy%} is an ancestor theory, and {\small\verb%th%} the name of a theorem of that theory,
then the call
{\par\samepage\setseps\small
\begin{verbatim}
delete_thm `thy` `th`
\end{verbatim}
}
\noindent will delete the theorem {\small\verb%th%} from the theory {\small\verb%thy%}. As usual, the
special string {\small\verb%`-`%} is allowed as a theory name, standing for the current
theory. The call will return the theorem deleted.
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%th%} is not one of its
theorems, or for various system-dependent reasons connected with writing to the
theory file.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `geek`;;
() : void
#theorems `-`;;
[] : (string # thm) list
#save_thm(`truth`,TRUTH);;
|- T
#theorems `-`;;
[(`truth`, |- T)] : (string # thm) list
#delete_thm `-` `truth`;;
|- T
#theorems `-`;;
[] : (string # thm) list
\end{verbatim}
}
\COMMENTS
The particular theorems which are stored in a theory have no logical
significance, so this operation is quite safe. By contrast, being able to
delete a definition from a theory would compromise the consistency of the
logic, so it is not allowed.
\SEEALSO
prove_thm, save_thm, theorem, theorems.
\ENDDOC
\DOC{DEPTH\_CONV}
\TYPE {\small\verb%DEPTH_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion repeatedly to all the sub-terms of a term, in bottom-up
order.
\DESCRIBE
{\small\verb%DEPTH_CONV c tm%} repeatedly applies the conversion {\small\verb%c%} to all the subterms of
the term {\small\verb%tm%}, including the term {\small\verb%tm%} itself. The supplied conversion is
applied repeatedly (zero or more times, as is done by {\small\verb%REPEATC%}) to each
subterm until it fails. The conversion is applied to subterms in bottom-up
order.
\FAILURE
{\small\verb%DEPTH_CONV c tm%} never fails but can diverge if the conversion {\small\verb%c%} can be
applied repeatedly to some subterm of {\small\verb%tm%} without failing.
\EXAMPLE
The following example shows how {\small\verb%DEPTH_CONV%} applies a conversion to all
subterms to which it applies:
{\par\samepage\setseps\small
\begin{verbatim}
#DEPTH_CONV BETA_CONV "(\x. (\y. y + x) 1) 2";;
|- (\x. (\y. y + x)1)2 = 1 + 2
\end{verbatim}
}
\noindent Here, there are two beta-redexes in the input term, one of which
occurs within the other. {\small\verb%DEPTH_CONV BETA_CONV%} applies beta-conversion to
innermost beta-redex {\small\verb%(\y. y + x) 1%} first. The outermost beta-redex is then
{\small\verb%(\x. 1 + x) 2%}, and beta-conversion of this redex gives {\small\verb%1 + 2%}.
Because {\small\verb%DEPTH_CONV%} applies a conversion bottom-up, the final result may still
contain subterms to which the supplied conversion applies. For example, in:
{\par\samepage\setseps\small
\begin{verbatim}
#DEPTH_CONV BETA_CONV "(\f x. (f x) + 1) (\y.y) 2";;
|- (\f x. (f x) + 1)(\y. y)2 = ((\y. y)2) + 1
\end{verbatim}
}
\noindent the right-hand side of the result still contains a beta-redex,
because the redex {\small\verb%"(\y.y)2"%} is introduced by virtue an application of
{\small\verb%BETA_CONV%} higher-up in the structure of the input term. By contrast, in the
example:
{\par\samepage\setseps\small
\begin{verbatim}
#DEPTH_CONV BETA_CONV "(\f x. (f x)) (\y.y) 2";;
|- (\f x. f x)(\y. y)2 = 2
\end{verbatim}
}
\noindent all beta-redexes are eliminated, because {\small\verb%DEPTH_CONV%} repeats the
supplied conversion (in this case, {\small\verb%BETA_CONV%}) at each subterm (in this case,
at the top-level term).
\USES
If the conversion {\small\verb%c%} implements the evaluation of a function in logic, then
{\small\verb%DEPTH_CONV c%} will do bottom-up evaluation of nested applications of it.
For example, the conversion {\small\verb%ADD_CONV%} implements addition of natural number
constants within the logic. Thus, the effect of:
{\par\samepage\setseps\small
\begin{verbatim}
#DEPTH_CONV ADD_CONV "(1 + 2) + (3 + 4 + 5)";;
|- (1 + 2) + (3 + (4 + 5)) = 15
\end{verbatim}
}
\noindent is to compute the sum represented by the input term.
\COMMENTS
The implementation of this function uses failure to avoid rebuilding unchanged
subterms. That is to say, during execution the failure string {\small\verb%`QCONV`%} may be
generated and later trapped. The behaviour of the function is dependent on this
use of failure. So, if the conversion given as an argument happens to generate
a failure with string {\small\verb%`QCONV`%}, the operation of {\small\verb%DEPTH_CONV%} will be
unpredictable.
\SEEALSO
ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV.
\ENDDOC
\DOC{dest\_abs}
\TYPE {\small\verb%dest_abs : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart an abstraction into abstracted variable and body.
\DESCRIBE
{\small\verb%dest_abs%} is a term destructor for abstractions:
{\small\verb%dest_abs "\var. t"%} returns {\small\verb%("var","t")%}.
\FAILURE
Fails with {\small\verb%dest_abs%} if term is not an abstraction.
\SEEALSO
mk_abs, is_abs, dest_var, dest_const, dest_comb, strip_abs.
\ENDDOC
\DOC{dest\_comb}
\TYPE {\small\verb%dest_comb : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a combination (function application) into rator and rand.
\DESCRIBE
{\small\verb%dest_comb%} is a term destructor for combinations:
{\par\samepage\setseps\small
\begin{verbatim}
dest_comb "t1 t2"
\end{verbatim}
}
\noindent returns {\small\verb%("t1","t2")%}.
\FAILURE
Fails with {\small\verb%dest_comb%} if term is not a combination.
\SEEALSO
mk_comb, is_comb, dest_var, dest_const, dest_abs, strip_comb.
\ENDDOC
\DOC{dest\_cond}
\TYPE {\small\verb%dest_cond : (term -> (term # term # term))%}\egroup
\SYNOPSIS
Breaks apart a conditional into the three terms involved.
\DESCRIBE
{\small\verb%dest_cond%} is a term destructor for conditionals:
{\par\samepage\setseps\small
\begin{verbatim}
dest_cond "t => t1 | t2"
\end{verbatim}
}
\noindent returns {\small\verb%("t","t1","t2")%}.
\FAILURE
Fails with {\small\verb%dest_cond%} if term is not a conditional.
\SEEALSO
mk_cond, is_cond.
\ENDDOC
\DOC{dest\_conj}
\TYPE {\small\verb%dest_conj : (term -> (term # term))%}\egroup
\SYNOPSIS
Term destructor for conjunctions.
\DESCRIBE
{\small\verb%dest_conj("t1 /\ t2")%} returns {\small\verb%("t1","t2")%}.
\FAILURE
Fails with {\small\verb%dest_conj%} if term is not a conjunction.
\SEEALSO
mk_conj, is_conj.
\ENDDOC
\DOC{dest\_cons}
\TYPE {\small\verb%dest_cons : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a `CONS pair' into head and tail.
\DESCRIBE
{\small\verb%dest_cons%} is a term destructor for `CONS pairs'. When applied to a term
representing a nonempty list {\small\verb%"[t;t1;...;tn]"%} (which is equivalent to {\small\verb%"CONS t
[t1;...;tn]"%}), it returns the pair of terms {\small\verb%("t","[t1;...;tn]")%}.
\FAILURE
Fails with {\small\verb%dest_cons%} if the term is not a non-empty list.
\SEEALSO
mk_cons, is_cons, mk_list, dest_list, is_list.
\ENDDOC
\DOC{dest\_const}
\TYPE {\small\verb%dest_const : (term -> (string # type))%}\egroup
\SYNOPSIS
Breaks apart a constant into name and type.
\DESCRIBE
{\small\verb%dest_const%} is a term destructor for constants:
{\par\samepage\setseps\small
\begin{verbatim}
dest_const "const:ty"
\end{verbatim}
}
\noindent returns {\small\verb%(`const`,":ty")%}.
\FAILURE
Fails with {\small\verb%dest_const%} if term is not a constant.
\SEEALSO
mk_const, is_const, dest_var, dest_comb, dest_abs.
\ENDDOC
\DOC{dest\_definition}
\TYPE {\small\verb%dest_definition : (term -> term)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{dest\_disj}
\TYPE {\small\verb%dest_disj : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a disjunction into the two disjuncts.
\DESCRIBE
{\small\verb%dest_disj%} is a term destructor for disjunctions:
{\par\samepage\setseps\small
\begin{verbatim}
dest_disj "t1 \/ t2"
\end{verbatim}
}
\noindent returns {\small\verb%("t1","t2")%}.
\FAILURE
Fails with {\small\verb%dest_disj%} if term is not a disjunction.
\SEEALSO
mk_disj, is_disj.
\ENDDOC
\DOC{dest\_eq}
\TYPE {\small\verb%dest_eq : (term -> (term # term))%}\egroup
\SYNOPSIS
Term destructor for equality.
\DESCRIBE
{\small\verb%dest_eq("t1 = t2")%} returns {\small\verb%("t1","t2")%}.
\FAILURE
Fails with {\small\verb%dest_eq%} if term is not an equality.
\SEEALSO
mk_eq, is_eq.
\ENDDOC
\DOC{dest\_exists}
\TYPE {\small\verb%dest_exists : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart an existentially quantified term into quantified variable and body.
\DESCRIBE
{\small\verb%dest_exists%} is a term destructor for existential quantification:
{\small\verb%dest_exists "?var. t"%} returns {\small\verb%("var","t")%}.
\FAILURE
Fails with {\small\verb%dest_exists%} if term is not an existential quantification.
\SEEALSO
mk_exists, is_exists, strip_exists.
\ENDDOC
\DOC{dest\_forall}
\TYPE {\small\verb%dest_forall : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a universally quantified term into quantified variable and body.
\DESCRIBE
{\small\verb%dest_forall%} is a term destructor for universal quantification:
{\small\verb%dest_forall "!var. t"%} returns {\small\verb%("var","t")%}.
\FAILURE
Fails with {\small\verb%dest_forall%} if term is not a universal quantification.
\SEEALSO
mk_forall, is_forall, strip_forall.
\ENDDOC
\DOC{dest\_form}
\TYPE {\small\verb%dest_form : (form -> term)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{dest\_imp}
\TYPE {\small\verb%dest_imp : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart an implication into antecedent and consequent.
\DESCRIBE
{\small\verb%dest_imp%} is a term destructor for implications. Thus
{\par\samepage\setseps\small
\begin{verbatim}
dest_imp "t1 ==> t2"
\end{verbatim}
}
\noindent returns
{\par\samepage\setseps\small
\begin{verbatim}
("t1","t2")
\end{verbatim}
}
\FAILURE
Fails with {\small\verb%dest_imp%} if term is not an implication.
\COMMENTS
Previous version of {\small\verb%dest_imp%} treats negations as an implication
with {\small\verb%F%} as the conclusion. This is renamed to {\small\verb%dest_neg_imp%}.
\SEEALSO
mk_imp, is_imp, strip_imp, dest_neg_imp.
\ENDDOC
\DOC{dest\_let}
\TYPE {\small\verb%dest_let : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a let-expression.
\DESCRIBE
{\small\verb%dest_let%} is a term destructor for general let-expressions:
{\small\verb%dest_let "LET f x"%} returns {\small\verb%("f","x")%}.
\FAILURE
Fails with {\small\verb%dest_let%} if term is not a {\small\verb%let%}-expression or of the more general
{\small\verb%"LET f x"%} form.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#dest_let "LET ($= 1) 2";;
("$= 1", "2") : (term # term)
#dest_let "let x = 2 in (x = 1)";;
("\x. x = 1", "2") : (term # term)
\end{verbatim}
}
\SEEALSO
mk_let, is_let.
\ENDDOC
\DOC{dest\_list}
\TYPE {\small\verb%dest_list : (term -> (term list # type))%}\egroup
\SYNOPSIS
Iteratively breaks apart a list term.
\DESCRIBE
{\small\verb%dest_list%} is a term destructor for lists:
{\small\verb%dest_list("[t1;...;tn]:(ty)list")%} returns {\small\verb%(["t1";...;"tn"],":ty")%}.
\FAILURE
Fails with {\small\verb%dest_list%} if the term is not a list.
\SEEALSO
mk_list, is_list, mk_cons, dest_cons, is_cons.
\ENDDOC
\DOC{dest\_neg}
\TYPE {\small\verb%dest_neg : (term -> term)%}\egroup
\SYNOPSIS
Breaks apart a negation, returning its body.
\DESCRIBE
{\small\verb%dest_neg%} is a term destructor for negations:
{\small\verb%dest_neg "~t"%} returns {\small\verb%"t"%}.
\FAILURE
Fails with {\small\verb%dest_neg%} if term is not a negation.
\SEEALSO
mk_neg, is_neg.
\ENDDOC
\DOC{dest\_neg\_imp}
\TYPE {\small\verb%dest_neg_imp : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart an implication (or negation) into antecedent and consequent.
\DESCRIBE
{\small\verb%dest_neg_imp%} is a term destructor for implications, which treats negations as
implications with consequent {\small\verb%F%}. Thus
{\par\samepage\setseps\small
\begin{verbatim}
dest_neg_imp "t1 ==> t2"
\end{verbatim}
}
\noindent returns
{\par\samepage\setseps\small
\begin{verbatim}
("t1","t2")
\end{verbatim}
}
\noindent and also
{\par\samepage\setseps\small
\begin{verbatim}
dest_neg_imp "~t"
\end{verbatim}
}
\noindent returns
{\par\samepage\setseps\small
\begin{verbatim}
("t","F")
\end{verbatim}
}
\FAILURE
Fails with {\small\verb%dest_neg_imp%} if term is neither an implication nor a negation.
\COMMENTS
Destructs negations for compatibility with PPLAMBDA code.
This function used to be called {\small\verb%dest_imp%}
\SEEALSO
is_neg_imp, dest_imp, strip_imp.
\ENDDOC
\DOC{dest\_pabs}
\TYPE {\small\verb%dest_pabs : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a paired abstraction into abstracted varstruct and body.
\DESCRIBE
{\small\verb%dest_pabs%} is a term destructor for paired abstractions:
{\small\verb%dest_pabs "\(v1..(..)..vn). t"%} returns {\small\verb%("(v1..(..)..vn)","t")%}.
\FAILURE
Fails unless the term is a paired abstraction.
\SEEALSO
mk_pabs, is_pabs, dest_abs, dest_var, dest_const, dest_comb.
\ENDDOC
\DOC{dest\_pair}
\TYPE {\small\verb%dest_pair : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a pair into two separate terms.
\DESCRIBE
{\small\verb%dest_pair%} is a term destructor for pairs:
{\small\verb%dest_pair "(t1,t2)"%} returns {\small\verb%("t1","t2")%}.
\FAILURE
Fails with {\small\verb%dest_pair%} if term is not a pair.
\SEEALSO
mk_pair, is_pair, strip_pair.
\ENDDOC
\DOC{dest\_pred}
\TYPE {\small\verb%dest_pred : (term -> (string # term))%}\egroup
\SYNOPSIS
Breaks apart a combination whose operator is a constant.
\DESCRIBE
Given a term {\small\verb%"op t"%}, {\small\verb%dest_pred%} returns the pair {\small\verb%(`op`,"t")%}, provided
{\small\verb%"op"%} is a constant.
\FAILURE
Fails if the given term is not a combination whose operator is a constant.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
dest_pred "$/\ T";;
(`/\`, "T") : (string # term)
\end{verbatim}
}
\SEEALSO
dest_comb, dest_const, is_pred
\ENDDOC
\DOC{dest\_select}
\TYPE {\small\verb%dest_select : (term -> (term # term))%}\egroup
\SYNOPSIS
Breaks apart a choice term into selected variable and body.
\DESCRIBE
{\small\verb%dest_select%} is a term destructor for choice terms:
{\par\samepage\setseps\small
\begin{verbatim}
dest_select "@var. t"
\end{verbatim}
}
\noindent returns {\small\verb%("var","t")%}.
\FAILURE
Fails with {\small\verb%dest_select%} if term is not an epsilon-term.
\SEEALSO
mk_select, is_select.
\ENDDOC
\DOC{dest\_thm}
\TYPE {\small\verb%dest_thm : (thm -> goal)%}\egroup
\SYNOPSIS
Breaks a theorem into assumption list and conclusion.
\DESCRIBE
{\small\verb%dest_thm (t1,...,tn |- t)%} returns {\small\verb%(["t1";...;"tn"],"t")%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#dest_thm (ASSUME "p=T");;
(["p = T"], "p = T") : goal
\end{verbatim}
}
\SEEALSO
concl, hyp.
\ENDDOC
\DOC{dest\_type}
\TYPE {\small\verb%dest_type : (type -> (string # type list))%}\egroup
\SYNOPSIS
Breaks apart a type (other than a variable type).
\DESCRIBE
{\small\verb%dest_type(":(ty1,...,tyn)op")%} returns {\small\verb%(`op`,[":ty1";...;":tyn"])%}.
\FAILURE
Fails with {\small\verb%dest_type%} if the type is a type variable.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#dest_type ":bool";;
(`bool`, []) : (string # type list)
#dest_type ":(bool)list";;
(`list`, [":bool"]) : (string # type list)
#dest_type ":num -> bool";;
(`fun`, [":num"; ":bool"]) : (string # type list)
\end{verbatim}
}
\SEEALSO
mk_type, dest_vartype.
\ENDDOC
\DOC{dest\_var}
\TYPE {\small\verb%dest_var : (term -> (string # type))%}\egroup
\SYNOPSIS
Breaks apart a variable into name and type.
\DESCRIBE
{\small\verb%dest_var "var:ty"%} returns {\small\verb%(`var`,":ty")%}.
\FAILURE
Fails with {\small\verb%dest_var%} if term is not a variable.
\SEEALSO
mk_var, is_var, dest_const, dest_comb, dest_abs.
\ENDDOC
\DOC{dest\_vartype}
\TYPE {\small\verb%dest_vartype : (type -> string)%}\egroup
\SYNOPSIS
Breaks a type variable down to its name.
\DESCRIBE
{\small\verb%dest_vartype ":*..."%} returns {\small\verb%`*...`%}.
\FAILURE
Fails with {\small\verb%dest_vartype%} if the type is not a type variable.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#dest_vartype ":*test";;
`*test` : string
#dest_vartype ":bool";;
evaluation failed dest_vartype
#dest_vartype ":* -> bool";;
evaluation failed dest_vartype
\end{verbatim}
}
\SEEALSO
mk_vartype, is_vartype, dest_type.
\ENDDOC
\DOC{DISCARD\_TAC}
\TYPE {\small\verb%DISCARD_TAC : thm_tactic%}\egroup
\SYNOPSIS
Discards a theorem already present in a goal's assumptions.
\DESCRIBE
When applied to a theorem {\small\verb%A' |- s%} and a goal, {\small\verb%DISCARD_TAC%}
checks that {\small\verb%s%} is simply {\small\verb%T%} (true), or already exists (up
to alpha-conversion) in the assumption list of the goal. In
either case, the tactic has no effect. Otherwise, it fails.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======== DISCARD_TAC (A' |- s)
A ?- t
\end{verbatim}
}
\FAILURE
Fails if the above conditions are not met, i.e. the theorem's conclusion
is not {\small\verb%T%} or already in the assumption list (up to alpha-conversion).
\SEEALSO
POP_ASSUM, POP_ASSUM_LIST.
\ENDDOC
\DOC{DISCH\_ALL}
\TYPE {\small\verb%DISCH_ALL : (thm -> thm)%}\egroup
\SYNOPSIS
Discharges all hypotheses of a theorem.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A1, ..., An |- t
---------------------------- DISCH_ALL
|- A1 ==> ... ==> An ==> t
\end{verbatim}
}
\FAILURE
{\small\verb%DISCH_ALL%} will not fail if there are no hypotheses to discharge, it will
simply return the theorem unchanged.
\COMMENTS
Users should not rely on the hypotheses being discharged in any particular
order. Two or more alpha-convertible hypotheses will be discharged by a
single implication; users should not rely on which hypothesis appears in the
implication.
\SEEALSO
DISCH, DISCH_TAC, DISCH_THEN, NEG_DISCH, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
\ENDDOC
\DOC{disch}
\TYPE {\small\verb%disch : ((term # term list) -> term list)%}\egroup
\SYNOPSIS
Removes those elements of a list of terms that are alpha equivalent to a
given term.
\DESCRIBE
Given a pair {\small\verb%("t",tl)%}, {\small\verb%disch%} removes those elements of {\small\verb%tl%} that are
alpha equivalent to {\small\verb%"t"%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
disch ("\x:bool.T",["A = T";"B = 3";"\y:bool.T"]);;
["A = T";"B = 3"] : term list
\end{verbatim}
}
\SEEALSO
filter.
\ENDDOC
\DOC{DISCH}
\TYPE {\small\verb%DISCH : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Discharges an assumption.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
-------------------- DISCH "u"
A - {u} |- u ==> t
\end{verbatim}
}
\FAILURE
{\small\verb%DISCH%} will fail if {\small\verb%"u"%} is not boolean.
\COMMENTS
The term {\small\verb%"u"%} need not be a hypothesis. Discharging {\small\verb%"u"%} will remove all
identical and alpha-equivalent hypotheses.
\SEEALSO
DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
NEG_DISCH, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
\ENDDOC
\DOC{DISCH\_TAC}
\TYPE {\small\verb%DISCH_TAC : tactic%}\egroup
\SYNOPSIS
Moves the antecedent of an implicative goal into the assumptions.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A ?- u ==> v
============== DISCH_TAC
A u {u} ?- v
\end{verbatim}
}
\noindent Note that {\small\verb%DISCH_TAC%} treats {\small\verb%"~u"%} as {\small\verb%"u ==> F"%}, so will also work
when applied to a goal with a negated conclusion.
\FAILURE
{\small\verb%DISCH_TAC%} will fail for goals which are not implications or negations.
\USES
Solving goals of the form {\small\verb%"u ==> v"%} by rewriting {\small\verb%"v"%} with {\small\verb%"u"%}, although
the use of {\small\verb%DISCH_THEN%} is usually more elegant in such cases.
\COMMENTS
If the antecedent already appears in the assumptions, it will be duplicated.
\SEEALSO
DISCH, DISCH_ALL, DISCH_THEN, FILTER_DISCH_TAC, FILTER_DISCH_THEN, NEG_DISCH,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
\ENDDOC
\DOC{DISCH\_THEN}
\TYPE {\small\verb%DISCH_THEN : (thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Undischarges an antecedent of an implication and passes it to a theorem-tactic.
\DESCRIBE
{\small\verb%DISCH_THEN%} removes the antecedent and then creates a theorem by {\small\verb%ASSUME%}ing
it. This new theorem is passed to the theorem-tactic given as {\small\verb%DISCH_THEN%}'s
argument. The consequent tactic is then applied. Thus:
{\par\samepage\setseps\small
\begin{verbatim}
DISCH_THEN f (asl,"t1 ==> t2") = f(ASSUME "t1")(asl,"t2")
\end{verbatim}
}
\noindent For example, if
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======== f (ASSUME "u")
B ?- v
\end{verbatim}
}
\noindent then
{\par\samepage\setseps\small
\begin{verbatim}
A ?- u ==> t
============== DISCH_THEN f
B ?- v
\end{verbatim}
}
\noindent Note that {\small\verb%DISCH_THEN%} treats {\small\verb%"~u"%} as {\small\verb%"u ==> F"%}.
\FAILURE
{\small\verb%DISCH_THEN%} will fail for goals which are not implications or negations.
\EXAMPLE
The following shows how {\small\verb%DISCH_THEN%} can be used to preprocess an antecedent
before adding it to the assumptions.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- (x = y) ==> t
==================== DISCH_THEN (ASSUME_TAC o SYM)
A u {y = x} ?- t
\end{verbatim}
}
\noindent In many cases, it is possible to use an antecedent and then throw it
away:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- (x = y) ==> t x
====================== DISCH_THEN (\th. PURE_REWRITE_TAC [th])
A ?- t y
\end{verbatim}
}
\SEEALSO
DISCH, DISCH_ALL, DISCH_TAC, NEG_DISCH, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
\ENDDOC
\DOC{DISJ1}
\TYPE {\small\verb%DISJ1 : (thm -> term -> thm)%}\egroup
\SYNOPSIS
Introduces a right disjunct into the conclusion of a theorem.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1
--------------- DISJ1 (A |- t1) "t2"
A |- t1 \/ t2
\end{verbatim}
}
\FAILURE
Fails unless the term argument is boolean.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#DISJ1 TRUTH "F";;
|- T \/ F
\end{verbatim}
}
\COMMENTS
The system shows the type of {\small\verb%DISJ1%} as {\small\verb%(thm -> conv)%}.
\SEEALSO
DISJ1_TAC, DISJ2, DISJ2_TAC, DISJ_CASES.
\ENDDOC
\DOC{DISJ1\_TAC}
\TYPE {\small\verb%DISJ1_TAC : tactic%}\egroup
\SYNOPSIS
Selects the left disjunct of a disjunctive goal.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t1 \/ t2
=============== DISJ1_TAC
A ?- t1
\end{verbatim}
}
\FAILURE
Fails if the goal is not a disjunction.
\SEEALSO
DISJ1, DISJ2, DISJ2_TAC.
\ENDDOC
\DOC{DISJ2}
\TYPE {\small\verb%DISJ2 : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Introduces a left disjunct into the conclusion of a theorem.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t2
--------------- DISJ2 "t1"
A |- t1 \/ t2
\end{verbatim}
}
\FAILURE
Fails if the term argument is not boolean.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#DISJ2 "F" TRUTH;;
|- F \/ T
\end{verbatim}
}
\SEEALSO
DISJ1, DISJ1_TAC, DISJ2_TAC, DISJ_CASES.
\ENDDOC
\DOC{DISJ2\_TAC}
\TYPE {\small\verb%DISJ2_TAC : tactic%}\egroup
\SYNOPSIS
Selects the right disjunct of a disjunctive goal.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t1 \/ t2
=============== DISJ2_TAC
A ?- t2
\end{verbatim}
}
\FAILURE
Fails if the goal is not a disjunction.
\SEEALSO
DISJ1, DISJ1_TAC, DISJ2.
\ENDDOC
\DOC{DISJ\_CASES}
\TYPE {\small\verb%DISJ_CASES : (thm -> thm -> thm -> thm)%}\egroup
\SYNOPSIS
Eliminates disjunction by cases.
\DESCRIBE
The rule {\small\verb%DISJ_CASES%} takes a disjunctive theorem, and two `case'
theorems, each with one of the disjuncts as a hypothesis while sharing
alpha-equivalent conclusions. A new theorem is returned with the same
conclusion as the `case' theorems, and the union of all assumptions
excepting the disjuncts.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 \/ t2 A1 u {t1} |- t A2 u {t2} |- t
------------------------------------------------------ DISJ_CASES
A u A1 u A2 |- t
\end{verbatim}
}
\FAILURE
Fails if the first argument is not a disjunctive theorem, or if the
conclusions of the other two theorems are not alpha-convertible.
\EXAMPLE
Specializing the built-in theorem {\small\verb%num_CASES%} gives the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
th = |- (m = 0) \/ (?n. m = SUC n)
\end{verbatim}
}
\noindent Using two additional theorems, each having one disjunct as a
hypothesis:
{\par\samepage\setseps\small
\begin{verbatim}
th1 = (m = 0 |- (PRE m = m) = (m = 0))
th2 = (?n. m = SUC n" |- (PRE m = m) = (m = 0))
\end{verbatim}
}
\noindent a new theorem can be derived:
{\par\samepage\setseps\small
\begin{verbatim}
#DISJ_CASES th th1 th2;;
|- (PRE m = m) = (m = 0)
\end{verbatim}
}
\COMMENTS
Neither of the `case' theorems is required to have either disjunct as a
hypothesis, but otherwise {\small\verb%DISJ_CASES%} is pointless.
\SEEALSO
DISJ_CASES_TAC, DISJ_CASES_THEN, DISJ_CASES_THEN2, DISJ_CASES_UNION,
DISJ1, DISJ2.
\ENDDOC
\DOC{DISJ\_CASES\_TAC}
\TYPE {\small\verb%DISJ_CASES_TAC : thm_tactic%}\egroup
\SYNOPSIS
Produces a case split based on a disjunctive theorem.
\DESCRIBE
Given a theorem {\small\verb%th%} of the form {\small\verb%A |- u \/ v%}, {\small\verb%DISJ_CASES_TAC th%}
applied to a goal
produces two subgoals, one with {\small\verb%u%} as an assumption and one with {\small\verb%v%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============================ DISJ_CASES_TAC (A |- u \/ v)
A u {u} ?- t A u {v}?- t
\end{verbatim}
}
\FAILURE
Fails if the given theorem does not have a disjunctive conclusion.
\EXAMPLE
Given the simple fact about arithmetic {\small\verb%th%}, {\small\verb%|- (m = 0) \/ (?n. m = SUC n)%},
the tactic {\small\verb%DISJ_CASES_TAC th%} can be used to produce a case split:
{\par\samepage\setseps\small
\begin{verbatim}
#DISJ_CASES_TAC th ([],"(P:num -> bool) m");;
([(["m = 0"], "P m");
(["?n. m = SUC n"], "P m")], -) : subgoals
\end{verbatim}
}
\USES
Performing a case analysis according to a disjunctive theorem.
\SEEALSO
ASSUME_TAC, ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_THEN, STRUCT_CASES_TAC.
\ENDDOC
\DOC{DISJ\_CASES\_THEN2}
\TYPE {\small\verb%DISJ_CASES_THEN2 : (thm_tactic -> thm_tactical)%}\egroup
\SYNOPSIS
Applies separate theorem-tactics to the two disjuncts of a theorem.
\DESCRIBE
If the theorem-tactics {\small\verb%f1%} and {\small\verb%f2%}, applied to the {\small\verb%ASSUME%}d left and right
disjunct of a theorem {\small\verb%|- u \/ v%} respectively, produce results as follows when
applied to a goal {\small\verb%(A ?- t)%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t A ?- t
========= f1 (u |- u) and ========= f2 (v |- v)
A ?- t1 A ?- t2
\end{verbatim}
}
\noindent then applying {\small\verb%DISJ_CASES_THEN2 f1 f2 (|- u \/ v)%} to the
goal {\small\verb%(A ?- t)%} produces two subgoals.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
====================== DISJ_CASES_THEN2 f1 f2 (|- u \/ v)
A ?- t1 A ?- t2
\end{verbatim}
}
\FAILURE
Fails if the theorem is not a disjunction. An invalid tactic is
produced if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.
\EXAMPLE
Given the theorem
{\par\samepage\setseps\small
\begin{verbatim}
th = |- (m = 0) \/ (?n. m = SUC n)
\end{verbatim}
}
\noindent and a goal of the form {\small\verb%?- (PRE m = m) = (m = 0)%},
applying the tactic
{\par\samepage\setseps\small
\begin{verbatim}
DISJ_CASES_THEN2 SUBST1_TAC ASSUME_TAC th
\end{verbatim}
}
\noindent to the goal will produce two subgoals
{\par\samepage\setseps\small
\begin{verbatim}
?n. m = SUC n ?- (PRE m = m) = (m = 0)
?- (PRE 0 = 0) = (0 = 0)
\end{verbatim}
}
\noindent The first subgoal has had the disjunct {\small\verb%m = 0%} used
for a substitution, and the second has added the disjunct to the
assumption list. Alternatively, applying the tactic
{\par\samepage\setseps\small
\begin{verbatim}
DISJ_CASES_THEN2 SUBST1_TAC (CHOOSE_THEN SUBST1_TAC) th
\end{verbatim}
}
\noindent to the goal produces the subgoals:
{\par\samepage\setseps\small
\begin{verbatim}
?- (PRE(SUC n) = SUC n) = (SUC n = 0)
?- (PRE 0 = 0) = (0 = 0)
\end{verbatim}
}
\USES
Building cases tacticals. For example, {\small\verb%DISJ_CASES_THEN%} could be defined by:
{\par\samepage\setseps\small
\begin{verbatim}
let DISJ_CASES_THEN f = DISJ_CASES_THEN2 f f
\end{verbatim}
}
\SEEALSO
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2,
DISJ_CASES_THEN, DISJ_CASES_THENL.
\ENDDOC
\DOC{DISJ\_CASES\_THEN}
\TYPE {\small\verb%DISJ_CASES_THEN : thm_tactical%}\egroup
\SYNOPSIS
Applies a theorem-tactic to each disjunct of a disjunctive theorem.
\DESCRIBE
If the theorem-tactic {\small\verb%f:thm->tactic%} applied to either
{\small\verb%ASSUME%}d disjunct produces results as follows when applied to a goal
{\small\verb%(A ?- t)%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t A ?- t
========= f (u |- u) and ========= f (v |- v)
A ?- t1 A ?- t2
\end{verbatim}
}
\noindent then applying {\small\verb%DISJ_CASES_THEN f (|- u \/ v)%}
to the goal {\small\verb%(A ?- t)%} produces two subgoals.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
====================== DISJ_CASES_THEN f (|- u \/ v)
A ?- t1 A ?- t2
\end{verbatim}
}
\FAILURE
Fails if the theorem is not a disjunction. An invalid tactic is
produced if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.
\EXAMPLE
Given the theorem
{\par\samepage\setseps\small
\begin{verbatim}
th = |- (m = 0) \/ (?n. m = SUC n)
\end{verbatim}
}
\noindent and a goal of the form {\small\verb%?- (PRE m = m) = (m = 0)%},
applying the tactic
{\par\samepage\setseps\small
\begin{verbatim}
DISJ_CASES_THEN ASSUME_TAC th
\end{verbatim}
}
\noindent produces two subgoals, each with one disjunct as an added
assumption:
{\par\samepage\setseps\small
\begin{verbatim}
?n. m = SUC n ?- (PRE m = m) = (m = 0)
m = 0 ?- (PRE m = m) = (m = 0)
\end{verbatim}
}
\USES
Building cases tactics. For example, {\small\verb%DISJ_CASES_TAC%} could be defined by:
{\par\samepage\setseps\small
\begin{verbatim}
let DISJ_CASES_TAC = DISJ_CASES_THEN ASSUME_TAC
\end{verbatim}
}
\COMMENTS
Use {\small\verb%DISJ_CASES_THEN2%} to apply different tactic generating functions
to each case.
\SEEALSO
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2,
DISJ_CASES_TAC, DISJ_CASES_THEN2, DISJ_CASES_THENL.
\ENDDOC
\DOC{DISJ\_CASES\_THENL}
\TYPE {\small\verb%DISJ_CASES_THENL : (thm_tactic list -> thm_tactic)%}\egroup
\SYNOPSIS
Applies theorem-tactics in a list to the corresponding disjuncts in a theorem.
\DESCRIBE
If the theorem-tactics {\small\verb%f1...fn%} applied to the {\small\verb%ASSUME%}d disjuncts of a
theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- d1 \/ d2 \/...\/ dn
\end{verbatim}
}
\noindent produce results as follows when applied to a goal {\small\verb%(A ?- t)%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t A ?- t
========= f1 (d1 |- d1) and ... and ========= fn (dn |- dn)
A ?- t1 A ?- tn
\end{verbatim}
}
\noindent then applying {\small\verb%DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn)%}
to the goal {\small\verb%(A ?- t)%} produces n subgoals.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======================= DISJ_CASES_THENL [f1;...;fn] (|- d1 \/...\/ dn)
A ?- t1 ... A ?- tn
\end{verbatim}
}
\noindent {\small\verb%DISJ_CASES_THENL%} is defined using iteration, hence for
theorems with more than {\small\verb%n%} disjuncts, {\small\verb%dn%} would itself be disjunctive.
\FAILURE
Fails if the number of tactic generating functions in the list exceeds
the number of disjuncts in the theorem. An invalid tactic is
produced if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.
\USES
Used when the goal is to be split into several cases, where a
different tactic-generating function is to be applied to each case.
\SEEALSO
CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2,
DISJ_CASES_THEN, DISJ_CASES_THEN2, STRIP_THM_THEN.
\ENDDOC
\DOC{DISJ\_CASES\_UNION}
\TYPE {\small\verb%DISJ_CASES_UNION : (thm -> thm -> thm -> thm)%}\egroup
\SYNOPSIS
Makes an inference for each arm of a disjunct.
\DESCRIBE
Given a disjunctive theorem, and two additional theorems each having one
disjunct as a hypothesis, a new theorem with a conclusion that is the
disjunction of the conclusions of the last two theorems is produced. The
hypotheses include the union of hypotheses of all three theorems less the two
disjuncts.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 \/ t2 A1 u {t1} |- t3 A2 u {t2} |- t4
------------------------------------------------------ DISJ_CASES_UNION
A u A1 u A2 |- t3 \/ t4
\end{verbatim}
}
\FAILURE
Fails if the first theorem is not a disjunction.
\EXAMPLE
The built-in theorem {\small\verb%LESS_CASES%} can be specialized to:
{\par\samepage\setseps\small
\begin{verbatim}
th1 = |- m < n \/ n <= m
\end{verbatim}
}
\noindent and used with two additional theorems:
{\par\samepage\setseps\small
\begin{verbatim}
th2 = (m < n |- (m MOD n = m))
th3 = ({0 < n, n <= m} |- (m MOD n) = ((m - n) MOD n))
\end{verbatim}
}
\noindent to derive a new theorem:
{\par\samepage\setseps\small
\begin{verbatim}
#DISJ_CASES_UNION th1 th2 th3;;
["0 < n"] |- (m MOD n = m) \/ (m MOD n = (m - n) MOD n)
\end{verbatim}
}
\SEEALSO
DISJ_CASES, DISJ_CASES_TAC, DISJ1, DISJ2.
\ENDDOC
\DOC{DISJ\_IMP}
\TYPE {\small\verb%DISJ_IMP : (thm -> thm)%}\egroup
\SYNOPSIS
Converts a disjunctive theorem to an equivalent implicative theorem.
\DESCRIBE
The left disjunct of a disjunctive theorem becomes the negated
antecedent of the newly generated theorem.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 \/ t2
----------------- DISJ_IMP
A |- ~t1 ==> t2
\end{verbatim}
}
\FAILURE
Fails if the theorem is not a disjunction.
\EXAMPLE
Specializing the built-in theorem {\small\verb%LESS_CASES%} gives the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
th = |- m < n \/ n <= m
\end{verbatim}
}
\noindent to which {\small\verb%DISJ_IMP%} may be applied:
{\par\samepage\setseps\small
\begin{verbatim}
#DISJ_IMP th;;
|- ~m < n ==> n <= m
\end{verbatim}
}
\SEEALSO
DISJ_CASES.
\ENDDOC
\DOC{disjuncts}
\TYPE {\small\verb%disjuncts : (term -> term list)%}\egroup
\SYNOPSIS
Iteratively breaks apart a disjunction.
\DESCRIBE
{\small\verb%disjuncts "t1 \/ ... \/ tn"%} returns {\small\verb%["t1";...;"tn"]%}.
The argument term may be any tree of disjunctions;
it need not have the form {\small\verb%"t1 \/ (t2 \/ ( ... \/ tn)...)"%}.
A term that is not a disjunction is simply returned as the sole element of a
list. Note that
{\par\samepage\setseps\small
\begin{verbatim}
disjuncts(list_mk_disj(["t1";...;"tn"]))
\end{verbatim}
}
\noindent will not return {\small\verb%["t1";...;"tn"]%} if any of {\small\verb%t1%},...,{\small\verb%tn%} are
disjunctions.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_disj ["a \/ b";"c \/ d";"e \/ f"];;
"(a \/ b) \/ (c \/ d) \/ e \/ f" : term
#disjuncts it;;
["a"; "b"; "c"; "d"; "e"; "f"] : term list
#list_mk_disj it;;
"a \/ b \/ c \/ d \/ e \/ f" : term
#disjuncts "1";;
["1"] : term list
\end{verbatim}
}
\COMMENTS
Because {\small\verb%disjuncts%} splits both the left and right sides of a disjunction,
this operation is not the inverse of {\small\verb%list_mk_disj%}. It may be useful to
introduce {\small\verb%list_dest_disj%} for splitting only the right tails of a disjunction.
\SEEALSO
list_mk_disj, dest_disj.
\ENDDOC
\DOC{distinct}
\TYPE {\small\verb%distinct : (* list -> bool)%}\egroup
\SYNOPSIS
Checks whether the elements of a list are all distinct.
\DESCRIBE
If all the elements in a list are distinct, returns {\small\verb%true%}, otherwise returns
{\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
setify.
\ENDDOC
\DOC{/}
\TYPE {\small\verb%$/ : ((int # int) -> int)%}\egroup
\SYNOPSIS
Performs division on ML integers.
\FAILURE
Fails on division by zero.
\ENDDOC
\DOC{<<}
\TYPE {\small\verb%$<< : ((* # **) -> bool)%}\egroup
\SYNOPSIS
Performs a lexical comparison of values.
\DESCRIBE
{\small\verb%$<<%} performs a fast ordering on values. It is substitutive with
respect to equality in ML (i.e. if {\small\verb%x << y%} and {\small\verb%x = x'%} and {\small\verb%y = y'%}
then {\small\verb%x' << y'%}).
\FAILURE
Never fails.
\USES
It is often useful, for example in normalizing terms in some way, to be able to
impose some arbitrary (but definite) ordering on ML values.
\SEEALSO
=.
\ENDDOC
\DOC{<}
\TYPE {\small\verb%$< : ((int # int) -> bool)%}\egroup
\SYNOPSIS
Performs a less-than test on ML integers.
\FAILURE
Never fails.
\ENDDOC
\DOC{=}
\TYPE {\small\verb%$= : ((* # *) -> bool)%}\egroup
\SYNOPSIS
Performs an equality test on two ML values.
\DESCRIBE
{\small\verb%$=%} works as expected on non-function types. It may give unexpected results
when applied to function types (or types containing them, such as a pair of
functions), and should be considered unreliable in those situations.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#1 = 2;;
false : bool
#1 = 1;;
true : bool
#let f x = x + 1 and g x = x + 2;;
f = - : (int -> int)
g = - : (int -> int)
#let f' = f and h x = f x and h' x = x + 1;;
f' = - : (int -> int)
h = - : (int -> int)
h' = - : (int -> int)
#f=f;;
true : bool
#f = f';;
true : bool
#f = g;;
false : bool
#f =h;;
false : bool
#f=h';;
false : bool
#h = h';;
false : bool
\end{verbatim}
}
\ENDDOC
\DOC{>}
\TYPE {\small\verb%$> : ((int # int) -> bool)%}\egroup
\SYNOPSIS
Performs a greater-than test on ML integers.
\FAILURE
Never fails.
\ENDDOC
\DOC{-}
\TYPE {\small\verb%$- : ((int # int) -> int)%}\egroup
\SYNOPSIS
Performs subtraction on ML integers.
\FAILURE
Never fails.
\COMMENTS
Unary {\small\verb%-%} exists as an internal parser object, but not as a function. So,
whilst typing in {\small\verb%-1;;%} will work, {\small\verb%-;;%} will return a parse error.
\ENDDOC
\DOC{\char'056}
\TYPE {\small\verb%$. : ((* # * list) -> * list)%}\egroup
\SYNOPSIS
Adds single element to the head of a list.
\DESCRIBE
The {\small\verb%.%} operator is an infixed primitive list constructor, analogous to {\small\verb%CONS%}
in LISP. Its effect is {\small\verb%x . [x1;....;xn]%} = {\small\verb%[x;x1;...;xn]%}.
\FAILURE
Never fails.
\ENDDOC
\DOC{\char'100}
\TYPE {\small\verb%$@ : ((* list # * list) -> * list)%}\egroup
\SYNOPSIS
Concatenates two lists.
\DESCRIBE
{\small\verb%@%} is an infix operator which concatenates two lists.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#[1;2;3] @ [4;5;6];;
[1; 2; 3; 4; 5; 6] : int list
\end{verbatim}
}
\SEEALSO
append.
\ENDDOC
\DOC{*}
\TYPE {\small\verb%$* : ((int # int) -> int)%}\egroup
\SYNOPSIS
Performs multiplication on ML integers.
\FAILURE
Never fails.
\ENDDOC
\DOC{\#}
\TYPE {\small\verb%$# : (((* -> **) # (*** -> ****)) -> (* # ***) -> (** # ****))%}\egroup
\SYNOPSIS
Applies two functions to a pair: {\small\verb%(f # g) (x,y)%} = {\small\verb%(f x, g y)%}.
\FAILURE
Never fails.
\SEEALSO
B, C, CB, Co, I, K, KI, o, oo, S, W.
\ENDDOC
\DOC{+}
\TYPE {\small\verb%$+ : ((int # int) -> int)%}\egroup
\SYNOPSIS
Performs addition on ML integers.
\FAILURE
Never fails.
\ENDDOC
\DOC{do}
\TYPE {\small\verb%$do : (* -> void)%}\egroup
\SYNOPSIS
Evaluates an expression for its side-effects.
\DESCRIBE
The function {\small\verb%do%} evaluates its argument (presumably for its side-effects)
and returns the value {\small\verb%(): void%}.
\FAILURE
Fails iff the evaluation of its argument fails.
\EXAMPLE
The following shows how an assignment can be evaluated for its
side-effects:
{\par\samepage\setseps\small
\begin{verbatim}
#letref x = 1;;
x = 1 : int
#x := x + 1;;
2 : int
#do (x := x + 1);;
() : void
#x := x + 1;;
4 : int
\end{verbatim}
}
\COMMENTS
The use of {\small\verb%do%} as if it were a normal ML function should not be confused with
its role as a syntactic construct in a while loop. For example, following on
from the above example, consider the following:
{\par\samepage\setseps\small
\begin{verbatim}
#while x > 0 do do (x := x - 1);;
() : void
#x;;
0 : int
\end{verbatim}
}
\noindent In the above, the first {\small\verb%do%} is part of the {\small\verb%while%} loop, whereas the
second is function-like.
\ENDDOC
\DOC{draft\_mode}
\TYPE {\small\verb%draft_mode : (void -> bool)%}\egroup
\SYNOPSIS
Tests whether HOL is currently in draft mode.
\DESCRIBE
The call {\small\verb%draft_mode()%} returns {\small\verb%true%} if HOL is in draft mode (see DESCRIPTION
for an explanation of what this means), and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\EXAMPLE
The following session assumes HOL is not in draft mode initially.
{\par\samepage\setseps\small
\begin{verbatim}
#draft_mode();;
false : bool
#new_theory `spong`;;
() : void
#draft_mode();;
true : bool
#close_theory();;
() : void
#draft_mode();;
false : bool
\end{verbatim}
}
\ENDDOC
\DOC{dropout}
\TYPE {\small\verb%dropout : (void -> void)%}\egroup
\SYNOPSIS
Move from top-level ML to top-level Lisp.
\DESCRIBE
Unlike {\small\verb%lsp%}, which breaks out of ML, and leaves one in a position to
return to it by continuing lisp execution, {\small\verb%dropout%} returns the user to
the Lisp top-level. The function {\small\verb%(tml)%} must then be invoked to return to
ML. This is inherently dangerous (internal state may not be consistent),
and should be avoided.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
_ _ __ _ __ __
|___ |__| | | | |__| |__|
| | | |__| |__ |__| |__|
Version 1.12 (Sun3/Franz), built on Feb 23 1991
#dropout();;
[Return to top level]
-> ^D
EOF
-> (tml)
_ _ __ _ __ __
|___ |__| | | | |__| |__|
| | | |__| |__ |__| |__|
Version 1.12 (Sun3/Franz), built on Feb 23 1991
##
\end{verbatim}
}
\COMMENTS
The behaviour of {\small\verb%dropout%} is unpredictable in Common Lisp, but performs as
advertised in plain Franz Lisp. {\small\verb%dropout%} is not meant for general use, and
should be treated with great care. If one is not wary, it is entirely possible
to corrupt HOL by using it.
\SEEALSO
lisp, lsp.
\ENDDOC
\DOC{e}
\TYPE {\small\verb%e : (tactic -> void)%}\egroup
\SYNOPSIS
Applies a tactic to the current goal, stacking the resulting subgoals.
\DESCRIBE
The function {\small\verb%e%} is part of the subgoal package. It is an abbreviation for
{\small\verb%expand%}. For a description of the subgoal package, see {\small\verb%set_goal%}.
\FAILURE
As for {\small\verb%expand%}.
\USES
Doing a step in an interactive goal-directed proof.
\SEEALSO
b, backup, backup_limit, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm, VALID.
\ENDDOC
\DOC{EL\_CONV}
\TYPE {\small\verb%EL_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of indexing an element from a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...xk;...;xn]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
EL_CONV "EL k [x0;...xk;...;xn]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- EL k [x0;...;xk;...;xn] = xk
\end{verbatim}
}
\FAILURE
{\small\verb%EL_CONV tm%} fails if {\small\verb%tm%} is not of the form described above,
or {\small\verb%k%} is not less than the length of the list.
\SEEALSO
ELL_CONV
\ENDDOC
\DOC{el}
\TYPE {\small\verb%el : (int -> * list -> *)%}\egroup
\SYNOPSIS
Extracts a specified element from a list.
\DESCRIBE
{\small\verb%el i [x1;...;xn]%} returns {\small\verb%xi%}. Note that the elements are numbered starting
from {\small\verb%1%}, not {\small\verb%0%}.
\FAILURE
Fails with {\small\verb%el%} if the integer argument is less than 1 or greater than the
length of the list.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#el 3 [1;2;7;1];;
7 : int
\end{verbatim}
}
\SEEALSO
hd, tl.
\ENDDOC
\DOC{ELL\_CONV}
\TYPE {\small\verb%ELL_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of indexing an element of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[xn-1;...;xk;...x0]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
ELL_CONV "ELL k [xn-1;...;xk;...;x0]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- ELL k [xn-1;...;xk;...;x0] = xk
\end{verbatim}
}
\noindent where {\small\verb%k%} must not be greater then the length of the list.
Note that {\small\verb%ELL%} index the list elements from the tail end.
\FAILURE
{\small\verb%ELL_CONV tm%} fails if {\small\verb%tm%} is not of the form described above,
or {\small\verb%k%} is not less than the length of the list.
\SEEALSO
EL_CONV
\ENDDOC
\DOC{end\_itlist}
\TYPE {\small\verb%end_itlist : ((* -> * -> *) -> * list -> *)%}\egroup
\SYNOPSIS
List iteration function. Applies a binary function between adjacent elements
of a list.
\DESCRIBE
{\small\verb%end_itlist f [x1;...;xn]%} returns {\small\verb%f x1 ( ... (f x(n-1) xn)...)%}.
Returns {\small\verb%x%} for a one-element list {\small\verb%[x]%}.
\FAILURE
Fails with {\small\verb%end_itlist%} if list is empty.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#end_itlist (\x y. x + y) [1;2;3;4];;
10 : int
\end{verbatim}
}
\SEEALSO
itlist, rev_itlist.
\ENDDOC
\DOC{enter\_form\_rep}
\TYPE {\small\verb%enter_form_rep : ((* # form # * list) -> * list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{enter\_term}
\TYPE {\small\verb%enter_term : ((term # *) -> * term_net -> * term_net)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{enter\_term\_rep}
\TYPE {\small\verb%enter_term_rep : ((* # term # * list) -> * list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{EQF\_ELIM}
\TYPE {\small\verb%EQF_ELIM : (thm -> thm)%}\egroup
\SYNOPSIS
Replaces equality with {\small\verb%F%} by negation.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- tm = F
------------- EQF_ELIM
A |- ~tm
\end{verbatim}
}
\FAILURE
Fails if the argument theorem is not of the form {\small\verb%A |- tm = F%}.
\SEEALSO
EQF_INTRO, EQT_ELIM, EQT_INTRO.
\ENDDOC
\DOC{EQF\_INTRO}
\TYPE {\small\verb%EQF_INTRO : (thm -> thm)%}\egroup
\SYNOPSIS
Converts negation to equality with {\small\verb%F%}.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- ~tm
------------- EQF_INTRO
A |- tm = F
\end{verbatim}
}
\FAILURE
Fails if the argument theorem is not a negation.
\SEEALSO
EQF_ELIM, EQT_ELIM, EQT_INTRO.
\ENDDOC
\DOC{EQ\_IMP\_RULE}
\TYPE {\small\verb%EQ_IMP_RULE : (thm -> (thm # thm))%}\egroup
\SYNOPSIS
Derives forward and backward implication from equality of boolean terms.
\DESCRIBE
When applied to a theorem {\small\verb%A |- t1 = t2%}, where {\small\verb%t1%} and {\small\verb%t2%} both have
type {\small\verb%bool%}, the inference rule {\small\verb%EQ_IMP_RULE%} returns the
theorems {\small\verb%A |- t1 ==> t2%} and {\small\verb%A |- t2 ==> t1%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
----------------------------------- EQ_IMP_RULE
A |- t1 ==> t2 A |- t2 ==> t1
\end{verbatim}
}
\FAILURE
Fails unless the conclusion of the given theorem is an equation between
boolean terms.
\SEEALSO
EQ_MP, EQ_TAC, IMP_ANTISYM_RULE.
\ENDDOC
\DOC{EQ\_LENGTH\_INDUCT\_TAC}
\TYPE {\small\verb%EQ_LENGTH_INDUCT_TAC : tactic%}\egroup
\SYNOPSIS
Performs tactical proof by structural induction on two equal length lists.
\DESCRIBE
{\small\verb%EQ_LENGTH_INDUCT_TAC%} reduces a goal
{\small\verb%!x y . (LENGTH x = LENGTH y) ==> t[x,y]%},
where {\small\verb%x%} and {\small\verb%y%} range over lists, to two
subgoals corresponding to the base and step cases in a proof by
induction on the length of {\small\verb%x%} and {\small\verb%y%}. The induction hypothesis appears among
the assumptions of the
subgoal for the step case. The specification of {\small\verb%EQ_LENGTH_INDUCT_TAC%} is:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x y . (LENGTH x = LENGTH y) ==> t[x,y]
==================================================== EQ_LENGTH_INDUCT_TAC
A ?- t[NIL/x][NIL/y]
A u {LENGTH x = LENGTH y, t[x'/x, y'/y]} ?-
!h h'. t[(CONS h x)/x, (CONS h' y)/y]
\end{verbatim}
}
\FAILURE
{\small\verb%EQ_LENGTH_INDUCT_TAC g%} fails unless the conclusion of the goal {\small\verb%g%} has the
form
{\par\samepage\setseps\small
\begin{verbatim}
!x y . (LENGTH x = LENGTH y) ==> t[x,y]
\end{verbatim}
}
\noindent where the variables {\small\verb%x%} and {\small\verb%y%}
have types {\small\verb%(xty)list%} and {\small\verb%(yty)list%} for some types {\small\verb%xty%} and {\small\verb%yty%}.
It also fails if either of the variables {\small\verb%x%} or {\small\verb%y%} appear free in the
assumptions.
\USES
use this tactic when structural induction is performed on two lists and
they have identical length.
\SEEALSO
LIST_APPEND_INDUCT_TAC, LIST_INDUCT_TAC, SNOC_INDUCT_TAC,
LENGTH_LIST_INDUCT_TAC, EQ_LENGTH_SNOC_INDUCT_TAC.
\ENDDOC
\DOC{EQ\_LENGTH\_SNOC\_INDUCT\_TAC}
\TYPE {\small\verb%EQ_LENGTH_SNOC_INDUCT_TAC : tactic%}\egroup
\SYNOPSIS
Performs tactical proof by structural induction on two equal length
lists from the tail end.
\DESCRIBE
{\small\verb%EQ_LENGTH_SNOC_INDUCT_TAC%} reduces a goal
{\small\verb%!x y . (LENGTH x = LENGTH y) ==> t[x,y]%},
where {\small\verb%x%} and {\small\verb%y%} range over lists, to two
subgoals corresponding to the base and step cases in a proof by
induction on the length of {\small\verb%x%} and {\small\verb%y%}. The induction hypothesis appears among
the assumptions of the
subgoal for the step case. The specification of {\small\verb%EQ_LENGTH_SNOC_INDUCT_TAC%} is:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x y . (LENGTH x = LENGTH y) ==> t[x,y]
================================================ EQ_LENGTH_SNOC_INDUCT_TAC
A ?- t[NIL/x][NIL/y]
A u {LENGTH x = LENGTH y, t[x'/x, y'/y]} ?-
!h h'. t[(SNOC h x)/x, (SNOC h' y)/y]
\end{verbatim}
}
\FAILURE
{\small\verb%EQ_LENGTH_SNOC_INDUCT_TAC g%} fails unless the conclusion of the goal {\small\verb%g%} has the
form
{\par\samepage\setseps\small
\begin{verbatim}
!x y . (LENGTH x = LENGTH y) ==> t[x,y]
\end{verbatim}
}
\noindent where the variables {\small\verb%x%} and {\small\verb%y%}
have types {\small\verb%(xty)list%} and {\small\verb%(yty)list%} for some types {\small\verb%xty%} and {\small\verb%yty%}.
It also fails if either of the variables {\small\verb%x%} or {\small\verb%y%} appear free in the
assumptions.
\USES
use this tactic when structural induction is performed on two lists and
they have identical length.
\SEEALSO
LIST_APPEND_INDUCT_TAC, LIST_INDUCT_TAC, SNOC_INDUCT_TAC,
LENGTH_LIST_INDUCT_TAC, EQ_LENGTH_INDUCT_TAC
\ENDDOC
\DOC{EQ\_MP}
\TYPE {\small\verb%EQ_MP : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Equality version of the Modus Ponens rule.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- t1 = t2%} and {\small\verb%A2 |- t1%}, the inference
rule {\small\verb%EQ_MP%} returns the theorem {\small\verb%A1 u A2 |- t2%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 = t2 A2 |- t1
-------------------------- EQ_MP
A1 u A2 |- t2
\end{verbatim}
}
\FAILURE
Fails unless the first theorem is equational and its left side
is the same as the conclusion of the second theorem (and is therefore
of type {\small\verb%bool%}), up to alpha-conversion.
\SEEALSO
EQ_IMP_RULE, IMP_ANTISYM_RULE, MP.
\ENDDOC
\DOC{EQ\_TAC}
\TYPE {\small\verb%EQ_TAC : tactic%}\egroup
\SYNOPSIS
Reduces goal of equality of boolean terms to forward and backward implication.
\DESCRIBE
When applied to a goal {\small\verb%A ?- t1 = t2%}, where {\small\verb%t1%} and {\small\verb%t2%} have type {\small\verb%bool%},
the tactic {\small\verb%EQ_TAC%} returns the subgoals {\small\verb%A ?- t1 ==> t2%} and
{\small\verb%A ?- t2 ==> t1%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t1 = t2
================================= EQ_TAC
A ?- t1 ==> t2 A ?- t2 ==> t1
\end{verbatim}
}
\FAILURE
Fails unless the conclusion of the goal is an equation between boolean terms.
\SEEALSO
EQ_IMP_RULE, IMP_ANTISYM_RULE.
\ENDDOC
\DOC{EQT\_ELIM}
\TYPE {\small\verb%EQT_ELIM : (thm -> thm)%}\egroup
\SYNOPSIS
Eliminates equality with {\small\verb%T%}.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- tm = T
------------- EQT_ELIM
A |- tm
\end{verbatim}
}
\FAILURE
Fails if the argument theorem is not of the form {\small\verb%A |- tm = T%}.
\SEEALSO
EQT_INTRO, EQF_ELIM, EQF_INTRO.
\ENDDOC
\DOC{EQT\_INTRO}
\TYPE {\small\verb%EQT_INTRO : (thm -> thm)%}\egroup
\SYNOPSIS
Introduces equality with {\small\verb%T%}.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- tm
------------- EQF_INTRO
A |- tm = T
\end{verbatim}
}
\FAILURE
Never fails.
\SEEALSO
EQT_ELIM, EQF_ELIM, EQF_INTRO.
\ENDDOC
\DOC{ETA\_CONV}
\TYPE {\small\verb%ETA_CONV : conv%}\egroup
\SYNOPSIS
Performs a toplevel eta-conversion.
\DESCRIBE
{\small\verb%ETA_CONV%} maps an eta-redex {\small\verb%"\x. t x"%}, where {\small\verb%x%} does not occur free in {\small\verb%t%},
to the theorem {\small\verb%|- (\x. t x) = t%}.
\FAILURE
Fails if the input term is not an eta-redex.
\ENDDOC
\DOC{EVERY\_ASSUM}
\TYPE {\small\verb%EVERY_ASSUM : (thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Sequentially applies all tactics given by mapping a function over the
assumptions of a goal.
\DESCRIBE
When applied to a theorem-tactic {\small\verb%f%} and a goal {\small\verb%({A1;...;An} ?- C)%}, the
{\small\verb%EVERY_ASSUM%} tactical maps {\small\verb%f%} over a list of {\small\verb%ASSUME%}d assumptions then
applies the resulting tactics, in sequence, to the goal:
{\par\samepage\setseps\small
\begin{verbatim}
EVERY_ASSUM f ({A1;...;An} ?- C)
= (f(A1 |- A1) THEN ... THEN f(An |- An)) ({A1;...;An} ?- C)
\end{verbatim}
}
\noindent If the goal has no assumptions, then {\small\verb%EVERY_ASSUM%} has no effect.
\FAILURE
The application of {\small\verb%EVERY_ASSUM%} to a theorem-tactic and a goal fails
if the theorem-tactic fails when applied to any of the {\small\verb%ASSUME%}d assumptions
of the goal, or if any of the resulting tactics fail when applied
sequentially.
\SEEALSO
ASSUM_LIST, MAP_EVERY, MAP_FIRST, THEN.
\ENDDOC
\DOC{EVERY\_CONV}
\TYPE {\small\verb%EVERY_CONV : (conv list -> conv)%}\egroup
\SYNOPSIS
Applies in sequence all the conversions in a given list of conversions.
\DESCRIBE
{\small\verb%EVERY_CONV [c1;...;cn] "t"%} returns the result of applying the conversions
{\small\verb%c1%}, ..., {\small\verb%cn%} in sequence to the term {\small\verb%"t"%}. The conversions are applied in
the order in which they are given in the list. In particular, if {\small\verb%ci "ti"%}
returns {\small\verb%|- ti=ti+1%} for {\small\verb%i%} from {\small\verb%1%} to {\small\verb%n%}, then
{\small\verb%EVERY_CONV [c1;...;cn] "t1"%} returns {\small\verb%|- t1=t(n+1)%}. If the supplied list of
conversions is empty, then {\small\verb%EVERY_CONV%} returns the identity conversion. That
is, {\small\verb%EVERY_CONV [] "t"%} returns {\small\verb%|- t=t%}.
\FAILURE
{\small\verb%EVERY_CONV [c1;...;cn] "t"%} fails if any one of the conversions {\small\verb%c1%}, ...,
{\small\verb%cn%} fails when applied in sequence as specified above.
\SEEALSO
THENC.
\ENDDOC
\DOC{EVERY}
\TYPE {\small\verb%EVERY : (tactic list -> tactic)%}\egroup
\SYNOPSIS
Sequentially applies all the tactics in a given list of tactics.
\DESCRIBE
When applied to a list of tactics {\small\verb%[T1; ... ;Tn]%}, and a goal {\small\verb%g%}, the tactical
{\small\verb%EVERY%} applies each tactic in sequence to every
subgoal generated by the previous one. This can be represented as:
{\par\samepage\setseps\small
\begin{verbatim}
EVERY [T1;...;Tn] = T1 THEN ... THEN Tn
\end{verbatim}
}
\noindent If the tactic list is empty, the resulting tactic has no effect.
\FAILURE
The application of {\small\verb%EVERY%} to a tactic list never fails. The resulting
tactic fails iff any of the component tactics do.
\COMMENTS
It is possible to use {\small\verb%EVERY%} instead of {\small\verb%THEN%}, but probably
stylistically inferior. {\small\verb%EVERY%} is more useful when applied to a list of
tactics generated by a function.
\SEEALSO
FIRST, MAP_EVERY, THEN.
\ENDDOC
\DOC{EVERY\_TCL}
\TYPE {\small\verb%EVERY_TCL : (thm_tactical list -> thm_tactical)%}\egroup
\SYNOPSIS
Composes a list of theorem-tacticals.
\DESCRIBE
When given a list of theorem-tacticals and a theorem, {\small\verb%EVERY_TCL%} simply
composes their effects on the theorem. The effect is:
{\par\samepage\setseps\small
\begin{verbatim}
EVERY_TCL [ttl1;...;ttln] = ttl1 THEN_TCL ... THEN_TCL ttln
\end{verbatim}
}
\noindent In other words, if:
{\par\samepage\setseps\small
\begin{verbatim}
ttl1 ttac th1 = ttac th2 ... ttln ttac thn = ttac thn'
\end{verbatim}
}
\noindent then:
{\par\samepage\setseps\small
\begin{verbatim}
EVERY_TCL [ttl1;...;ttln] ttac th1 = ttac thn'
\end{verbatim}
}
\noindent If the theorem-tactical list is empty, the resulting theorem-tactical
behaves in the same way as {\small\verb%ALL_THEN%}, the identity theorem-tactical.
\FAILURE
The application to a list of theorem-tacticals never fails.
\SEEALSO
FIRST_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.
\ENDDOC
\DOC{EXISTENCE}
\TYPE {\small\verb%EXISTENCE : (thm -> thm)%}\egroup
\SYNOPSIS
Deduces existence from unique existence.
\DESCRIBE
When applied to a theorem with a unique-existentially quantified
conclusion, {\small\verb%EXISTENCE%} returns the same theorem with normal existential
quantification over the same variable.
{\par\samepage\setseps\small
\begin{verbatim}
A |- ?!x. p
------------- EXISTENCE
A |- ?x. p
\end{verbatim}
}
\FAILURE
Fails unless the conclusion of the theorem is unique-existentially quantified.
\SEEALSO
EXISTS_UNIQUE_CONV.
\ENDDOC
\DOC{EXISTS\_AND\_CONV}
\TYPE {\small\verb%EXISTS_AND_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification inwards through a conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%?x. P /\ Q%}, where {\small\verb%x%} is not free in both
{\small\verb%P%} and {\small\verb%Q%}, {\small\verb%EXISTS_AND_CONV%} returns a theorem of one of three forms,
depending on occurrences of the variable {\small\verb%x%} in {\small\verb%P%} and {\small\verb%Q%}. If {\small\verb%x%} is free
in {\small\verb%P%} but not in {\small\verb%Q%}, then the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P /\ Q) = (?x.P) /\ Q
\end{verbatim}
}
\noindent is returned. If {\small\verb%x%} is free in {\small\verb%Q%} but not in {\small\verb%P%}, then the
result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P /\ Q) = P /\ (?x.Q)
\end{verbatim}
}
\noindent And if {\small\verb%x%} is free in neither {\small\verb%P%} nor {\small\verb%Q%}, then the result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P /\ Q) = (?x.P) /\ (?x.Q)
\end{verbatim}
}
\FAILURE
{\small\verb%EXISTS_AND_CONV%} fails if it is applied to a term not of the form
{\small\verb%?x. P /\ Q%}, or if it is applied to a term {\small\verb%?x. P /\ Q%} in which the
variable {\small\verb%x%} is free in both {\small\verb%P%} and {\small\verb%Q%}.
\SEEALSO
AND_EXISTS_CONV, LEFT_AND_EXISTS_CONV, RIGHT_AND_EXISTS_CONV.
\ENDDOC
\DOC{exists}
\TYPE {\small\verb%exists : ((* -> bool) -> * list -> bool)%}\egroup
\SYNOPSIS
Tests a list to see if it has at least one element satisfying a predicate.
\DESCRIBE
{\small\verb%exists p l%} applies {\small\verb%p%} to the elements of {\small\verb%l%} in order until one is found
which satisfies {\small\verb%p%}, or until the list is exhausted, returning {\small\verb%true%} or
{\small\verb%false%} accordingly.
\FAILURE
Never fails.
\SEEALSO
forall, find, tryfind, mem, assoc, rev_assoc.
\ENDDOC
\DOC{EXISTS}
\TYPE {\small\verb%EXISTS : ((term # term) -> thm -> thm)%}\egroup
\SYNOPSIS
Introduces existential quantification given a particular witness.
\DESCRIBE
When applied to a pair of terms and a theorem, the first term an existentially
quantified pattern indicating the desired form of the result, and the second a
witness whose substitution for the quantified variable gives a term which is
the same as the conclusion of the theorem, {\small\verb%EXISTS%} gives the desired theorem.
{\par\samepage\setseps\small
\begin{verbatim}
A |- p[u/x]
------------- EXISTS ("?x. p","u")
A |- ?x. p
\end{verbatim}
}
\FAILURE
Fails unless the substituted pattern is the same as the conclusion of the
theorem.
\EXAMPLE
The following examples illustrate how it is possible to deduce different
things from the same theorem:
{\par\samepage\setseps\small
\begin{verbatim}
#EXISTS ("?x. x=T","T") (REFL "T");;
|- ?x. x = T
#EXISTS ("?x:bool. x=x","T") (REFL "T");;
|- ?x. x = x
\end{verbatim}
}
\SEEALSO
CHOOSE, EXISTS_TAC.
\ENDDOC
\DOC{EXISTS\_EQ}
\TYPE {\small\verb%EXISTS_EQ : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Existentially quantifies both sides of an equational theorem.
\DESCRIBE
When applied to a variable {\small\verb%x%} and a theorem whose conclusion is
equational, {\small\verb%A |- t1 = t2%}, the inference rule
{\small\verb%EXISTS_EQ%} returns the theorem {\small\verb%A |- (?x. t1) = (?x. t2)%}, provided
the variable {\small\verb%x%} is not free in any of the assumptions.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
------------------------ EXISTS_EQ "x" [where x is not free in A]
A |- (?x.t1) = (?x.t2)
\end{verbatim}
}
\FAILURE
Fails unless the theorem is equational with both sides having type {\small\verb%bool%},
or if the term is not a variable, or if the variable to be quantified
over is free in any of the assumptions.
\SEEALSO
AP_TERM, EXISTS_IMP, FORALL_EQ, MK_EXISTS, SELECT_EQ.
\ENDDOC
\DOC{EXISTS\_GREATEST\_CONV}
\TYPE {\small\verb%EXISTS_GREATEST_CONV : conv%}\egroup
\SYNOPSIS
Proves that a nonempty bounded set of natural numbers has a greatest element.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
EXISTS_GREATEST_CONV "(?x. P[x]) /\ (?y. !z. z > y ==> ~P[z])"
\end{verbatim}
}
\noindent returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
(?x. P[x]) /\ (?y. !z. z > y ==> ~P[z]) = ?x. P[x] /\ !z. z > x ==> ~P[z]
\end{verbatim}
}
\noindent This expresses the equivalence of the statements `a property {\small\verb%P%}
is true for some number {\small\verb%x%}, and there is a limit {\small\verb%y%} beyond which {\small\verb%P%} is not
true' and `there is a greatest number such that {\small\verb%P%} is true'.
\FAILURE
{\small\verb%EXISTS_GREATEST_CONV tm%} fails unless {\small\verb%tm%} has the form specified above.
\SEEALSO
EXISTS_LEAST_CONV.
\ENDDOC
\DOC{EXISTS\_IMP\_CONV}
\TYPE {\small\verb%EXISTS_IMP_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification inwards through an implication.
\DESCRIBE
When applied to a term of the form {\small\verb%?x. P ==> Q%}, where {\small\verb%x%} is not free in
both {\small\verb%P%} and {\small\verb%Q%}, {\small\verb%EXISTS_IMP_CONV%} returns a theorem of one of three forms,
depending on occurrences of the variable {\small\verb%x%} in {\small\verb%P%} and {\small\verb%Q%}. If {\small\verb%x%} is free
in {\small\verb%P%} but not in {\small\verb%Q%}, then the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P ==> Q) = (!x.P) ==> Q
\end{verbatim}
}
\noindent is returned. If {\small\verb%x%} is free in {\small\verb%Q%} but not in {\small\verb%P%}, then the
result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P ==> Q) = P ==> (?x.Q)
\end{verbatim}
}
\noindent And if {\small\verb%x%} is free in neither {\small\verb%P%} nor {\small\verb%Q%}, then the result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P ==> Q) = (!x.P) ==> (?x.Q)
\end{verbatim}
}
\FAILURE
{\small\verb%EXISTS_IMP_CONV%} fails if it is applied to a term not of the form
{\small\verb%?x. P ==> Q%}, or if it is applied to a term {\small\verb%?x. P ==> Q%} in which the
variable {\small\verb%x%} is free in both {\small\verb%P%} and {\small\verb%Q%}.
\SEEALSO
LEFT_IMP_FORALL_CONV, RIGHT_IMP_EXISTS_CONV.
\ENDDOC
\DOC{EXISTS\_IMP}
\TYPE {\small\verb%EXISTS_IMP : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Existentially quantifies both the antecedent and consequent of an implication.
\DESCRIBE
When applied to a variable {\small\verb%x%} and a theorem {\small\verb%A |- t1 ==> t2%}, the
inference rule {\small\verb%EXISTS_IMP%} returns the theorem {\small\verb%A |- (?x. t1) ==> (?x. t2)%},
provided {\small\verb%x%} is not free in the assumptions.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 ==> t2
-------------------------- EXISTS_IMP "x" [where x is not free in A]
A |- (?x.t1) ==> (?x.t2)
\end{verbatim}
}
\FAILURE
Fails if the theorem is not implicative, or if the term is not a variable, or
if the term is a variable but is free in the assumption list.
\SEEALSO
EXISTS_EQ.
\ENDDOC
\DOC{EXISTS\_LEAST\_CONV}
\TYPE {\small\verb%EXISTS_LEAST_CONV : conv%}\egroup
\SYNOPSIS
Applies the well-ordering property of the natural numbers.
\DESCRIBE
Given a term of the form {\small\verb%"?n:num.P[n]"%}, the conversion {\small\verb%EXISTS_LEAST_CONV%}
proves that this assertion is equivalent to the statement that there is a
least number {\small\verb%n%} such that {\small\verb%P[n]%} holds. The theorem returned is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?n. P[n]) = ?n. P[n] /\ !n'. (n' < n) ==> ~P[n']
\end{verbatim}
}
\noindent where {\small\verb%n'%} is a primed variant of {\small\verb%n%} that does not appear free in
the input term. Note that the variable {\small\verb%n%} need not in fact appear free in
the body of the existentially-quantified input term. For example,
{\small\verb%EXISTS_LEAST_CONV "?n:num.T"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?n. T) = (?n. T /\ (!n'. n' < n ==> ~T))
\end{verbatim}
}
\FAILURE
{\small\verb%EXISTS_LEAST_CONV tm%} fails if {\small\verb%tm%} is not of the form {\small\verb%"?n:num.P"%}.
\SEEALSO
EXISTS_GREATEST_CONV.
\ENDDOC
\DOC{EXISTS\_NOT\_CONV}
\TYPE {\small\verb%EXISTS_NOT_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification inwards through a negation.
\DESCRIBE
When applied to a term of the form {\small\verb%?x.~P%}, the conversion {\small\verb%EXISTS_NOT_CONV%}
returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x.~P) = ~(!x. P)
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%?x.~P%}.
\SEEALSO
FORALL_NOT_CONV, NOT_EXISTS_CONV, NOT_FORALL_CONV.
\ENDDOC
\DOC{EXISTS\_OR\_CONV}
\TYPE {\small\verb%EXISTS_OR_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification inwards through a disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%?x. P \/ Q%}, the conversion
{\small\verb%EXISTS_OR_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x. P \/ Q) = (?x.P) \/ (?x.Q)
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%?x. P \/ Q%}.
\SEEALSO
OR_EXISTS_CONV, LEFT_OR_EXISTS_CONV, RIGHT_OR_EXISTS_CONV.
\ENDDOC
\DOC{EXISTS\_TAC}
\TYPE {\small\verb%EXISTS_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Reduces existentially quantified goal to one involving a specific witness.
\DESCRIBE
When applied to a term {\small\verb%u%} and a goal {\small\verb%?x. t%}, the tactic
{\small\verb%EXISTS_TAC%} reduces the goal to {\small\verb%t[u/x]%} (substituting {\small\verb%u%}
for all free instances of {\small\verb%x%} in {\small\verb%t%}, with variable renaming if
necessary to avoid free variable capture).
{\par\samepage\setseps\small
\begin{verbatim}
A ?- ?x. t
============= EXISTS_TAC "u"
A ?- t[u/x]
\end{verbatim}
}
\FAILURE
Fails unless the goal's conclusion is existentially quantified and the
term supplied has the same type as the quantified variable in the goal.
\EXAMPLE
The goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- ?x. x=T
\end{verbatim}
}
\noindent can be solved by:
{\par\samepage\setseps\small
\begin{verbatim}
EXISTS_TAC "T" THEN REFL_TAC
\end{verbatim}
}
\SEEALSO
EXISTS.
\ENDDOC
\DOC{EXISTS\_UNIQUE\_CONV}
\TYPE {\small\verb%EXISTS_UNIQUE_CONV : conv%}\egroup
\SYNOPSIS
Expands with the definition of unique existence.
\DESCRIBE
Given a term of the form {\small\verb%"?!x.P[x]"%}, the conversion {\small\verb%EXISTS_UNIQUE_CONV%}
proves that this assertion is equivalent to the conjunction of two statements,
namely that there exists at least one value {\small\verb%x%} such that {\small\verb%P[x]%}, and that
there is at most one value {\small\verb%x%} for which {\small\verb%P[x]%} holds. The theorem returned is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?! x. P[x]) = (?x. P[x]) /\ (!x x'. P[x] /\ P[x'] ==> (x = x'))
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term. Note that the quantified variable {\small\verb%x%} need not in fact appear
free in the body of the input term. For example, {\small\verb%EXISTS_UNIQUE_CONV "?!x.T"%}
returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?! x. T) = (?x. T) /\ (!x x'. T /\ T ==> (x = x'))
\end{verbatim}
}
\FAILURE
{\small\verb%EXISTS_UNIQUE_CONV tm%} fails if {\small\verb%tm%} does not have the form {\small\verb%"?!x.P"%}.
\SEEALSO
EXISTENCE.
\ENDDOC
\DOC{expand}
\TYPE {\small\verb%expand : (tactic -> void)%}\egroup
\SYNOPSIS
Applies a tactic to the current goal, stacking the resulting subgoals.
\DESCRIBE
The function {\small\verb%expand%} is part of the subgoal package. It may be abbreviated by
the function {\small\verb%e%}. It applies a tactic to the current goal to give a new proof
state. The previous state is stored on the backup list. If the tactic produces
subgoals, the new proof state is formed from the old one by removing the
current goal from the goal stack and adding a new level consisting of its
subgoals. The corresponding justification is placed on the justification stack.
The new subgoals are printed. If more than one subgoal is produced, they are
printed from the bottom of the stack so that the new current goal is printed
last.
If a tactic solves the current goal (returns an empty subgoal list), then its
justification is used to prove a corresponding theorem. This theorem is
incorporated into the justification of the parent goal and printed. If the
subgoal was the last subgoal of the level, the level is removed and the parent
goal is proved using its (new) justification. This process is repeated until a
level with unproven subgoals is reached. The next goal on the goal stack then
becomes the current goal. This goal is printed. If all the subgoals are proved,
the resulting proof state consists of the theorem proved by the justifications.
The tactic applied is a validating version of the tactic given. It ensures that
the justification of the tactic does provide a proof of the goal from the
subgoals generated by the tactic. It will cause failure if this is not so. The
tactical {\small\verb%VALID%} performs this validation.
For a description of the subgoal package, see {\small\verb%set_goal%}.
\FAILURE
{\small\verb%expand tac%} fails if the tactic {\small\verb%tac%} fails for the top goal. It will diverge
if the tactic diverges for the goal. It will fail if there are no unproven
goals. This could be because no goal has been set using {\small\verb%set_goal%} or because
the last goal set has been completely proved. It will also fail in cases when
the tactic is invalid.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#expand CONJ_TAC;;
OK..
evaluation failed no goals to expand
#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
#expand CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"
"HD[1;2;3] = 1"
() : void
#expand (REWRITE_TAC[HD]);;
OK..
goal proved
|- HD[1;2;3] = 1
Previous subproof:
"TL[1;2;3] = [2;3]"
() : void
#expand (REWRITE_TAC[TL]);;
OK..
goal proved
|- TL[1;2;3] = [2;3]
|- (HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])
Previous subproof:
goal proved
() : void
\end{verbatim}
}
\noindent In the following example an invalid tactic is used. It is invalid
because it assumes something that is not on the assumption list of the goal.
The justification adds this assumption to the assumption list so the
justification would not prove the goal that was set.
{\par\samepage\setseps\small
\begin{verbatim}
#set_goal([],"1=2");;
"1 = 2"
() : void
#expand (REWRITE_TAC[ASSUME "1=2"]);;
OK..
evaluation failed Invalid tactic
\end{verbatim}
}
\USES
Doing a step in an interactive goal-directed proof.
\SEEALSO
b, backup, backup_limit, e, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm, VALID.
\ENDDOC
\DOC{expandf}
\TYPE {\small\verb%expandf : (tactic -> void)%}\egroup
\SYNOPSIS
Applies a tactic to the current goal, stacking the resulting subgoals.
\DESCRIBE
The function {\small\verb%expandf%} is a faster version of {\small\verb%expand%}. It does not use a
validated version of the tactic. That is, no check is made that the
justification of the tactic does prove the goal from the subgoals it generates.
If an invalid tactic is used, the theorem ultimately proved may not match the
goal originally set. Alternatively, failure may occur when the justifications
are applied in which case the theorem would not be proved. For a description of
the subgoal package, see under {\small\verb%set_goal%}.
\FAILURE
Calling {\small\verb%expandf tac%} fails if the tactic {\small\verb%tac%} fails for the top goal. It will
diverge if the tactic diverges for the goal. It will fail if there are no
unproven goals. This could be because no goal has been set using {\small\verb%set_goal%} or
because the last goal set has been completely proved. If an invalid tactic,
whose justification actually fails, has been used earlier in the proof,
{\small\verb%expandf tac%} may succeed in applying {\small\verb%tac%} and apparently prove the current
goal. It may then fail as it applies the justifications of the tactics applied
earlier.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#g "HD[1;2;3] = 1";;
"HD[1;2;3] = 1"
() : void
#expandf (REWRITE_TAC[HD;TL]);;
OK..
goal proved
|- HD[1;2;3] = 1
Previous subproof:
goal proved
() : void
\end{verbatim}
}
\noindent The following example shows how the use of an invalid tactic can
yield a theorem which does not correspond to the goal set.
{\par\samepage\setseps\small
\begin{verbatim}
#set_goal([],"1=2");;
"1 = 2"
() : void
#expandf (REWRITE_TAC[ASSUME "1=2"]);;
OK..
goal proved
. |- 1 = 2
Previous subproof:
goal proved
() : void
\end{verbatim}
}
\noindent The proof assumed something which was not on the assumption list.
This assumption appears in the assumption list of the theorem proved, even
though it was not in the goal. An attempt to perform the proof using {\small\verb%expand%}
fails. The validated version of the tactic detects that the justification
produces a theorem which does not correspond to the goal set. It therefore
fails.
\USES
Saving CPU time when doing goal-directed proofs, since the extra validation is
not done. Redoing proofs quickly that are already known to work.
\COMMENTS
The CPU time saved may cause misery later. If an invalid tactic is used, this
will only be discovered when the proof has apparently been finished and the
justifications are applied.
\SEEALSO
b, backup, backup_limit, e, expand, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm, VALID.
\ENDDOC
\DOC{explode}
\TYPE {\small\verb%explode : (string -> string list)%}\egroup
\SYNOPSIS
Converts a string into a list of single-character strings.
\DESCRIBE
{\small\verb%explode s%} returns the list of single-character strings that make up {\small\verb%s%}, in
the order in which they appear in {\small\verb%s%}. If {\small\verb%s%} is the empty string, then an
empty list is returned.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#explode `example`;;
[`e`; `x`; `a`; `m`; `p`; `l`; `e`] : string list
\end{verbatim}
}
\SEEALSO
implode, concat, concatl.
\ENDDOC
\DOC{EXT}
\TYPE {\small\verb%EXT : (thm -> thm)%}\egroup
\SYNOPSIS
Derives equality of functions from extentional equivalence.
\DESCRIBE
When applied to a theorem {\small\verb%A |- !x. t1 x = t2 x%}, the inference rule
{\small\verb%EXT%} returns the theorem {\small\verb%A |- t1 = t2%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x. t1 x = t2 x
---------------------- EXT [where x is not free in t1 or t2]
A |- t1 = t2
\end{verbatim}
}
\FAILURE
Fails if the theorem does not have the form indicated above, or
if the variable {\small\verb%x%} is free either of the functions {\small\verb%t1%} or {\small\verb%t2%}.
\SEEALSO
AP_THM, ETA_CONV, FUN_EQ_CONV.
\ENDDOC
\DOC{extend\_theory}
\TYPE {\small\verb%extend_theory : (string -> void)%}\egroup
\SYNOPSIS
Allows an existing theory to be extended.
\DESCRIBE
Calling {\small\verb%extend_theory `thy`%} loads the existing theory {\small\verb%thy%} into the system
and makes it the current theory. The message `{\small\verb%Theory thy loaded%}' is printed.
The theory is entered in draft mode. This allows new axioms, constants, types,
constant specifications, infix constants, binders and parents to be added to
the theory segment. Inconsistencies may be introduced to the theory if
inconsistent axioms are asserted. New theorems can also be added as when in
proof mode. If new type or constant names are added to theory {\small\verb%thy%} which
clash with names in any of its descendants, later attempts to load those
descendants will fail. The extensions to the theory segment might not be
written to the theory file until the session is finished with a call to
{\small\verb%close_theory%}. If HOL is quitted without closing the session with
{\small\verb%close_theory%}, parts of the theory segment created during the session may be
lost. If the system is in draft mode when a call to {\small\verb%extend_theory%} is made,
the previous session is closed; all changes made in it will be written to the
associated theory file.
\FAILURE
A call to {\small\verb%extend_theory `thy`%} will fail if theory {\small\verb%thy%} does not appear on
the current search path. It will fail unless theory {\small\verb%thy%} is either the
current theory or a descendant of it. It will fail if any of the theory files
of the theory {\small\verb%thy%} have been damaged. It will also fail if an ancestor of
theory {\small\verb%thy%} has been extended with either new types or constants which clash
with names in theory {\small\verb%thy%}. Since it could involve writing to the file
system, if a write fails for any reason {\small\verb%extend_theory%} will fail. On failure,
the system recovers cleanly, unloading any theory segments it had loaded before
the failure was detected. It will diverge if the theory hierarchy within theory
{\small\verb%thy%} contains loops, so that a theory segment is its own ancestor.
\USES
The normal way to build upon a theory is to use it as a parent. You should
only use {\small\verb%extend_theory%} to add declarations, etc., that were mistakenly
omitted from a theory.
\COMMENTS
It would be difficult to implement the necessary checks to ensure that added
types, constants, etc., did not invalidate declarations in the descendant
theories.
\SEEALSO
load_theory, new_parent, new_theory, print_theory, search_path.
\ENDDOC
\DOC{FAIL\_TAC}
\TYPE {\small\verb%FAIL_TAC : (string -> tactic)%}\egroup
\SYNOPSIS
Tactic which always fails, with the supplied string.
\DESCRIBE
Whatever goal it is applied to, {\small\verb%FAIL_TAC s%} always fails
with the string {\small\verb%s%}.
\FAILURE
The application of {\small\verb%FAIL_TAC%} to a string never fails; the resulting
tactic always fails.
\EXAMPLE
The following example uses the fact that if a tactic {\small\verb%t1%} solves
a goal, then the tactic {\small\verb%t1 THEN t2%} never results in the application
of {\small\verb%t2%} to anything, because {\small\verb%t1%} produces no subgoals. In attempting
to solve the following goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- x => T | T
\end{verbatim}
}
\noindent the tactic
{\par\samepage\setseps\small
\begin{verbatim}
REWRITE_TAC[] THEN FAIL_TAC `Simple rewriting failed to solve goal`
\end{verbatim}
}
\noindent will fail with the message provided, whereas:
{\par\samepage\setseps\small
\begin{verbatim}
CONV_TAC COND_CONV THEN FAIL_TAC `Using COND_CONV failed to solve goal`
\end{verbatim}
}
\noindent will silently solve the goal because {\small\verb%COND_CONV%} reduces it to
just {\small\verb%?- T%}.
\SEEALSO
ALL_TAC, NO_TAC.
\ENDDOC
\DOC{falsity}
\TYPE {\small\verb%falsity : term%}\egroup
\SYNOPSIS
Contains the constant {\small\verb%"F:bool"%}.
\ENDDOC
\DOC{fast\_arith}
\TYPE {\small\verb%fast_arith : (bool -> void)%}\egroup
\SYNOPSIS
Switches fast, finite-precision arithmetic either on or off.
\DESCRIBE
HOL normally does arithmetic using arbitrary precision. It can be changed to
use faster, finite-precision arithmetic by {\small\verb%fast_arith true%}, and the normal
behaviour restored with {\small\verb%fast_arith false%}. The current state does not affect
the mode of arithmetic in previously defined functions, such as {\small\verb%num_CONV%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#fast_arith true;;
() : void
#let pow2 x = funpow x (curry $* 2) 1;;
pow2 = - : (int -> int)
#map pow2 [30; 31; 32; 33];;
[1073741824; -2147483648; 0; 0] : int list
\end{verbatim}
}
\COMMENTS
This function is extremely dependent on the version of Lisp used, and its
behaviour should not be relied upon; it may not work at all in Lisps other than
Franz. It is questionable whether it is ever worthwhile to use it anyway,
because although it cannot compromise the consistency of the logic, it can
lead to confusing failures if one is manipulating numbers larger than the word
size of the machine.
\ENDDOC
\DOC{FILTER\_ASM\_REWRITE\_RULE}
\TYPE {\small\verb%FILTER_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem including built-in rewrites and some of the theorem's
assumptions.
\DESCRIBE
This function implements selective rewriting with a subset of the assumptions
of the theorem. The first argument (a predicate on terms) is applied to all
assumptions, and the ones which return {\small\verb%true%} are used (along with the set of
basic tautologies and the given theorem list) to rewrite the theorem. See
{\small\verb%GEN_REWRITE_RULE%} for more information on rewriting.
\FAILURE
{\small\verb%FILTER_ASM_REWRITE_RULE%} does not fail. Using {\small\verb%FILTER_ASM_REWRITE_RULE%} may
result in a diverging sequence of rewrites. In such cases
{\small\verb%FILTER_ONCE_ASM_REWRITE_RULE%} may be used.
\USES
This rule can be applied when rewriting with all assumptions results in
divergence. Typically, the predicate can model checks as to whether a certain
variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form.
Another use is to improve performance when there are many assumptions
which are not applicable. Rewriting, though a powerful method of
proving theorems in HOL, can result in a reduced performance due to
the pattern matching and the number of primitive inferences involved.
\SEEALSO
ASM_REWRITE_RULE, FILTER_ONCE_ASM_REWRITE_RULE, FILTER_PURE_ASM_REWRITE_RULE,
FILTER_PURE_ONCE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{FILTER\_ASM\_REWRITE\_TAC}
\TYPE {\small\verb%FILTER_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal including built-in rewrites and some of the goal's assumptions.
\DESCRIBE
This function implements selective rewriting with a subset of the assumptions
of the goal. The first argument (a predicate on terms) is applied to all
assumptions, and the ones which return {\small\verb%true%} are used (along with the set of
basic tautologies and the given theorem list) to rewrite the goal. See
{\small\verb%GEN_REWRITE_TAC%} for more information on rewriting.
\FAILURE
{\small\verb%FILTER_ASM_REWRITE_TAC%} does not fail, but it can result in an invalid tactic
if the rewrite is invalid. This happens when a theorem used for rewriting has
assumptions which are not alpha-convertible to assumptions of the goal. Using
{\small\verb%FILTER_ASM_REWRITE_TAC%} may result in a diverging sequence of rewrites. In
such cases {\small\verb%FILTER_ONCE_ASM_REWRITE_TAC%} may be used.
\USES
This tactic can be applied when rewriting with all assumptions results in
divergence, or in an unwanted proof state. Typically, the predicate can model
checks as to whether a certain variable appears on the left-hand side of an
equational assumption, or whether the assumption is in disjunctive form. Thus
it allows choice of assumptions to rewrite with in a position-independent
fashion.
Another use is to improve performance when there are many assumptions
which are not applicable. Rewriting, though a powerful method of
proving theorems in HOL, can result in a reduced performance due to
the pattern matching and the number of primitive inferences involved.
\SEEALSO
ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC, FILTER_PURE_ASM_REWRITE_TAC,
FILTER_PURE_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.
\ENDDOC
\DOC{FILTER\_CONV}
\TYPE {\small\verb%FILTER_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a predicate to elements of a list.
\DESCRIBE
{\small\verb%FILTER_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
FILTER P [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- FILTER P [x0;...xn] = [...xi...]
\end{verbatim}
}
\noindent where for every {\small\verb%xi%} occurred in the right-hand side of the resulting theorem, {\small\verb%conv "P xi"%} returns a theorem {\small\verb%|- P xi = T%}.
\FAILURE
{\small\verb%FILTER_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above.
\EXAMPLE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
FILTER_CONV bool_EQ_CONV "FILTER ($= T) [T;F;T]";;
\end{verbatim}
}
\noindent returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- FILTER($= T)[T;F;T] = [T;T]
\end{verbatim}
}
\noindent In general, if the predicate {\small\verb%P%} is an explicit lambda abstraction
{\small\verb%(\x. P x)%}, the conversion should be in the form
{\par\samepage\setseps\small
\begin{verbatim}
(BETA_CONV THENC conv')
\end{verbatim}
}
\SEEALSO
FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{FILTER\_DISCH\_TAC}
\TYPE {\small\verb%FILTER_DISCH_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Conditionally moves the antecedent of an implicative goal into the assumptions.
\DESCRIBE
{\small\verb%FILTER_DISCH_TAC%} will move the antecedent of an implication into the
assumptions, provided its parameter does not occur in the antecedent.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- u ==> v
============== FILTER_DISCH_TAC "w"
A u {u} ?- v
\end{verbatim}
}
\noindent Note that {\small\verb%DISCH_TAC%} treats {\small\verb%"~u"%} as {\small\verb%"u ==> F"%}. Unlike
{\small\verb%DISCH_TAC%}, the antecedent will be {\small\verb%STRIP%}ed into its various components
before being {\small\verb%ASSUME%}d. This stripping includes generating multiple goals for
case-analysis of disjunctions. Also, unlike {\small\verb%DISCH_TAC%}, should any component
of the discharged antecedent directly imply or contradict the goal, then this
simplification will also be made. Again, unlike {\small\verb%DISCH_TAC%}, {\small\verb%FILTER_DISCH_TAC%}
will not duplicate identical or alpha-equivalent assumptions.
\FAILURE
{\small\verb%FILTER_DISCH_TAC%} will fail if a term which is identical, or alpha-equivalent
to {\small\verb%"w"%} occurs free in the antecedent, or if the theorem is not an implication
or a negation.
\COMMENTS
{\small\verb%FILTER_DISCH_TAC "w"%} behaves like {\small\verb%FILTER_DISCH_THEN STRIP_ASSUME_TAC "w"%}.
\SEEALSO
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_THEN, NEG_DISCH,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
\ENDDOC
\DOC{FILTER\_DISCH\_THEN}
\TYPE {\small\verb%FILTER_DISCH_THEN : (thm_tactic -> term -> tactic)%}\egroup
\SYNOPSIS
Conditionally gives to a theorem-tactic the antecedent of an implicative goal.
\DESCRIBE
If {\small\verb%FILTER_DISCH_THEN%}'s second argument, a term, does not occur in the
antecedent, then {\small\verb%FILTER_DISCH_THEN%} removes the antecedent and then creates a
theorem by {\small\verb%ASSUME%}ing it. This new theorem is passed to {\small\verb%FILTER_DISCH_THEN%}'s
first argument, which is subsequently expanded. For example, if
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======== f (ASSUME "u")
B ?- v
\end{verbatim}
}
\noindent then
{\par\samepage\setseps\small
\begin{verbatim}
A ?- u ==> t
============== FILTER_DISCH_THEN f
B ?- v
\end{verbatim}
}
\noindent Note that {\small\verb%FILTER_DISCH_THEN%} treats {\small\verb%"~u"%} as {\small\verb%"u ==> F"%}.
\FAILURE
{\small\verb%FILTER_DISCH_THEN%} will fail if a term which is identical, or alpha-equivalent
to {\small\verb%"w"%} occurs free in the antecedent. {\small\verb%FILTER_DISCH_THEN%} will also fail if
the theorem is an implication or a negation.
\COMMENTS
{\small\verb%FILTER_DISCH_THEN%} is most easily understood by first understanding
{\small\verb%DISCH_THEN%}.
\USES
For preprocessing an antecedent before moving it to the assumptions, or for
using antecedents and then throwing them away.
\SEEALSO
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_TAC, NEG_DISCH,
STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.
\ENDDOC
\DOC{filter}
\TYPE {\small\verb%filter : ((* -> bool) -> * list -> * list)%}\egroup
\SYNOPSIS
Filters a list to the sublist of elements satisfying a predicate.
\DESCRIBE
{\small\verb%filter p l%} applies {\small\verb%p%} to every element of {\small\verb%l%}, returning a list of those
that satisfy {\small\verb%p%}, in the order they appeared in the original list.
\FAILURE
Never fails.
\SEEALSO
mapfilter, partition, remove.
\ENDDOC
\DOC{FILTER\_GEN\_TAC}
\TYPE {\small\verb%FILTER_GEN_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Strips off a universal quantifier, but fails for a given quantified variable.
\DESCRIBE
When applied to a term {\small\verb%s%} and a goal {\small\verb%A ?- !x. t%}, the tactic {\small\verb%FILTER_GEN_TAC%}
fails if the quantified variable {\small\verb%x%} is the same as {\small\verb%s%}, but otherwise
advances the goal in the same way as {\small\verb%GEN_TAC%}, i.e. returns the goal
{\small\verb%A ?- t[x'/x]%} where {\small\verb%x'%} is a variant of {\small\verb%x%} chosen to avoid clashing with
any variables free in the goal's assumption list. Normally {\small\verb%x'%} is just {\small\verb%x%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x. t
============== FILTER_GEN_TAC "s"
A ?- t[x'/x]
\end{verbatim}
}
\FAILURE
Fails if the goal's conclusion is not universally quantified or the
quantified variable is equal to the given term.
\SEEALSO
GEN, GEN_TAC, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC.
\ENDDOC
\DOC{FILTER\_ONCE\_ASM\_REWRITE\_RULE}
\TYPE {\small\verb%FILTER_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem once including built-in rewrites and some of its assumptions.
\DESCRIBE
The first argument is a predicate applied to the assumptions. The theorem is
rewritten with the assumptions for which the predicate returns {\small\verb%true%}, the
given list of theorems, and the tautologies stored in {\small\verb%basic_rewrites%}. It
searches the term of the theorem once, without applying rewrites recursively.
Thus it avoids the divergence which can result from the application of
{\small\verb%FILTER_ASM_REWRITE_RULE%}. For more information on rewriting rules, see
{\small\verb%GEN_REWRITE_RULE%}.
\FAILURE
Never fails.
\USES
This function is useful when rewriting with a subset of assumptions of
a theorem, allowing control of the number of rewriting passes.
\SEEALSO
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, FILTER_PURE_ASM_REWRITE_RULE,
FILTER_PURE_ONCE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
ONCE_DEPTH_CONV, PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{FILTER\_ONCE\_ASM\_REWRITE\_TAC}
\TYPE {\small\verb%FILTER_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal once including built-in rewrites and some of its assumptions.
\DESCRIBE
The first argument is a predicate applied to the assumptions. The goal is
rewritten with the assumptions for which the predicate returns {\small\verb%true%}, the
given list of theorems, and the tautologies stored in {\small\verb%basic_rewrites%}. It
searches the term of the goal once, without applying rewrites recursively. Thus
it avoids the divergence which can result from the application of
{\small\verb%FILTER_ASM_REWRITE_TAC%}. For more information on rewriting tactics, see
{\small\verb%GEN_REWRITE_TAC%}.
\FAILURE
Never fails.
\USES
This function is useful when rewriting with a subset of assumptions of
a goal, allowing control of the number of rewriting passes.
\SEEALSO
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_PURE_ASM_REWRITE_TAC,
FILTER_PURE_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC,
ONCE_DEPTH_CONV, PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.
\ENDDOC
\DOC{FILTER\_PURE\_ASM\_REWRITE\_RULE}
\TYPE {\small\verb%FILTER_PURE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm ->thm)%}\egroup
\SYNOPSIS
Rewrites a theorem with some of the theorem's assumptions.
\DESCRIBE
This function implements selective rewriting with a subset of the assumptions
of the theorem. The first argument (a predicate on terms) is applied to all
assumptions, and the ones which return {\small\verb%true%} are used to rewrite the goal.
See {\small\verb%GEN_REWRITE_RULE%} for more information on rewriting.
\FAILURE
{\small\verb%FILTER_PURE_ASM_REWRITE_RULE%} does not fail.
Using {\small\verb%FILTER_PURE_ASM_REWRITE_RULE%} may result in a diverging sequence of
rewrites. In such cases {\small\verb%FILTER_PURE_ONCE_ASM_REWRITE_RULE%} may be used.
\USES
This rule can be applied when rewriting with all assumptions results in
divergence. Typically, the predicate can model checks as to whether a certain
variable appears on the left-hand side of an equational assumption, or whether
the assumption is in disjunctive form.
Another use is to improve performance when there are many assumptions
which are not applicable. Rewriting, though a powerful method of
proving theorems in HOL, can result in a reduced performance due to
the pattern matching and the number of primitive inferences involved.
\SEEALSO
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, FILTER_ONCE_ASM_REWRITE_RULE,
FILTER_PURE_ONCE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{FILTER\_PURE\_ASM\_REWRITE\_TAC}
\TYPE {\small\verb%FILTER_PURE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal with some of the goal's assumptions.
\DESCRIBE
This function implements selective rewriting with a subset of the assumptions
of the goal. The first argument (a predicate on terms) is applied to all
assumptions, and the ones which return {\small\verb%true%} are used to rewrite the goal.
See {\small\verb%GEN_REWRITE_TAC%} for more information on rewriting.
\FAILURE
{\small\verb%FILTER_PURE_ASM_REWRITE_TAC%} does not fail, but it can result in an invalid
tactic if the rewrite is invalid. This happens when a theorem used for
rewriting has assumptions which are not alpha-convertible to assumptions of
the goal. Using {\small\verb%FILTER_PURE_ASM_REWRITE_TAC%} may result in a diverging
sequence of rewrites. In such cases {\small\verb%FILTER_PURE_ONCE_ASM_REWRITE_TAC%} may be
used.
\USES
This tactic can be applied when rewriting with all assumptions results in
divergence, or in an unwanted proof state. Typically, the predicate can model
checks as to whether a certain variable appears on the left-hand side of an
equational assumption, or whether the assumption is in disjunctive form. Thus
it allows choice of assumptions to rewrite with in a position-independent
fashion.
Another use is to improve performance when there are many assumptions
which are not applicable. Rewriting, though a powerful method of
proving theorems in HOL, can result in a reduced performance due to
the pattern matching and the number of primitive inferences involved.
\SEEALSO
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
FILTER_PURE_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.
\ENDDOC
\DOC{FILTER\_PURE\_ONCE\_ASM\_REWRITE\_RULE}
\TYPE {\small\verb%FILTER_PURE_ONCE_ASM_REWRITE_RULE : ((term -> bool) -> thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem once using some of its assumptions.
\DESCRIBE
The first argument is a predicate applied to the assumptions. The theorem is
rewritten with the assumptions for which the predicate returns {\small\verb%true%} and the
given list of theorems. It searches the term of the theorem once, without
applying rewrites recursively. Thus it avoids the divergence which can result
from the application of {\small\verb%FILTER_PURE_ASM_REWRITE_RULE%}. For more information
on rewriting rules, see {\small\verb%GEN_REWRITE_RULE%}.
\FAILURE
Never fails.
\USES
This function is useful when rewriting with a subset of assumptions of
a theorem, allowing control of the number of rewriting passes.
\SEEALSO
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, FILTER_ONCE_ASM_REWRITE_RULE,
FILTER_PURE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
ONCE_DEPTH_CONV, PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{FILTER\_PURE\_ONCE\_ASM\_REWRITE\_TAC}
\TYPE\egroup
{\small\verb%FILTER_PURE_ONCE_ASM_REWRITE_TAC : ((term -> bool) -> thm list -> tactic)%}
\SYNOPSIS
Rewrites a goal once using some of its assumptions.
\DESCRIBE
The first argument is a predicate applied to the assumptions. The goal is
rewritten with the assumptions for which the predicate returns {\small\verb%true%} and the
given list of theorems. It searches the term of the goal once, without
applying rewrites recursively. Thus it avoids the divergence which can result
from the application of {\small\verb%FILTER_PURE_ASM_REWRITE_TAC%}. For more information
on rewriting tactics, see {\small\verb%GEN_REWRITE_TAC%}.
\FAILURE
Never fails.
\USES
This function is useful when rewriting with a subset of assumptions of
a goal, allowing control of the number of rewriting passes.
\SEEALSO
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
FILTER_PURE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC,
ONCE_DEPTH_CONV, PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_REWRITE_TAC, REWRITE_TAC.
\ENDDOC
\DOC{FILTER\_STRIP\_TAC}
\TYPE {\small\verb%FILTER_STRIP_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Conditionally strips apart a goal by eliminating the outermost connective.
\DESCRIBE
Stripping apart a goal in a more careful way than is done by {\small\verb%STRIP_TAC%} may be
necessary when dealing with quantified terms and implications.
{\small\verb%FILTER_STRIP_TAC%} behaves like {\small\verb%STRIP_TAC%}, but it does not strip apart a goal
if it contains a given term.
If {\small\verb%u%} is a term, then {\small\verb%FILTER_STRIP_TAC u%} is a tactic that removes one
outermost occurrence of one of the connectives {\small\verb%!%}, {\small\verb%==>%}, {\small\verb%~%} or {\small\verb%/\%} from the
conclusion of the goal {\small\verb%t%}, provided the term being stripped does not contain
{\small\verb%u%}. A negation {\small\verb%~t%} is treated as the implication {\small\verb%t ==> F%}.
{\small\verb%FILTER_STRIP_TAC u%} also breaks apart conjunctions without applying any
filtering.
If {\small\verb%t%} is a universally quantified term, {\small\verb%FILTER_STRIP_TAC u%}
strips off the quantifier:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x.v
================ FILTER_STRIP_TAC "u" [where x is not u]
A ?- v[x'/x]
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant that does not appear free in the
assumptions {\small\verb%A%}. If {\small\verb%t%} is a conjunction, no filtering is done and
{\small\verb%FILTER_STRIP_TAC u%} simply splits the conjunction:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- v /\ w
================= FILTER_STRIP_TAC "u"
A ?- v A ?- w
\end{verbatim}
}
\noindent If {\small\verb%t%} is an implication and the antecedent does not contain
a free instance of {\small\verb%u%}, then {\small\verb%FILTER_STRIP_TAC u%} moves the antecedent into the
assumptions and recursively splits the antecedent according to the following
rules (see {\small\verb%STRIP_ASSUME_TAC%}):
{\par\samepage\setseps\small
\begin{verbatim}
A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================
A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v
A ?- ?x.w ==> v
====================
A u {w[x'/x]} ?- v
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a variant of {\small\verb%x%}.
\FAILURE
{\small\verb%FILTER_STRIP_TAC u (A,t)%} fails if {\small\verb%t%} is not a universally quantified term,
an implication, a negation or a conjunction; or if the term being
stripped contains {\small\verb%u%} in the sense described above (conjunction excluded).
\EXAMPLE
When trying to solve the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- !n. m <= n /\ n <= m ==> (m = n)
\end{verbatim}
}
\noindent the universally quantified variable {\small\verb%n%} can be stripped off by using
{\par\samepage\setseps\small
\begin{verbatim}
FILTER_STRIP_TAC "m:num"
\end{verbatim}
}
\noindent and then the implication can be stripped apart by using
{\par\samepage\setseps\small
\begin{verbatim}
FILTER_STRIP_TAC "m:num = n"
\end{verbatim}
}
\USES
{\small\verb%FILTER_STRIP_TAC%} is used when stripping outer connectives from a goal in a
more delicate way than {\small\verb%STRIP_TAC%}. A typical application is to keep
stripping by using the tactic {\small\verb%REPEAT (FILTER_STRIP_TAC u)%}
until one hits the term {\small\verb%u%} at which stripping is to stop.
\SEEALSO
CONJ_TAC, FILTER_DISCH_TAC, FILTER_DISCH_THEN, FILTER_GEN_TAC,
STRIP_ASSUME_TAC, STRIP_TAC.
\ENDDOC
\DOC{FILTER\_STRIP\_THEN}
\TYPE {\small\verb%FILTER_STRIP_THEN : (thm_tactic -> term -> tactic)%}\egroup
\SYNOPSIS
Conditionally strips a goal, handing an antecedent to the theorem-tactic.
\DESCRIBE
Given a theorem-tactic {\small\verb%ttac%}, a term {\small\verb%u%} and a goal {\small\verb%(A,t)%},
{\small\verb%FILTER_STRIP_THEN ttac u%} removes one outer connective ({\small\verb%!%}, {\small\verb%==>%}, or {\small\verb%~%})
from {\small\verb%t%}, if the term being stripped does not contain a free instance of {\small\verb%u%}. A
negation {\small\verb%~t%} is treated as the implication {\small\verb%t ==> F%}. The theorem-tactic
{\small\verb%ttac%} is applied only when stripping an implication, by using the antecedent
stripped off. {\small\verb%FILTER_STRIP_THEN%} also breaks conjunctions.
{\small\verb%FILTER_STRIP_THEN%} behaves like {\small\verb%STRIP_GOAL_THEN%}, if the term being stripped
does not contain a free instance of {\small\verb%u%}. In particular, {\small\verb%FILTER_STRIP_THEN
STRIP_ASSUME_TAC%} behaves like {\small\verb%FILTER_STRIP_TAC%}.
\FAILURE
{\small\verb%FILTER_STRIP_THEN ttac u (A,t)%} fails if {\small\verb%t%} is not a universally
quantified term, an implication, a negation or a conjunction;
or if the term being stripped contains the term {\small\verb%u%} (conjunction excluded);
or if the application of {\small\verb%ttac%} fails, after stripping the goal.
\EXAMPLE
When solving the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- (n = 1) ==> (n * n = n)
\end{verbatim}
}
\noindent the application of {\small\verb%FILTER_STRIP_THEN SUBST1_TAC "m:num"%}
results in the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- 1 * 1 = 1
\end{verbatim}
}
\USES
{\small\verb%FILTER_STRIP_THEN%} is used when manipulating intermediate results
using theorem-tactics, after stripping outer connectives
from a goal in a more delicate way than {\small\verb%STRIP_GOAL_THEN%}.
\SEEALSO
CONJ_TAC, FILTER_DISCH_TAC, FILTER_DISCH_THEN, FILTER_GEN_TAC,
FILTER_STRIP_TAC, STRIP_ASSUME_TAC, STRIP_GOAL_THEN.
\ENDDOC
\DOC{find}
\TYPE {\small\verb%find : ((* -> bool) -> * list -> *)%}\egroup
\SYNOPSIS
Returns the first element of a list which satisfies a predicate.
\DESCRIBE
{\small\verb%find p [x1;...;xn]%} returns the first {\small\verb%xi%} in the list such that {\small\verb%(p xi)%}
is {\small\verb%true%}.
\FAILURE
Fails with {\small\verb%find%} if no element satisfies the predicate. This will always be
the case if the list is empty.
\SEEALSO
tryfind, mem, exists, forall, assoc, rev_assoc.
\ENDDOC
\DOC{find\_file}
\TYPE {\small\verb%find_file: (string -> string)%}\egroup
\SYNOPSIS
Searches for a named file.
\DESCRIBE
Searches for a named file using the search path, and returns the full pathname
if successful (if the file is in the current directory, this will just be the
argument string).
\FAILURE
Fails if the named file cannot be found using the current search path.
\EXAMPLE
The answer from the following will depend on where HOL is installed:
{\par\samepage\setseps\small
\begin{verbatim}
#find_file `combin.th`;;
`/usr/groups/hol/HOL2/sun4_sos/theories/combin.th` : string
\end{verbatim}
}
\SEEALSO
find_ml_file, search_path, set_search_path
\ENDDOC
\DOC{find\_match}
\TYPE {\small\verb%find_match: (term -> term -> ((term # term) list # (type # type) list))%}\egroup
\SYNOPSIS
Determines whether a term matches a subterm of another term.
\DESCRIBE
Recursively destructs its second argument and attempts to match the resulting
subterms with the first term. It returns a list of differing instances of
free variables and types in the matched terms. The search is done in
a depth-first, left-to-right order.
\FAILURE
Fails if the none of the subterms of the second argument match the first.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#find_match "a:num" "a:num";;
([], []) : ((term # term) list # (type # type) list)
#find_match "a:*" "T";;
([("T", "a")], [(":bool", ":*")])
: ((term # term) list # (type # type) list)
#find_match "x:num" "n < 2 ==> (a /\ b)";;
([("n", "x")], []) : ((term # term) list # (type # type) list)
#find_match "x:bool" "n < 2 ==> (a /\ b)";;
([("n < 2 ==> a /\ b", "x")], [])
: ((term # term) list # (type # type) list)
#find_match "x /\ y" "1 < 2 ==> (a /\ b)";;
([("b", "y"); ("a", "x")], [])
: ((term # term) list # (type # type) list)
\end{verbatim}
}
\SEEALSO
match, find_term, find_terms
\ENDDOC
\DOC{find\_ml\_file}
\TYPE {\small\verb%find_ml_file: (string -> string)%}\egroup
\SYNOPSIS
Searches for a named {\small\verb%ML%} file.
\DESCRIBE
Given a {\small\verb%`.ml`%} suffixed string {\small\verb%`foo.ml`%}, {\small\verb%find_ml_file%} searches for the
{\small\verb%ML%} source file {\small\verb%foo.ml%}. If the given string does not have a {\small\verb%`.ml`%} suffix,
then {\small\verb%find_ml_file%} searches for the object file {\small\verb%foo_ml.o%} or the {\small\verb%ML%} source
file {\small\verb%foo.ml%}. If the object file exists, then its name is returned.
Otherwise, the name of the {\small\verb%ML%} source file is returned if it
exists.
\FAILURE
Fails if the appropriate file cannot be found using the current search path.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#find_ml_file `foo`;;
`foo_ml.o` : string
#find_ml_file `foo.ml`;;
`foo.ml` : string
\end{verbatim}
}
\USES
Typically used to determine whether an object file exists for a named {\small\verb%ML%}
source file.
\SEEALSO
find_file, search_path, set_search_path
\ENDDOC
\DOC{find\_term}
\TYPE {\small\verb%find_term: ((term -> bool) -> term -> term)%}\egroup
\SYNOPSIS
Searches a term for a subterm that satisfies a given predicate.
\DESCRIBE
The largest subterm, in a depth-first, left-to-right search
of the given term, that satisfies the predicate is returned.
\FAILURE
Fails if no subterm of the given term satisfies the predicate.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#find_term is_pred "SUC 0";;
"SUC 0" : term
#find_term is_const "SUC 0";;
"SUC" : term
#find_term is_var "SUC n";;
"n" : term
\end{verbatim}
}
\SEEALSO
find_terms
\ENDDOC
\DOC{find\_terms}
\TYPE {\small\verb%find_terms : ((term -> bool) -> term -> term list)%}\egroup
\SYNOPSIS
Searches a term for all subterms that satisfy a predicate.
\DESCRIBE
A list of subterms of a given term that satisfy the predicate is returned. The
terms may not be disjoint.
\FAILURE
Fails if no subterm of the given term satisfies the predicate.
\EXAMPLE
The following shows that the terms returned may overlap or contain each other:
{\par\samepage\setseps\small
\begin{verbatim}
#find_terms (\tm. rator tm = "SUC" ? false) "SUC(SUC 1 + SUC 2)";;
["SUC 2"; "SUC 1"; "SUC((SUC 1) + (SUC 2))"] : term list
\end{verbatim}
}
\SEEALSO
find_term.
\ENDDOC
\DOC{find\_theory}
\TYPE {\small\verb%find_theory : (string -> string)%}\egroup
\SYNOPSIS
Attempts to find a named theory.
\DESCRIBE
Given a string {\small\verb%`foo`%}, {\small\verb%find_theory%} attempts to find the theory file
{\small\verb%`foo.th`%} using the current search path. If it succeeds, it returns a full
pathname (possibly a relative pathname identical to the argument string).
\FAILURE
Fails if the named theory file cannot be found using the current search path.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#find_theory `num`;;
`/usr/groups/hol/HOL2/sun4_sos/theories/num.th` : string
\end{verbatim}
}
\SEEALSO
find_file, find_ml_file, search_path, set_search_path.
\ENDDOC
\DOC{FIRST\_ASSUM}
\TYPE {\small\verb%FIRST_ASSUM : (thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Maps a theorem-tactic over the assumptions, applying first successful tactic.
\DESCRIBE
The tactic
{\par\samepage\setseps\small
\begin{verbatim}
FIRST_ASSUM ttac ([A1; ...; An], g)
\end{verbatim}
}
\noindent has the effect of applying the first tactic which can be produced by
{\small\verb%ttac%} from the {\small\verb%ASSUME%}d assumptions {\small\verb%(A1 |- A1)%}, ..., {\small\verb%(An |- An)%} and which
succeeds when applied to the goal. Failures of {\small\verb%ttac%} to produce a tactic are
ignored.
\FAILURE
Fails if {\small\verb%ttac (Ai |- Ai)%} fails for every assumption {\small\verb%Ai%}, or if the
assumption list is empty, or if all the tactics produced by {\small\verb%ttac%} fail when
applied to the goal.
\EXAMPLE
The tactic
{\par\samepage\setseps\small
\begin{verbatim}
FIRST_ASSUM (\asm. CONTR_TAC asm ORELSE ACCEPT_TAC asm)
\end{verbatim}
}
\noindent searches the assumptions for either a contradiction or the desired
conclusion. The tactic
{\par\samepage\setseps\small
\begin{verbatim}
FIRST_ASSUM MATCH_MP_TAC
\end{verbatim}
}
\noindent searches the assumption list for an implication whose conclusion
matches the goal, reducing the goal to the antecedent of the corresponding
instance of this implication.
\SEEALSO
ASSUM_LIST, EVERY, EVERY_ASSUM, FIRST, MAP_EVERY, MAP_FIRST.
\ENDDOC
\DOC{FIRST\_CONV}
\TYPE {\small\verb%FIRST_CONV : (conv list -> conv)%}\egroup
\SYNOPSIS
Apply the first of the conversions in a given list that succeeds.
\DESCRIBE
{\small\verb%FIRST_CONV [c1;...;cn] "t"%} returns the result of applying to the term {\small\verb%"t"%}
the first conversion {\small\verb%ci%} that succeeds when applied to {\small\verb%"t"%}. The conversions
are tried in the order in which they are given in the list.
\FAILURE
{\small\verb%FIRST_CONV [c1;...;cn] "t"%} fails if all the conversions {\small\verb%c1%}, ..., {\small\verb%cn%} fail
when applied to the term {\small\verb%"t"%}. {\small\verb%FIRST_CONV cs "t"%} also fails if {\small\verb%cs%} is the
empty list.
\SEEALSO
ORELSEC.
\ENDDOC
\DOC{FIRST}
\TYPE {\small\verb%FIRST : (tactic list -> tactic)%}\egroup
\SYNOPSIS
Applies the first tactic in a tactic list which succeeds.
\DESCRIBE
When applied to a list of tactics {\small\verb%[T1;...;Tn]%}, and a goal {\small\verb%g%}, the tactical
{\small\verb%FIRST%} tries applying the tactics to the goal until one succeeds. If the
first tactic which succeeds is {\small\verb%Tm%}, then the effect is the same as just {\small\verb%Tm%}.
Thus {\small\verb%FIRST%} effectively behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
FIRST [T1;...;Tn] = T1 ORELSE ... ORELSE Tn
\end{verbatim}
}
\FAILURE
The application of {\small\verb%FIRST%} to a tactic list never fails. The resulting
tactic fails iff all the component tactics do when applied to the goal,
or if the tactic list is empty.
\SEEALSO
EVERY, ORELSE.
\ENDDOC
\DOC{FIRSTN\_CONV}
\TYPE {\small\verb%FIRSTN_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of taking the initial n elements of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...x(n-k);...;x(n-1)]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
FIRSTN_CONV "FIRSTN k [x0;...x(n-k);...;x(n-1)]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- FIRSTN k [x0;...;x(n-k);...;x(n-1)] = [x0;...;x(n-k)]
\end{verbatim}
}
\FAILURE
{\small\verb%FIRSTN_CONV tm%} fails if {\small\verb%tm%} is not of the form described above,
or {\small\verb%k%} is greater than the length of the list.
\ENDDOC
\DOC{FIRST\_TCL}
\TYPE {\small\verb%FIRST_TCL : (thm_tactical list -> thm_tactical)%}\egroup
\SYNOPSIS
Applies the first theorem-tactical in a list which succeeds.
\DESCRIBE
When applied to a list of theorem-tacticals, a theorem-tactic and a theorem,
{\small\verb%FIRST_TCL%} returns the tactic resulting from the application of the first
theorem-tactical to the theorem-tactic and theorem which succeeds. The effect
is the same as:
{\par\samepage\setseps\small
\begin{verbatim}
FIRST_TCL [ttl1;...;ttln] = ttl1 ORELSE_TCL ... ORELSE_TCL ttln
\end{verbatim}
}
\FAILURE
{\small\verb%FIRST_TCL%} fails iff each tactic in the list fails when applied to the
theorem-tactic and theorem. This is trivially the case if the list is empty.
\SEEALSO
EVERY_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.
\ENDDOC
\DOC{flags}
\TYPE {\small\verb%flags : (void -> string list)%}\egroup
\SYNOPSIS
Returns a list of settable system flags.
\DESCRIBE
Given the {\small\verb%void%} argument {\small\verb%()%}, {\small\verb%flags%} returns a list of settable system
flags. The default values of these flags can be altered by {\small\verb%set_flag%}.
\COMMENTS
A full explanation of the standard flags is given in the DESCRIPTION.
\SEEALSO
set_flag.
\ENDDOC
\DOC{FLAT\_CONV}
\TYPE {\small\verb%FLAT_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of flattening a list of lists.
\DESCRIBE
{\small\verb%FLAT_CONV%} a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
FLAT [[x00;...x0n]; ...; [xm0;...xmn]]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- FLAT [[x00;...x0n]; ...; [xm0;...xmn]] =
[x00;...x0n; ...; xm0;...xmn]
\end{verbatim}
}
\FAILURE
{\small\verb%FLAT_CONV tm%} fails if {\small\verb%tm%} is not of the form described above.
\EXAMPLE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
FLAT_CONV "FLAT [[0;2;4];[0;1;2;3;4]]";;
\end{verbatim}
}
\noindent returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- FLAT[[0;2;4];[0;1;2;3;4]] = [0;2;4;0;1;2;3;4]
\end{verbatim}
}
\SEEALSO
FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{flat}
\TYPE {\small\verb%flat : (* list list -> * list)%}\egroup
\SYNOPSIS
Flattens a list of lists into one long list.
\DESCRIBE
{\small\verb%flat [l1;...;ln]%} returns {\small\verb%(l1 @ ... @ ln)%} where each li is a list and {\small\verb%@%}
is list concatenation.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#flat [[1;2];[3;4;5];[6]];;
[1; 2; 3; 4; 5; 6] : int list
\end{verbatim}
}
\ENDDOC
\DOC{FOLDL\_CONV}
\TYPE {\small\verb%FOLDL_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a function to elements of a list.
\DESCRIBE
{\small\verb%FOLDL_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
FOLDL f e [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- FOLDL f e [x0;...xn] = tm'
\end{verbatim}
}
\noindent where {\small\verb%tm'%} is the result of applying the function {\small\verb%f%} iteratively to
the successive elements of the list and the result of the previous
application starting from the tail end of the list. During each
iteration, an expression {\small\verb%f ei xi%} is evaluated. The user supplied
conversion {\small\verb%conv%} is used to derive a theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- f ei xi = e(i+1)
\end{verbatim}
}
\noindent which is used in the next iteration.
\FAILURE
{\small\verb%FOLDL_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above.
\EXAMPLE
To sum the elements of a list, one can evaluate
{\par\samepage\setseps\small
\begin{verbatim}
FOLDL_CONV ADD_CONV "FOLDL $+ 0 [0;1;2;3]";;
\end{verbatim}
}
\noindent which returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- FOLDL $+ 0[0;1;2;3] = 6
\end{verbatim}
}
\noindent In general, if the function {\small\verb%f%} is an explicit lambda abstraction
{\small\verb%(\x x'. t[x,x'])%}, the conversion should be in the form
{\par\samepage\setseps\small
\begin{verbatim}
((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv'))
\end{verbatim}
}
\noindent where {\small\verb%conv'%} applied to {\small\verb%t[x,x']%} returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|-t[x,x'] = e''.
\end{verbatim}
}
\SEEALSO
FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{FOLDR\_CONV}
\TYPE {\small\verb%FOLDR_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a function to elements of a list.
\DESCRIBE
{\small\verb%FOLDR_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
FOLDR f e [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- FOLDR f e [x0;...xn] = tm'
\end{verbatim}
}
\noindent where {\small\verb%tm'%} is the result of applying the function {\small\verb%f%} iteratively to
the successive elements of the list and the result of the previous
application starting from the tail end of the list. During each
iteration, an expression {\small\verb%f xi ei%} is evaluated. The user supplied
conversion {\small\verb%conv%} is used to derive a theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- f xi ei = e(i+1)
\end{verbatim}
}
\noindent which is used in the next iteration.
\FAILURE
{\small\verb%FOLDR_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above.
\EXAMPLE
To sum the elements of a list, one can evaluate
{\par\samepage\setseps\small
\begin{verbatim}
FOLDR_CONV ADD_CONV "FOLDR $+ 0 [0;1;2;3]";;
\end{verbatim}
}
\noindent which returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- FOLDR $+ 0[0;1;2;3] = 6
\end{verbatim}
}
\noindent In general, if the function {\small\verb%f%} is an explicit lambda abstraction
{\small\verb%(\x x'. t[x,x'])%}, the conversion should be in the form
{\par\samepage\setseps\small
\begin{verbatim}
((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv'))
\end{verbatim}
}
\noindent where {\small\verb%conv'%} applied to {\small\verb%t[x,x']%} returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|-t[x,x'] = e''.
\end{verbatim}
}
\SEEALSO
FOLDL_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{FORALL\_AND\_CONV}
\TYPE {\small\verb%FORALL_AND_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification inwards through a conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%!x. P /\ Q%}, the conversion
{\small\verb%FORALL_AND_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P /\ Q) = (!x.P) /\ (!x.Q)
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%!x. P /\ Q%}.
\SEEALSO
AND_FORALL_CONV, LEFT_AND_FORALL_CONV, RIGHT_AND_FORALL_CONV.
\ENDDOC
\DOC{forall}
\TYPE {\small\verb%forall : ((* -> bool) -> * list -> bool)%}\egroup
\SYNOPSIS
Tests a list to see if all its elements satisfy a predicate.
\DESCRIBE
{\small\verb%forall p [x1;...;xn]%} returns {\small\verb%true%} if {\small\verb%(p xi)%} is true for all {\small\verb%xi%} in the
list. Otherwise it returns {\small\verb%false%}. If the list is empty, this function always
returns true.
\FAILURE
Never fails.
\SEEALSO
exists, find, tryfind, mem, assoc, rev_assoc.
\ENDDOC
\DOC{FORALL\_EQ}
\TYPE {\small\verb%FORALL_EQ : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Universally quantifies both sides of an equational theorem.
\DESCRIBE
When applied to a variable {\small\verb%x%} and a theorem {\small\verb%A |- t1 = t2%}, whose conclusion
is an equation between boolean terms, {\small\verb%FORALL_EQ%} returns the
theorem {\small\verb%A |- (!x. t1) = (!x. t2)%}, unless the variable {\small\verb%x%} is free in any
of the assumptions.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
------------------------ FORALL_EQ "x" [where x is not free in A]
A |- (!x.t1) = (!x.t2)
\end{verbatim}
}
\FAILURE
Fails if the theorem is not an equation between boolean terms, or if the
supplied term is not simply a variable, or if the variable is free in any of
the assumptions.
\SEEALSO
AP_TERM, EXISTS_EQ, SELECT_EQ.
\ENDDOC
\DOC{FORALL\_IMP\_CONV}
\TYPE {\small\verb%FORALL_IMP_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification inwards through an implication.
\DESCRIBE
When applied to a term of the form {\small\verb%!x. P ==> Q%}, where {\small\verb%x%} is not free in
both {\small\verb%P%} and {\small\verb%Q%}, {\small\verb%FORALL_IMP_CONV%} returns a theorem of one of three forms,
depending on occurrences of the variable {\small\verb%x%} in {\small\verb%P%} and {\small\verb%Q%}. If {\small\verb%x%} is free
in {\small\verb%P%} but not in {\small\verb%Q%}, then the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P ==> Q) = (?x.P) ==> Q
\end{verbatim}
}
\noindent is returned. If {\small\verb%x%} is free in {\small\verb%Q%} but not in {\small\verb%P%}, then the
result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P ==> Q) = P ==> (!x.Q)
\end{verbatim}
}
\noindent And if {\small\verb%x%} is free in neither {\small\verb%P%} nor {\small\verb%Q%}, then the result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P ==> Q) = (?x.P) ==> (!x.Q)
\end{verbatim}
}
\FAILURE
{\small\verb%FORALL_IMP_CONV%} fails if it is applied to a term not of the form
{\small\verb%!x. P ==> Q%}, or if it is applied to a term {\small\verb%!x. P ==> Q%} in which the
variable {\small\verb%x%} is free in both {\small\verb%P%} and {\small\verb%Q%}.
\SEEALSO
LEFT_IMP_EXISTS_CONV, RIGHT_IMP_FORALL_CONV.
\ENDDOC
\DOC{FORALL\_NOT\_CONV}
\TYPE {\small\verb%FORALL_NOT_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification inwards through a negation.
\DESCRIBE
When applied to a term of the form {\small\verb%!x.~P%}, the conversion {\small\verb%FORALL_NOT_CONV%}
returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x.~P) = ~(?x. P)
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%!x.~P%}.
\SEEALSO
EXISTS_NOT_CONV, NOT_EXISTS_CONV, NOT_FORALL_CONV.
\ENDDOC
\DOC{FORALL\_OR\_CONV}
\TYPE {\small\verb%FORALL_OR_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification inwards through a disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%!x. P \/ Q%}, where {\small\verb%x%} is not free in both
{\small\verb%P%} and {\small\verb%Q%}, {\small\verb%FORALL_OR_CONV%} returns a theorem of one of three forms,
depending on occurrences of the variable {\small\verb%x%} in {\small\verb%P%} and {\small\verb%Q%}. If {\small\verb%x%} is free
in {\small\verb%P%} but not in {\small\verb%Q%}, then the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P \/ Q) = (!x.P) \/ Q
\end{verbatim}
}
\noindent is returned. If {\small\verb%x%} is free in {\small\verb%Q%} but not in {\small\verb%P%}, then the
result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P \/ Q) = P \/ (!x.Q)
\end{verbatim}
}
\noindent And if {\small\verb%x%} is free in neither {\small\verb%P%} nor {\small\verb%Q%}, then the result is:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P \/ Q) = (!x.P) \/ (!x.Q)
\end{verbatim}
}
\FAILURE
{\small\verb%FORALL_OR_CONV%} fails if it is applied to a term not of the form
{\small\verb%!x. P \/ Q%}, or if it is applied to a term {\small\verb%!x. P \/ Q%} in which the
variable {\small\verb%x%} is free in both {\small\verb%P%} and {\small\verb%Q%}.
\SEEALSO
OR_FORALL_CONV, LEFT_OR_FORALL_CONV, RIGHT_OR_FORALL_CONV.
\ENDDOC
\DOC{free\_in}
\TYPE {\small\verb%free_in : (term -> term -> bool)%}\egroup
\SYNOPSIS
Tests if one term is free in another.
\DESCRIBE
When applied to two terms {\small\verb%t1%} and {\small\verb%t2%}, the function {\small\verb%free_in%} returns
{\small\verb%true%} if {\small\verb%t1%} is free in {\small\verb%t2%}, and {\small\verb%false%} otherwise. It is not necessary
that {\small\verb%t1%} be simply a variable.
\FAILURE
Never fails.
\EXAMPLE
In the following example {\small\verb%free_in%} returns {\small\verb%false%} because the {\small\verb%x%} in {\small\verb%SUC x%}
in the second term is bound:
{\par\samepage\setseps\small
\begin{verbatim}
#free_in "SUC x" "!x. SUC x = x + 1";;
false : bool
\end{verbatim}
}
\noindent whereas the following call returns {\small\verb%true%} because the first instance
of {\small\verb%x%} in the second term is free, even though there is also a bound instance:
{\par\samepage\setseps\small
\begin{verbatim}
#free_in "x:bool" "x /\ (?x. x=T)";;
true : bool
\end{verbatim}
}
\SEEALSO
frees, freesl, thm_frees.
\ENDDOC
\DOC{frees}
\TYPE {\small\verb%frees : (term -> term list)%}\egroup
\SYNOPSIS
Returns a list of the variables which are free in a term.
\DESCRIBE
When applied to a term, {\small\verb%frees%} returns a list of the free variables in
that term. There are no repetitions in the list produced even if there are
multiple free instances of some variables.
\FAILURE
Never fails.
\EXAMPLE
Clearly in the following term, {\small\verb%x%} and {\small\verb%y%} are free, whereas {\small\verb%z%} is bound:
{\par\samepage\setseps\small
\begin{verbatim}
#frees "(x=1) /\ (y=2) /\ (!z. z >= 0)";;
["x"; "y"] : term list
\end{verbatim}
}
\SEEALSO
freesl, free_in, thm_frees.
\ENDDOC
\DOC{freesl}
\TYPE {\small\verb%freesl : (term list -> term list)%}\egroup
\SYNOPSIS
Returns a list of the free variables in a list of terms.
\DESCRIBE
When applied to a list of terms, {\small\verb%freesl%} returns a list of the variables which
are free in any of those terms. There are no repetitions in the list produced
even if several terms contain the same free variable.
\FAILURE
Never fails.
\EXAMPLE
In the following example there are two free instances each of {\small\verb%x%} and {\small\verb%y%},
whereas the only instances of {\small\verb%z%} are bound:
{\par\samepage\setseps\small
\begin{verbatim}
#freesl ["x+y=2"; "!z. z >= (x-y)"];;
["x"; "y"] : term list
\end{verbatim}
}
\SEEALSO
frees, free_in, thm_frees.
\ENDDOC
\DOC{FREEZE\_THEN}
\TYPE {\small\verb%FREEZE_THEN : thm_tactical%}\egroup
\SYNOPSIS
`Freezes' a theorem to prevent instantiation of its free variables.
\DESCRIBE
{\small\verb%FREEZE_THEN%} expects a tactic-generating function {\small\verb%f:thm->tactic%}
and a theorem {\small\verb%(A1 |- w)%} as arguments. The tactic-generating function {\small\verb%f%}
is applied to the theorem {\small\verb%(w |- w)%}. If this tactic generates the subgoal:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
========= f (w |- w)
A ?- t1
\end{verbatim}
}
\noindent then applying {\small\verb%FREEZE_THEN f (A1 |- w)%}
to the goal {\small\verb%(A ?- t)%} produces the subgoal:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
========= FREEZE_THEN f (A1 |- w)
A ?- t1
\end{verbatim}
}
\noindent Since the term {\small\verb%w%} is a hypothesis of the argument to the
function {\small\verb%f%}, none of the free variables present in {\small\verb%w%} may be
instantiated or generalized. The hypothesis is discharged by
{\small\verb%PROVE_HYP%} upon the completion of the proof of the subgoal.
\FAILURE
Failures may arise from the tactic-generating function. An invalid
tactic arises if the hypotheses of the theorem are not
alpha-convertible to assumptions of the goal.
\EXAMPLE
Given the goal {\small\verb%([ "b < c"; "a < b" ], "(SUC a) <= c")%}, and the
specialized variant of the theorem {\small\verb%LESS_TRANS%}:
{\par\samepage\setseps\small
\begin{verbatim}
th = |- !p. a < b /\ b < p ==> a < p
\end{verbatim}
}
\noindent {\small\verb%IMP_RES_TAC th%} will generate several unneeded assumptions:
{\par\samepage\setseps\small
\begin{verbatim}
{b < c, a < b, a < c, !p. c < p ==> b < p, !a'. a' < a ==> a' < b}
?- (SUC a) <= c
\end{verbatim}
}
\noindent which can be avoided by first `freezing' the theorem, using
the tactic
{\par\samepage\setseps\small
\begin{verbatim}
FREEZE_THEN IMP_RES_TAC th
\end{verbatim}
}
\noindent This prevents the variables {\small\verb%a%} and {\small\verb%b%} from being instantiated.
{\par\samepage\setseps\small
\begin{verbatim}
{b < c, a < b, a < c} ?- (SUC a) <= c
\end{verbatim}
}
\USES
Used in serious proof hacking to limit the matches achievable by
resolution and rewriting.
\SEEALSO
ASSUME, IMP_RES_TAC, PROVE_HYP, RES_TAC, REWR_CONV.
\ENDDOC
\DOC{FRONT\_CONJ\_CONV}
\TYPE {\small\verb%FRONT_CONJ_CONV: (term list -> term -> thm)%}\egroup
\SYNOPSIS
Moves a specified conjunct to the beginning of a conjunction.
\DESCRIBE
Given a list of boolean terms {\small\verb%[t1;...;t;...;tn]%} and a term {\small\verb%t%} which occurs
in the list, {\small\verb%FRONT_CONJ_CONV%} returns:
{\par\samepage\setseps\small
\begin{verbatim}
|- (t1 /\ ... /\ t /\ ... /\ tn) = (t /\ t1 /\ ... /\ tn)
\end{verbatim}
}
\noindent That is, {\small\verb%FRONT_CONJ_CONV%} proves that {\small\verb%t%} can be moved to the
`front' of a conjunction of several terms.
\FAILURE
{\small\verb%FRONT_CONJ_CONV ["t1";...;"tn"] "t"%} fails if {\small\verb%t%} does not occur in the list
{\small\verb%[t1,...,tn]%} or if any of {\small\verb%t1%}, ..., {\small\verb%tn%} do not have type {\small\verb%bool%}.
\COMMENTS
This is not a true conversion, so perhaps it ought to be called something else.
The system shows its type as {\small\verb%(term list -> conv)%}.
\ENDDOC
\DOC{fst}
\TYPE {\small\verb%fst : ((* # **) -> *)%}\egroup
\SYNOPSIS
Extracts the first component of a pair.
\DESCRIBE
{\small\verb%fst (x,y)%} returns {\small\verb%x%}.
\FAILURE
Never fails.
\SEEALSO
snd, pair.
\ENDDOC
\DOC{FUN\_EQ\_CONV}
\TYPE {\small\verb%FUN_EQ_CONV : conv%}\egroup
\SYNOPSIS
Equates normal and extensional equality for two functions.
\DESCRIBE
The conversion {\small\verb%FUN_EQ_CONV%} embodies the fact that two functions are equal
precisely when they give the same results for all values to which they can be
applied. When supplied with a term argument of the form {\small\verb%f = g%}, where {\small\verb%f%} and
{\small\verb%g%} are functions of type {\small\verb%ty1->ty2%}, {\small\verb%FUN_EQ_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (f = g) = (!x. f x = g x)
\end{verbatim}
}
\noindent where {\small\verb%x%} is a variable of type {\small\verb%ty1%} chosen by the conversion.
\FAILURE
{\small\verb%FUN_EQ_CONV tm%} fails if {\small\verb%tm%} is not an equation {\small\verb%f = g%}, where {\small\verb%f%} and {\small\verb%g%}
are functions.
\USES
Used for proving equality of functions.
\SEEALSO
EXT, X_FUN_EQ_CONV.
\ENDDOC
\DOC{funpow}
\TYPE {\small\verb%funpow : (int -> (* -> *) -> * -> *)%}\egroup
\SYNOPSIS
Iterates a function a fixed number of times.
\DESCRIBE
{\small\verb%funpow n f x%} applies {\small\verb%f%} to {\small\verb%x%}, {\small\verb%n%} times, giving the result {\small\verb%f (f ... (f
x)...)%} where the number of {\small\verb%f%}'s is {\small\verb%n%}. {\small\verb%funpow 0 f x%} returns {\small\verb%x%}. If {\small\verb%n%} is
negative, {\small\verb%funpow n f x%} will either fail or loop indefinitely, depending on
the values of {\small\verb%f%} and {\small\verb%x%}.
\FAILURE
{\small\verb%funpow n f x%} fails if any of the {\small\verb%n%} applications of f fail.
\EXAMPLE
Apply {\small\verb%tl%} three times to a list:
{\par\samepage\setseps\small
\begin{verbatim}
#funpow 3 tl [1;2;3;4;5];;
[4; 5] : int list
\end{verbatim}
}
\noindent Apply {\small\verb%tl%} zero times:
{\par\samepage\setseps\small
\begin{verbatim}
#funpow 0 tl [1;2;3;4;5];;
[1; 2; 3; 4; 5] : int list
\end{verbatim}
}
\noindent Apply {\small\verb%tl%} six times to a list of only five elements:
{\par\samepage\setseps\small
\begin{verbatim}
#funpow 6 tl [1;2;3;4;5];;
evaluation failed tl
\end{verbatim}
}
\noindent Next, an application of {\small\verb%funpow%} in which the integer argument is
negative. Since the function cannot be applied to the argument an arbitrary
number of times, the application of {\small\verb%funpow%} fails.
{\par\samepage\setseps\small
\begin{verbatim}
#funpow (-1) tl [1;2;3;4;5];;
evaluation failed tl
\end{verbatim}
}
\noindent An example that causes indefinite looping:
{\par\samepage\setseps\small
\begin{verbatim}
#funpow (-1) I [1;2;3;4;5];;
\end{verbatim}
}
\ENDDOC
\DOC{g}
\TYPE {\small\verb%g : (term -> void)%}\egroup
\SYNOPSIS
Initializes the subgoal package with a new goal which has no assumptions.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
g "tm"
\end{verbatim}
}
\noindent is equivalent to
{\par\samepage\setseps\small
\begin{verbatim}
set_goal([],"tm")
\end{verbatim}
}
\noindent and clearly more convenient if a goal has no assumptions.
For a description of the subgoal package, see {\small\verb%set_goal%}.
\FAILURE
Fails unless the argument term has type {\small\verb%bool%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
\end{verbatim}
}
\SEEALSO
b, backup, backup_limit, e, expand, expandf, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{GEN\_ALL}
\TYPE {\small\verb%GEN_ALL : (thm -> thm)%}\egroup
\SYNOPSIS
Generalizes the conclusion of a theorem over its own free variables.
\DESCRIBE
When applied to a theorem {\small\verb%A |- t%}, the inference rule {\small\verb%GEN_ALL%} returns
the theorem {\small\verb%A |- !x1...xn. t%}, where the {\small\verb%xi%} are all the variables,
if any, which are free in {\small\verb%t%} but not in the assumptions.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
------------------ GEN_ALL
A |- !x1...xn. t
\end{verbatim}
}
\FAILURE
Never fails.
\SEEALSO
GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC.
\ENDDOC
\DOC{GEN\_ALPHA\_CONV}
\TYPE {\small\verb%GEN_ALPHA_CONV : (term -> conv)%}\egroup
\SYNOPSIS
Renames the bound variable of an abstraction, a quantified term, or other
binder application.
\DESCRIBE
The conversion {\small\verb%GEN_ALPHA_CONV%} provides alpha conversion for lambda
abstractions of the form {\small\verb%"\y.t"%}, quantified terms of the forms {\small\verb%"!y.t"%},
{\small\verb%"?y.t"%} or {\small\verb%"?!y.t"%}, and epsilon terms of the form {\small\verb%"@y.t"%}. In general,
if {\small\verb%B%} is a binder constant, then {\small\verb%GEN_ALPHA_CONV%} implements alpha
conversion for applications of the form {\small\verb%"B y.t"%}. The function {\small\verb%is_binder%}
determines what is regarded as a binder in this context.
If {\small\verb%tm%} is an abstraction {\small\verb%"\y.t"%} or an application of a binder to
an abstraction {\small\verb%"B y.t"%}, where the bound variable {\small\verb%y%} has type {\small\verb%":ty"%},
and if {\small\verb%"x"%} is a variable also of type {\small\verb%:ty%}, then {\small\verb%GEN_ALPHA_CONV "x" tm%}
returns one of the theorems:
{\par\samepage\setseps\small
\begin{verbatim}
|- (\y.t) = (\x'. t[x'/y])
|- (B y.t) = (!x'. t[x'/y])
\end{verbatim}
}
\noindent depending on whether the input term is {\small\verb%"\y.t"%} or {\small\verb%"B y.t"%}
respectively. The variable {\small\verb%x':ty%} in the resulting theorem is a primed
variant of {\small\verb%x%} chosen so as not to be free in the term provided as the second
argument to {\small\verb%GEN_ALPHA_CONV%}.
\FAILURE
{\small\verb%GEN_ALPHA_CONV x tm%} fails if {\small\verb%x%} is not a variable, or if {\small\verb%tm%} does not have
one of the forms {\small\verb%"\y.t"%} or {\small\verb%"B y.t"%}, where {\small\verb%B%} is a binder (that is,
{\small\verb%is_binder `B`%} returns {\small\verb%true%}). {\small\verb%GEN_ALPHA_CONV x tm%} also fails if {\small\verb%tm%}
does have one of these forms, but types of the variables {\small\verb%x%} and {\small\verb%y%} differ.
\SEEALSO
ALPHA, ALPHA_CONV, is_binder.
\ENDDOC
\DOC{GEN\_BETA\_CONV}
\TYPE {\small\verb%GEN_BETA_CONV : conv%}\egroup
\SYNOPSIS
Beta-reduces single or paired beta-redexes, creating a paired argument if
needed.
\DESCRIBE
The conversion {\small\verb%GEN_BETA_CONV%} will perform beta-reduction of simple
beta-redexes in the manner of {\small\verb%BETA_CONV%}, or of tupled beta-redexes in the
manner of {\small\verb%PAIRED_BETA_CONV%}. Unlike the latter, it will force through a
beta-reduction by introducing arbitrarily nested pair destructors if necessary.
The following shows the action for one level of pairing; others are similar.
{\par\samepage\setseps\small
\begin{verbatim}
GEN_BETA_CONV "(\(x,y). t) p" = t[(FST p)/x, (SND p)/y]
\end{verbatim}
}
\FAILURE
{\small\verb%GEN_BETA_CONV tm%} fails if {\small\verb%tm%} is neither a simple nor a tupled beta-redex.
\EXAMPLE
The following examples show the action of {\small\verb%GEN_BETA_CONV%} on tupled redexes. In
the following, it acts in the same way as {\small\verb%PAIRED_BETA_CONV%}:
{\par\samepage\setseps\small
\begin{verbatim}
#GEN_BETA_CONV "(\(x,y). x + y) (1,2)";;
|- (\(x,y). x + y)(1,2) = 1 + 2
\end{verbatim}
}
\noindent whereas in the following, the operand of the beta-redex is not a
pair, so {\small\verb%FST%} and {\small\verb%SND%} are introduced:
{\par\samepage\setseps\small
\begin{verbatim}
#GEN_BETA_CONV "(\(x,y). x + y) numpair";;
|- (\(x,y). x + y)numpair = (FST numpair) + (SND numpair)
\end{verbatim}
}
\noindent The introduction of {\small\verb%FST%} and {\small\verb%SND%} will be done more than once as
necessary:
{\par\samepage\setseps\small
\begin{verbatim}
#GEN_BETA_CONV "(\(w,x,y,z). w + x + y + z) (1,triple)";;
|- (\(w,x,y,z). w + (x + (y + z)))(1,triple) =
1 + ((FST triple) + ((FST(SND triple)) + (SND(SND triple))))
\end{verbatim}
}
\SEEALSO
BETA_CONV, PAIRED_BETA_CONV.
\ENDDOC
\DOC{GEN}
\TYPE {\small\verb%GEN : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Generalizes the conclusion of a theorem.
\DESCRIBE
When applied to a term {\small\verb%x%} and a theorem {\small\verb%A |- t%}, the inference rule
{\small\verb%GEN%} returns the theorem {\small\verb%A |- !x. t%}, provided {\small\verb%x%} is a variable not
free in any of the assumptions. There is no compulsion that {\small\verb%x%} should
be free in {\small\verb%t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
------------ GEN "x" [where x is not free in A]
A |- !x. t
\end{verbatim}
}
\FAILURE
Fails if {\small\verb%x%} is not a variable, or if it is free in any of the assumptions.
\EXAMPLE
The following example shows how the above side-condition prevents
the derivation of the theorem {\small\verb%x=T |- !x. x=T%}, which is clearly invalid.
{\par\samepage\setseps\small
\begin{verbatim}
#top_print print_all_thm;;
- : (thm -> void)
#let t = ASSUME "x=T";;
t = x = T |- x = T
#GEN "x:bool" t;;
evaluation failed GEN
\end{verbatim}
}
\SEEALSO
GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.
\ENDDOC
\DOC{GENL}
\TYPE {\small\verb%GENL : (term list -> thm -> thm)%}\egroup
\SYNOPSIS
Generalizes zero or more variables in the conclusion of a theorem.
\DESCRIBE
When applied to a term list {\small\verb%[x1;...;xn]%} and a theorem {\small\verb%A |- t%}, the inference
rule {\small\verb%GENL%} returns the theorem {\small\verb%A |- !x1...xn. t%}, provided none of the
variables {\small\verb%xi%} are free in any of the assumptions. It is not necessary that
any or all of the {\small\verb%xi%} should be free in {\small\verb%t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
------------------ GENL "[x1;...;xn]" [where no xi is free in A]
A |- !x1...xn. t
\end{verbatim}
}
\FAILURE
Fails unless all the terms in the list are variables, none of which are
free in the assumption list.
\SEEALSO
GEN, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.
\ENDDOC
\DOC{GEN\_REWRITE\_CONV}
\TYPE {\small\verb%GEN_REWRITE_CONV : ((conv -> conv) -> thm list -> thm list -> conv)%}\egroup
\SYNOPSIS
Rewrites a term, selecting terms according to a user-specified strategy.
\DESCRIBE
Rewriting in HOL is based on the use of equational theorems as left-to-right
replacements on the subterms of an object theorem. This replacement is
mediated by the use of {\small\verb%REWR_CONV%}, which finds matches between left-hand
sides of given equations in a term and applies the substitution.
Equations used in rewriting are obtained from the theorem lists given as
arguments to the function. These are at first transformed into a form suitable
for rewriting. Conjunctions are separated into individual rewrites. Theorems
with conclusions of the form {\small\verb%"~t"%} are transformed into the corresponding
equations {\small\verb%"t = F"%}. Theorems {\small\verb%"t"%} which are not equations are cast as
equations of form {\small\verb%"t = T"%}.
If a theorem is used to rewrite a term, its assumptions
are added to the assumptions of the returned theorem.
The matching involved uses variable instantiation.
Thus, all free variables are generalized, and
terms are instantiated before substitution.
Theorems may have universally quantified variables.
The theorems with which rewriting is done are divided
into two groups, to facilitate implementing other rewriting tools.
However, they are considered in an order-independent fashion. (That
is, the ordering is an implementation detail which is not specified.)
The search strategy for finding matching subterms is the first
argument to the rule. Matching and substitution may occur at any
level of the term, according to the specified search strategy: the
whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary
depth until no matches occur, once over the selected subterm, or any
more complex scheme.
\FAILURE
{\small\verb%GEN_REWRITE_CONV%} fails if the search strategy fails. It may also
cause a non-terminating sequence of rewrites, depending on the search
strategy used.
\USES
This conversion is used in the system to implement all other rewritings
conversions, and may provide a user with a method to fine-tune rewriting of
terms.
\EXAMPLE
Suppose we have a term of the form:
{\par\samepage\setseps\small
\begin{verbatim}
"(1 + 2) + 3 = (3 + 1) + 2"
\end{verbatim}
}
\noindent and we would like to rewrite the left-hand side with the
theorem {\small\verb%ADD_SYM%} without changing the right hand side. This can be
done by using:
{\par\samepage\setseps\small
\begin{verbatim}
GEN_REWRITE_CONV (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm
\end{verbatim}
}
\noindent Other rules, such as {\small\verb%ONCE_REWRITE_CONV%}, would match and
substitute on both sides, which would not be the desirable result.
As another example, {\small\verb%REWRITE_CONV%} could be implemented as
{\par\samepage\setseps\small
\begin{verbatim}
GEN_REWRITE_CONV TOP_DEPTH_CONV basic_rewrites
\end{verbatim}
}
\noindent which specifies that matches should be searched recursively
starting from the whole term of the theorem, and {\small\verb%basic_rewrites%} must
be added to the user defined set of theorems employed in rewriting.
\SEEALSO
ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWR_CONV, REWRITE_CONV.
\ENDDOC
\DOC{GEN\_REWRITE\_RULE}
\TYPE {\small\verb%GEN_REWRITE_RULE : ((conv -> conv) -> thm list -> thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem, selecting terms according to a user-specified strategy.
\DESCRIBE
Rewriting in HOL is based on the use of equational theorems as left-to-right
replacements on the subterms of an object theorem. This replacement is
mediated by the use of {\small\verb%REWR_CONV%}, which finds matches between left-hand
sides of given equations in a term and applies the substitution.
Equations used in rewriting are obtained from the theorem lists given as
arguments to the function. These are at first transformed into a form suitable
for rewriting. Conjunctions are separated into individual rewrites. Theorems
with conclusions of the form {\small\verb%"~t"%} are transformed into the corresponding
equations {\small\verb%"t = F"%}. Theorems {\small\verb%"t"%} which are not equations are cast as
equations of form {\small\verb%"t = T"%}.
If a theorem is used to rewrite the object theorem, its assumptions
are added to the assumptions of the returned theorem, unless they are
alpha-convertible to existing assumptions. The matching involved uses
variable instantiation. Thus, all free variables are generalized, and
terms are instantiated before substitution. Theorems may have
universally quantified variables.
The theorems with which rewriting is done are divided
into two groups, to facilitate implementing other rewriting tools.
However, they are considered in an order-independent fashion. (That
is, the ordering is an implementation detail which is not specified.)
The search strategy for finding matching subterms is the first
argument to the rule. Matching and substitution may occur at any
level of the term, according to the specified search strategy: the
whole term, or starting from any subterm. The search strategy also
specifies the depth of the search: recursively up to an arbitrary
depth until no matches occur, once over the selected subterm, or any
more complex scheme.
\FAILURE
{\small\verb%GEN_REWRITE_RULE%} fails if the search strategy fails. It may also
cause a non-terminating sequence of rewrites, depending on the search
strategy used.
\USES
This rule is used in the system to implement all other rewriting
rules, and may provide a user with a method to fine-tune rewriting of
theorems.
\EXAMPLE
Suppose we have a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
thm = |- (1 + 2) + 3 = (3 + 1) + 2
\end{verbatim}
}
\noindent and we would like to rewrite the left-hand side with the
theorem {\small\verb%ADD_SYM%} without changing the right hand side. This can be
done by using:
{\par\samepage\setseps\small
\begin{verbatim}
GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm
\end{verbatim}
}
\noindent Other rules, such as {\small\verb%ONCE_REWRITE_RULE%}, would match and
substitute on both sides, which would not be the desirable result.
As another example, {\small\verb%REWRITE_RULE%} could be implemented as
{\par\samepage\setseps\small
\begin{verbatim}
GEN_REWRITE_RULE TOP_DEPTH_CONV basic_rewrites
\end{verbatim}
}
\noindent which specifies that matches should be searched recursively
starting from the whole term of the theorem, and {\small\verb%basic_rewrites%} must
be added to the user defined set of theorems employed in rewriting.
\SEEALSO
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWR_CONV, REWRITE_RULE.
\ENDDOC
\DOC{GEN\_REWRITE\_TAC}
\TYPE {\small\verb%GEN_REWRITE_TAC : ((conv -> conv) -> thm list -> thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal, selecting terms according to a user-specified strategy.
\DESCRIBE
Distinct rewriting tactics differ in the search strategies used in
finding subterms on which to apply substitutions, and the
built-in theorems used in rewriting. In the case of {\small\verb%REWRITE_TAC%},
this is a recursive traversal starting from the body of the goal's
conclusion part, while in the case of {\small\verb%ONCE_REWRITE_TAC%}, for example,
the search stops as soon as a term on which a substitution is possible
is found. {\small\verb%GEN_REWRITE_TAC%} allows a user to specify a more complex
strategy for rewriting.
The basis of pattern-matching for rewriting is the notion of
conversions, through the application of {\small\verb%REWR_CONV%}. Conversions
are rules for mapping terms with theorems equating the given terms to
other semantically equivalent ones.
When attempting to rewrite subterms recursively, the use of
conversions (and therefore rewrites) can be automated further by using
functions which take a conversion and search for instances at which
they are applicable. Examples of these functions are {\small\verb%ONCE_DEPTH_CONV%}
and {\small\verb%RAND_CONV%}. The first argument to {\small\verb%GEN_REWRITE_TAC%} is such a
function, which specifies a search strategy; i.e. it specifies how
subterms (on which substitutions are allowed) should be searched for.
The second and third arguments are lists of theorems used for
rewriting. The order in which these are used is not specified. The
theorems need not be in equational form: negated terms, say {\small\verb%"~ t"%},
are transformed into the equivalent equational form {\small\verb%"t = F"%}, while
other non-equational theorems with conclusion of form {\small\verb%"t"%} are cast
as the corresponding equations {\small\verb%"t = T"%}. Conjunctions are separated
into the individual components, which are used as distinct rewrites.
\FAILURE
{\small\verb%GEN_REWRITE_TAC%} fails if the search strategy fails. It may also
cause a non-terminating sequence of rewrites, depending on the search
strategy used. The resulting tactic is invalid when a theorem which
matches the goal (and which is thus used for rewriting it with) has a
hypothesis which is not alpha-convertible to any of the assumptions of
the goal. Applying such an invalid tactic may result in a proof of
a theorem which does not correspond to the original goal.
\USES
Detailed control of rewriting strategy, allowing a user to specify a
search strategy.
\EXAMPLE
Given a goal such as:
{\par\samepage\setseps\small
\begin{verbatim}
?- a - (b + c) = a - (c + b)
\end{verbatim}
}
\noindent we may want to rewrite only one side of it with a theorem,
say {\small\verb%ADD_SYM%}. Rewriting tactics which operate recursively result in
divergence; the tactic {\small\verb%ONCE_REWRITE_TAC [ADD_SYM]%} rewrites on both
sides to produce the following goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- a - (c + b) = a - (b + c)
\end{verbatim}
}
\noindent as {\small\verb%ADD_SYM%} matches at two positions. To rewrite on
only one side of the equation, the following tactic can be used:
{\par\samepage\setseps\small
\begin{verbatim}
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM]
\end{verbatim}
}
\noindent which produces the desired goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- a - (c + b) = a - (c + b)
\end{verbatim}
}
As another example, one can write a tactic which will behave similarly
to {\small\verb%REWRITE_TAC%} but will also include {\small\verb%ADD_CLAUSES%} in the set of
theorems to use always:
{\par\samepage\setseps\small
\begin{verbatim}
let ADD_REWRITE_TAC = GEN_REWRITE_TAC TOP_DEPTH_CONV
(ADD_CLAUSES . basic_rewrites) ;;
\end{verbatim}
}
\SEEALSO
ASM_REWRITE_TAC, GEN_REWRITE_RULE, ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWR_CONV, REWRITE_TAC,
\ENDDOC
\DOC{GEN\_TAC}
\TYPE {\small\verb%GEN_TAC : tactic%}\egroup
\SYNOPSIS
Strips the outermost universal quantifier from the conclusion of a goal.
\DESCRIBE
When applied to a goal {\small\verb%A ?- !x. t%}, the tactic {\small\verb%GEN_TAC%} reduces it to
{\small\verb%A ?- t[x'/x]%} where {\small\verb%x'%} is a variant of {\small\verb%x%} chosen to avoid clashing with any
variables free in the goal's assumption list. Normally {\small\verb%x'%} is just {\small\verb%x%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x. t
============== GEN_TAC
A ?- t[x'/x]
\end{verbatim}
}
\FAILURE
Fails unless the goal's conclusion is universally quantified.
\USES
The tactic {\small\verb%REPEAT GEN_TAC%} strips away any universal quantifiers, and
is commonly used before tactics relying on the underlying term structure.
\SEEALSO
FILTER_GEN_TAC, GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC,
X_GEN_TAC.
\ENDDOC
\DOC{genvar}
\TYPE {\small\verb%genvar : (type -> term)%}\egroup
\SYNOPSIS
Returns a variable whose name has not been used previously.
\DESCRIBE
When given a type, {\small\verb%genvar%} returns a variable of that type whose name has
not been used for a variable or constant in the HOL session so far.
\FAILURE
Never fails.
\EXAMPLE
The following indicates the typical stylized form of the names (this should
not be relied on, of course):
{\par\samepage\setseps\small
\begin{verbatim}
#genvar ":bool";;
"GEN%VAR%357" : term
#genvar ":num";;
"GEN%VAR%358" : term
\end{verbatim}
}
\noindent Trying to anticipate {\small\verb%genvar%} doesn't work:
{\par\samepage\setseps\small
\begin{verbatim}
#let v = mk_var(`GEN%VAR%359`,":bool");;
v = "GEN%VAR%359" : term
#genvar ":bool";;
"GEN%VAR%360" : term
\end{verbatim}
}
\USES
The unique variables are useful in writing derived rules, for specializing
terms without having to worry about such things as free variable capture.
If the names are to be visible to a typical user, the function {\small\verb%variant%} can
provide rather more meaningful names.
\SEEALSO
GSPEC, variant.
\ENDDOC
\DOC{get\_const\_type}
\TYPE {\small\verb%get_const_type : (string -> type)%}\egroup
\SYNOPSIS
Gets the generic type of a constant from the name of the constant.
\DESCRIBE
{\small\verb%get_const_type `c`%} returns the generic type of {\small\verb%"c"%}, if {\small\verb%"c"%} is a constant.
\FAILURE
{\small\verb%get_const_type st%} fails if {\small\verb%st%} is not the name of a constant.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#get_const_type `COND`;;
":bool -> (* -> (* -> *))" : type
\end{verbatim}
}
\SEEALSO
dest_const, is_constant.
\ENDDOC
\DOC{getenv}
\TYPE {\small\verb%getenv : (string -> string)%}\egroup
\SYNOPSIS
Returns the value of a Unix environment variable.
\DESCRIBE
{\small\verb%getenv x%} returns the value of {\small\verb%x%} from the current environment list; this
will include shell environment variables set before {\small\verb%HOL%} is run.
\FAILURE
If in a Unix environment, fails with {\small\verb%getenv%} if the variable is undefined,
or has an empty value. In other environments, it will normally fail anyway.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#getenv `SHELL`;;
`/bin/csh` : string
\end{verbatim}
}
\ENDDOC
\DOC{get\_flag\_value}
\TYPE {\small\verb%get_flag_value : (string -> bool)%}\egroup
\SYNOPSIS
Returns the value of one of the system flags.
\DESCRIBE
The call {\small\verb%get_flag_value name%} will read the value of the system flag called
{\small\verb%name%}.
\FAILURE
Fails unless the name denotes a flag.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#get_flag_value `timing`;;
false : bool
\end{verbatim}
}
\COMMENTS
The various flags which are set up by default are detailed in the DESCRIPTION.
\SEEALSO
flags, set_flag_value.
\ENDDOC
\DOC{get\_state}
\TYPE {\small\verb%get_state : (void -> goalstack)%}\egroup
\SYNOPSIS
Returns the current proof state of the subgoal package.
\DESCRIBE
The function {\small\verb%get_state%} is part of the subgoal package. It returns the current
proof state. A proof state of the package consists of either goal and
justification stacks if a proof is in progress or a theorem if a proof has just
been completed. For a description of the subgoal package, see {\small\verb%set_goal%}.
\USES
Providing additional backup. Pausing in the proof of a goal whilst lemmas
required for its completion are proved. {\small\verb%get_state%} is used in conjunction with
{\small\verb%set_state%}. The current state may be bound to an ML variable using {\small\verb%get_state%}
and later restored using {\small\verb%set_state%}.
\EXAMPLE
In this example, a proof state is bound to the ML variable {\small\verb%main_proof%}.
{\par\samepage\setseps\small
\begin{verbatim}
#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
#let main_proof = get_state();;
main_proof = - : goalstack
\end{verbatim}
}
\noindent Other goals may now be set and proved. The proof state may later be
restored using {\small\verb%set_state%} and the original proof continued.
{\par\samepage\setseps\small
\begin{verbatim}
#set_state main_proof;;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
\end{verbatim}
}
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{get\_steps}
\TYPE {\small\verb%get_steps : void -> step list%}\egroup
\SYNOPSIS
Get the proof steps since last time the proof recorder is enabled.
\DESCRIBE
A proof is a list of inference steps. After the proof recorder is
enabled, every inference performed by the system is recorded and
cumulated in an internal buffer. When a proof is completed, the raw
records can then be processed and output to a disk file.
{\small\verb%get_steps%} is a low level user function for managing the proof
recorder. It returns the list of steps cumulated since last time the
proof recorder is enabled, i.e. the function {\small\verb%record_proof%} is called
with the value {\small\verb%true%}. The list of inference step needs to be
processed to produce a proof line list which can be output to a file.
\FAILURE
Never fail.
\EXAMPLE
Below is an example showing how to record an extremely simple proof
in which the function {\small\verb%get_steps%} is called to get the list of
inference steps:
{\par\samepage\setseps\small
\begin{verbatim}
#let th = SPEC_ALL ADD_SYM;;
Theorem ADD_SYM autoloading from theory `arithmetic` ...
ADD_SYM = |- !m n. m + n = n + m
th = |- m + n = n + m
#let v = genvar ":num";;
"GEN%VAR%536" : term
#record_proof true;;
() : void
#let th1 = (REFL "SUC(m + n)");;
th1 = |- SUC(m + n) = SUC(m + n)
#let th2 = SUBST [th,v] "SUC(m + n) = SUC ^v" th1;;
th2 = |- SUC(m + n) = SUC(n + m)
#record_proof false;;
() : void
#write_proof_to `ap_term.prf` `ap_term` [] (get_steps());;
() : void
\end{verbatim}
}
The proof consists of two inference steps: the application of the two
primitive inference rules {\small\verb%REFL%} and {\small\verb%SUBST%}. The function
{\small\verb%write_proof_to%} outputs the proof into a file names {\small\verb%ap_term.prf%}.
\COMMENTS
This function is used to implement higher level user functions for
recording proof in the library {\small\verb%record_proof%}. It is much more
convenient to use those functions than the low level functions
such as {\small\verb%get_steps%} directly.
\SEEALSO
record_proof, is_recording_proof, RecordStep,
suspend_recording, resume_recording, MakeProof,
current_proof, current_proof_file,
new_proof_file, close_proof_file, begin_proof, end_proof,
TAC_PROOF, PROVE, prove, prove_thm.
\ENDDOC
\DOC{get\_type}
\TYPE {\small\verb%get_type : (term -> type -> type)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{goals}
\TYPE {\small\verb%goals : goalstack%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{GSPEC}
\TYPE {\small\verb%GSPEC : (thm -> thm)%}\egroup
\SYNOPSIS
Specializes the conclusion of a theorem with unique variables.
\DESCRIBE
When applied to a theorem {\small\verb%A |- !x1...xn. t%}, where the number of universally
quantified variables may be zero, {\small\verb%GSPEC%} returns {\small\verb%A |- t[g1/x1]...[gn/xn]%},
where the {\small\verb%gi%} are distinct variable names of the appropriate type, chosen by
{\small\verb%genvar%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x1...xn. t
------------------------- GSPEC
A |- t[g1/x1]...[gn/xn]
\end{verbatim}
}
\FAILURE
Never fails.
\USES
{\small\verb%GSPEC%} is useful in writing derived inference rules which need to specialize
theorems while avoiding using any variables that may be present elsewhere.
\SEEALSO
GEN, GENL, genvar, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.
\ENDDOC
\DOC{GSUBST\_TAC}
\TYPE {\small\verb%GSUBST_TAC : (((term # term) list -> term -> term) -> thm list -> tactic)%}\egroup
\SYNOPSIS
Makes term substitutions in a goal using a supplied substitution function.
\DESCRIBE
{\small\verb%GSUBST_TAC%} is the basic substitution tactic by means of which other tactics
such as {\small\verb%SUBST_OCCS_TAC%} and {\small\verb%SUBST_TAC%} are defined. Given a list
{\small\verb%[(v1,w1);...;(vk,wk)]%} of pairs of terms and a term {\small\verb%w%}, a substitution
function replaces occurrences of {\small\verb%wj%} in {\small\verb%w%} with {\small\verb%vj%} according to a specific
substitution criterion. Such a criterion may be, for example, to substitute all
the occurrences or only some selected ones of each {\small\verb%wj%} in {\small\verb%w%}.
Given a substitution function {\small\verb%sfn%}, {\small\verb%GSUBST_TAC sfn [A1|-t1=u1;...;An|-tn=un]
(A,t)%} replaces occurrences of {\small\verb%ti%} in {\small\verb%t%} with {\small\verb%ui%} according to {\small\verb%sfn%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============================= GSUBST_TAC sfn [A1|-t1=u1;...;An|-tn=un]
A ?- t[u1,...,un/t1,...,tn]
\end{verbatim}
}
\noindent The assumptions of the theorems used to substitute with are not added
to the assumptions {\small\verb%A%} of the goal, while they are recorded in the proof. If
any {\small\verb%Ai%} is not a subset of {\small\verb%A%} (up to alpha-conversion), then {\small\verb%GSUBST_TAC sfn
[A1|-t1=u1;...;An|-tn=un]%} results in an invalid tactic.
{\small\verb%GSUBST_TAC%} automatically renames bound variables to prevent free variables in
{\small\verb%ui%} becoming bound after substitution.
\FAILURE
{\small\verb%GSUBST_TAC sfn [th1;...;thn] (A,t)%} fails if the conclusion of each theorem in
the list is not an equation. No change is made to the goal if the occurrences
to be substituted according to the substitution function {\small\verb%sfn%} do not appear in
{\small\verb%t%}.
\USES
{\small\verb%GSUBST_TAC%} is used to define substitution tactics such as {\small\verb%SUBST_OCCS_TAC%}
and {\small\verb%SUBST_TAC%}. It may also provide the user with a tool for tailoring
substitution tactics.
\SEEALSO
SUBST1_TAC, SUBST_OCCS_TAC, SUBST_TAC.
\ENDDOC
\DOC{GSYM}
\TYPE {\small\verb%GSYM : (thm -> thm)%}\egroup
\SYNOPSIS
Reverses the first equation(s) encountered in a top-down search.
\DESCRIBE
The inference rule {\small\verb%GSYM%} reverses the first equation(s) encountered in a
top-down search of the conclusion of the argument theorem. An equation will be
reversed iff it is not a proper subterm of another equation. If a theorem
contains no equations, it will be returned unchanged.
{\par\samepage\setseps\small
\begin{verbatim}
A |- ..(s1 = s2)...(t1 = t2)..
-------------------------------- GSYM
A |- ..(s2 = s1)...(t2 = t1)..
\end{verbatim}
}
\FAILURE
Never fails, and never loops infinitely.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ADD;;
|- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n))
Run time: 0.0s
#GSYM ADD;;
|- (!n. n = 0 + n) /\ (!m n. SUC(m + n) = (SUC m) + n)
\end{verbatim}
}
\SEEALSO
NOT_EQ_SYM, REFL, SYM.
\ENDDOC
\DOC{HALF\_MK\_ABS}
\TYPE {\small\verb%HALF_MK_ABS : (thm -> thm)%}\egroup
\SYNOPSIS
Converts a function definition to lambda-form.
\DESCRIBE
When applied to a theorem {\small\verb%A |- !x. t1 x = t2%}, whose conclusion is a
universally quantified equation, {\small\verb%HALF_MK_ABS%} returns the theorem
{\small\verb%A |- t1 = \x. t2%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x. t1 x = t2
-------------------- HALF_MK_ABS [where x is not free in t1]
A |- t1 = (\x. t2)
\end{verbatim}
}
\FAILURE
Fails unless the theorem is a singly universally quantified equation whose
left-hand side is a function applied to the quantified variable, or if the
variable is free in that function.
\SEEALSO
ETA_CONV, MK_ABS, MK_COMB, MK_EXISTS.
\ENDDOC
\DOC{\char'136}
\TYPE {\small\verb%$^ : (string -> string -> string)%}\egroup
\SYNOPSIS
Concatenates two ML strings.
\DESCRIBE
The {\small\verb%^%} is the ML infix string concatenation operator.
If {\small\verb%s1%} and {\small\verb%s2%} are strings, then {\small\verb%s1^s2%} gives a string which is their
concatenation.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#`Hello `^`world`;;
`Hello world` : string
\end{verbatim}
}
\COMMENTS
The ML role of the {\small\verb%^%} operator should not be confused with its use in
quoted terms to introduce antiquotation (see DESCRIPTION for details).
\SEEALSO
concat, concatl.
\ENDDOC
\DOC{hd}
\TYPE {\small\verb%hd : (* list -> *)%}\egroup
\SYNOPSIS
Computes the first element (the head) of a list.
\DESCRIBE
{\small\verb%hd [x1;...;xn]%} returns {\small\verb%x1%}.
\FAILURE
Fails with {\small\verb%hd%} if the list is empty.
\SEEALSO
tl, el, null.
\ENDDOC
\DOC{help}
\TYPE {\small\verb%help : (string -> void)%}\egroup
\SYNOPSIS
Displays help on a given identifier in the system.
\DESCRIBE
{\small\verb%help%} will attempt to display the help file associated with a particular
identifier in the system. The identifier is provided as an ML string, and
the file should be located somewhere on the help search path. Normally the help
file for an identifier {\small\verb%name%} would be called {\small\verb%name.doc%}, but there are a few
exceptions, because some identifiers have characters that cannot be put in
filenames (e.g. `{\small\verb%/%}' under Unix, which is the directory separator).
\FAILURE
Fails if no information can be found on the identifier in question.
\SEEALSO
help_search_path, set_help_search_path.
\ENDDOC
\DOC{help\_search\_path}
\TYPE {\small\verb%help_search_path : (void -> string list)%}\egroup
\SYNOPSIS
Returns the internal search path use by HOL to find online help files.
\DESCRIBE
Evaluating {\small\verb%help_search_path()%} returns a list of strings representing the
pathnames of the directories that are searched when the {\small\verb%help%} function
searches for online help files. Although the help search path can be set to an
arbitrary list of strings, each string is normally expected to be either empty
({\small\verb%``%}) or a pathname with `{\small\verb%/%}' as its final character. When the {\small\verb%help%}
function looks for an online help file, the directories in the help search path
are searched in the order in which they occur in the list returned by
{\small\verb%help_search_path%}.
\FAILURE
Never fails.
\SEEALSO
install, search_path, set_help_search_path, set_search_path.
\ENDDOC
\DOC{hide\_constant}
\TYPE {\small\verb%hide_constant : (string -> void)%}\egroup
\SYNOPSIS
Stops the quotation parser from recognizing a constant.
\DESCRIBE
A call {\small\verb%hide_constant `c`%} where {\small\verb%c%} is the name of a constant, will
prevent the quotation parser from parsing it as such; it will just be parsed as
a variable. The effect can be reversed by {\small\verb%unhide_constant `c`%}.
\FAILURE
Fails if the given name is not a constant of the current theory, or if the
named constant is already hidden.
\COMMENTS
The hiding of a constant only affects the quotation parser; the constant is
still there in a theory, and may not be redefined.
\SEEALSO
unhide_constant.
\ENDDOC
\DOC{hol\_pathname}
\TYPE {\small\verb%hol_pathname : (void -> string)%}\egroup
\SYNOPSIS
Returns the absolute pathname to the hol system directory.
\DESCRIBE
Evaluating {\small\verb%hol_pathname()%} returns a string giving the absolute pathname
to the directory in which the HOL system is resident.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#hol_pathname();;
`/usr/groups/hol/HOL2/sun4_sos` : string
\end{verbatim}
}
\SEEALSO
library_pathname.
\ENDDOC
\DOC{host\_name}
\TYPE {\small\verb%host_name : (void -> string)%}\egroup
\SYNOPSIS
Returns the name of the host machine.
\EXAMPLE
When the {\small\verb%HOL%} system was being run on the host machine {\small\verb%scaup.cl.cam.ac.uk%}:
{\par\samepage\setseps\small
\begin{verbatim}
#host_name ();;
`scaup.cl.cam.ac.uk` : string
\end{verbatim}
}
\COMMENTS
This function uses the facilities provided by the underlying Lisp, which
unfortunately are extremely inconsistent. In Lisps other that Franz, this
function may not work at all. However, the ability to perform system commands
usually provides an adequate alternative, if one is prepared to put in a bit
more work. For example:
{\par\samepage\setseps\small
\begin{verbatim}
#let host_name2() =
#system `hostname >/tmp/.hostname`;
#let handle = openi `/tmp/.hostname` in
#letref name, char = ``, `` in
#while not (char = `\
#`) do (name := name^char; char := read handle);
#close handle;
#system `rm /tmp/.hostname`;
#name;;
host_name2 = - : (* -> string)
#host_name();;
`` : string
#host_name2();;
`auk.cl.cam.ac.uk` : string
\end{verbatim}
}
\ENDDOC
\DOC{hyp}
\TYPE {\small\verb%hyp : (thm -> term list)%}\egroup
\SYNOPSIS
Returns the hypotheses of a theorem.
\DESCRIBE
When applied to a theorem {\small\verb%A |- t%}, the function {\small\verb%hyp%} returns {\small\verb%A%}, the
list of hypotheses of the theorem.
\FAILURE
Never fails.
\SEEALSO
dest_thm, concl.
\ENDDOC
\DOC{hyp\_union}
\TYPE {\small\verb%hyp_union : (thm list -> term list)%}\egroup
\SYNOPSIS
Returns union of assumption lists of the given theorems.
\DESCRIBE
When applied to a list of theorems, {\small\verb%hyp_union%} returns the union (see
{\small\verb%union%}) of their assumption lists. Straight repetitions only arise if there
were multiple instances of an assumption in a single assumption list. There is
no elimination of alpha-equivalent pairs of assumptions, only ones which are
actually equal.
{\par\samepage\setseps\small
\begin{verbatim}
hyp_union [A1 |- t1; ... ; An |- tn] = A1 u...u An
\end{verbatim}
}
\FAILURE
Never fails.
\USES
Designed for internal use, in writing primitive inference rules.
\SEEALSO
union.
\ENDDOC
\DOC{I}
\TYPE {\small\verb%I : (* -> *)%}\egroup
\SYNOPSIS
Performs identity operation: {\small\verb%I x%} = {\small\verb%x%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, CB, Co, K, KI, o, oo, S, W.
\ENDDOC
\DOC{IMP\_ANTISYM\_RULE}
\TYPE {\small\verb%IMP_ANTISYM_RULE : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Deduces equality of boolean terms from forward and backward implications.
\DESCRIBE
When applied to the theorems {\small\verb%A1 |- t1 ==> t2%} and {\small\verb%A2 |- t2 ==> t1%},
the inference rule {\small\verb%IMP_ANTISYM_RULE%} returns the theorem {\small\verb%A1 u A2 |- t1 = t2%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 ==> t2 A2 |- t2 ==> t1
------------------------------------- IMP_ANTISYM_RULE
A1 u A2 |- t1 = t2
\end{verbatim}
}
\FAILURE
Fails unless the theorems supplied are a complementary implicative
pair as indicated above.
\SEEALSO
EQ_IMP_RULE, EQ_MP, EQ_TAC.
\ENDDOC
\DOC{IMP\_CANON}
\TYPE {\small\verb%IMP_CANON : (thm -> thm list)%}\egroup
\SYNOPSIS
Puts theorem into a `canonical' form.
\DESCRIBE
{\small\verb%IMP_CANON%} puts a theorem in `canonical' form by removing quantifiers
and breaking apart conjunctions, as well as disjunctions which form the
antecedent of implications. It applies the following transformation rules:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 /\ t2 A |- !x. t A |- (t1 /\ t2) ==> t
------------------- ------------ ------------------------
A |- t1 A |- t2 A |- t A |- t1 ==> (t2 ==> t)
A |- (t1 \/ t2) ==> t A |- (?x. t1) ==> t2
------------------------------- ----------------------
A |- t1 ==> t A |- t2 ==> t A |- t1[x'/x] ==> t2
\end{verbatim}
}
\FAILURE
Never fails, but if there is no scope for one of the above reductions,
merely gives a list whose only member is the original theorem.
\COMMENTS
This is a rather ad-hoc inference rule, and its use is not recommended.
\SEEALSO
CONJ1, CONJ2, CONJUNCTS, DISJ1, DISJ2, EXISTS, SPEC.
\ENDDOC
\DOC{IMP\_CONJ}
\TYPE {\small\verb%IMP_CONJ : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Conjoins antecedents and consequents of two implications.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- p ==> r%} and {\small\verb%A2 |- q ==> s%}, the {\small\verb%IMP_CONJ%}
inference rule returns the theorem {\small\verb%A1 u A2 |- p /\ q ==> r /\ s%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- p ==> r A2 |- q ==> s
-------------------------------- IMP_CONJ
A1 u A2 |- p /\ q ==> r /\ s
\end{verbatim}
}
\FAILURE
Fails unless the conclusions of both theorems are implicative.
\SEEALSO
CONJ.
\ENDDOC
\DOC{IMP\_ELIM}
\TYPE {\small\verb%IMP_ELIM : (thm -> thm)%}\egroup
\SYNOPSIS
Transforms {\small\verb%|- s ==> t%} into {\small\verb%|- ~s \/ t%}.
\DESCRIBE
When applied to a theorem {\small\verb%A |- s ==> t%}, the inference rule {\small\verb%IMP_ELIM%}
returns the theorem {\small\verb%A |- ~s \/ t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- s ==> t
-------------- IMP_ELIM
A |- ~s \/ t
\end{verbatim}
}
\FAILURE
Fails unless the theorem is implicative.
\SEEALSO
NOT_INTRO, NOT_ELIM.
\ENDDOC
\DOC{implode}
\TYPE {\small\verb%implode : (string list -> string)%}\egroup
\SYNOPSIS
Converts a list of single-character strings into one string.
\DESCRIBE
{\small\verb%implode [s1;...;sn]%} returns the string formed by concatenating the
single-character strings {\small\verb%s1 ... sn%}. If {\small\verb%n%} is zero (the list is empty),
then the empty string is returned.
\FAILURE
Fails if any of the strings in the argument list are null or longer than one
character.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#implode [`e`;`x`;`a`;`m`;`p`;`l`;`e`];;
`example` : string
#implode [`ex`;`a`;`mpl`;``;`e`];;
evaluation failed implode
\end{verbatim}
}
\SEEALSO
explode, concat, concatl.
\ENDDOC
\DOC{IMP\_RES\_TAC}
\TYPE {\small\verb%IMP_RES_TAC : thm_tactic%}\egroup
\SYNOPSIS
Enriches assumptions by repeatedly resolving an implication with them.
\DESCRIBE
Given a theorem {\small\verb%th%}, the theorem-tactic {\small\verb%IMP_RES_TAC%} uses {\small\verb%RES_CANON%} to
derive a canonical list of implications, each of which has the form:
{\par\samepage\setseps\small
\begin{verbatim}
A |- u1 ==> u2 ==> ... ==> un ==> v
\end{verbatim}
}
\noindent {\small\verb%IMP_RES_TAC%} then tries to repeatedly `resolve' these theorems
against the assumptions of a goal by attempting to match the antecedents {\small\verb%u1%},
{\small\verb%u2%}, ..., {\small\verb%un%} (in that order) to some assumption of the goal (i.e. to some
candidate antecedents among the assumptions). If all the antecedents can be
matched to assumptions of the goal, then an instance of the theorem
{\par\samepage\setseps\small
\begin{verbatim}
A u {a1,...,an} |- v
\end{verbatim}
}
\noindent called a `final resolvent' is obtained by repeated specialization of
the variables in the implicative theorem, type instantiation, and applications
of modus ponens. If only the first {\small\verb%i%} antecedents {\small\verb%u1%}, ..., {\small\verb%ui%} can be
matched to assumptions and then no further matching is possible, then the final
resolvent is an instance of the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
A u {a1,...,ai} |- u(i+1) ==> ... ==> v
\end{verbatim}
}
\noindent All the final resolvents obtained in this way (there may be several,
since an antecedent {\small\verb%ui%} may match several assumptions) are added to the
assumptions of the goal, in the stripped form produced by using
{\small\verb%STRIP_ASSUME_TAC%}. If the conclusion of any final resolvent is a
contradiction `{\small\verb%F%}' or is alpha-equivalent to the conclusion of the goal, then
{\small\verb%IMP_RES_TAC%} solves the goal.
\FAILURE
Never fails.
\SEEALSO
IMP_RES_THEN, RES_CANON, RES_TAC, RES_THEN.
\ENDDOC
\DOC{IMP\_RES\_THEN}
\TYPE {\small\verb%IMP_RES_THEN : thm_tactical%}\egroup
\SYNOPSIS
Resolves an implication with the assumptions of a goal.
\DESCRIBE
The function {\small\verb%IMP_RES_THEN%} is the basic building block for resolution in HOL.
This is not full higher-order, or even first-order, resolution with
unification, but simply one way simultaneous pattern-matching (resulting in
term and type instantiation) of the antecedent of an implicative theorem to the
conclusion of another theorem (the candidate antecedent).
Given a theorem-tactic {\small\verb%ttac%} and a theorem {\small\verb%th%}, the theorem-tactical
{\small\verb%IMP_RES_THEN%} uses {\small\verb%RES_CANON%} to derive a canonical list of implications from
{\small\verb%th%}, each of which has the form:
{\par\samepage\setseps\small
\begin{verbatim}
Ai |- !x1...xn. ui ==> vi
\end{verbatim}
}
\noindent {\small\verb%IMP_RES_THEN%} then produces a tactic that, when applied to a goal
{\small\verb%A ?- g%} attempts to match each antecedent {\small\verb%ui%} to each assumption {\small\verb%aj |- aj%}
in the assumptions {\small\verb%A%}. If the antecedent {\small\verb%ui%} of any implication matches the
conclusion {\small\verb%aj%} of any assumption, then an instance of the theorem {\small\verb%Ai u {aj}
|- vi%}, called a `resolvent', is obtained by specialization of the variables
{\small\verb%x1%}, ..., {\small\verb%xn%} and type instantiation, followed by an application of modus
ponens. There may be more than one canonical implication and each implication
is tried against every assumption of the goal, so there may be several
resolvents (or, indeed, none).
Tactics are produced using the theorem-tactic {\small\verb%ttac%} from all these resolvents
(failures of {\small\verb%ttac%} at this stage are filtered out) and these tactics are then
applied in an unspecified sequence to the goal. That is,
{\par\samepage\setseps\small
\begin{verbatim}
IMP_RES_THEN ttac th (A ?- g)
\end{verbatim}
}
\noindent has the effect of:
{\par\samepage\setseps\small
\begin{verbatim}
MAP_EVERY (mapfilter ttac [... ; (Ai u {aj} |- vi) ; ...]) (A ?- g)
\end{verbatim}
}
\noindent where the theorems {\small\verb%Ai u {aj} |- vi%} are all the consequences that
can be drawn by a (single) matching modus-ponens inference from the
assumptions of the goal {\small\verb%A ?- g%} and the implications derived from the supplied
theorem {\small\verb%th%}. The sequence in which the theorems {\small\verb%Ai u {aj} |- vi%} are
generated and the corresponding tactics applied is unspecified.
\FAILURE
Evaluating {\small\verb%IMP_RES_THEN ttac th%} fails with `{\small\verb%no implication%}' if the supplied
theorem {\small\verb%th%} is not an implication, or if no implications can be derived from
{\small\verb%th%} by the transformation process described under the entry for {\small\verb%RES_CANON%}.
Evaluating {\small\verb%IMP_RES_THEN ttac th (A ?- g)%} fails with `{\small\verb%no resolvents%}' if no
assumption of the goal {\small\verb%A ?- g%} can be resolved with the implication or
implications derived from {\small\verb%th%}. Evaluation also fails, with `{\small\verb%no tactics%}', if
there are resolvents, but for every resolvent {\small\verb%Ai u {aj} |- vi%} evaluating
the application {\small\verb%ttac (Ai u {aj} |- vi)%} fails---that is, if for every
resolvent {\small\verb%ttac%} fails to produce a tactic. Finally, failure is propagated if
any of the tactics that are produced from the resolvents by {\small\verb%ttac%} fails when
applied in sequence to the goal.
\EXAMPLE
The following example shows a straightforward use of {\small\verb%IMP_RES_THEN%} to
infer an equational consequence of the assumptions of a goal, use it
once as a substitution in the conclusion of goal, and then `throw it away'.
Suppose the goal is:
{\par\samepage\setseps\small
\begin{verbatim}
a + n = a ?- !k. k - n = k
\end{verbatim}
}
\noindent By the built-in theorem:
{\par\samepage\setseps\small
\begin{verbatim}
ADD_INV_0 = |- !m n. (m + n = m) ==> (n = 0)
\end{verbatim}
}
\noindent the assumption of this goal implies that {\small\verb%n%} equals {\small\verb%0%}. A
single-step resolution with this theorem followed by substitution:
{\par\samepage\setseps\small
\begin{verbatim}
IMP_RES_THEN SUBST1_TAC ADD_INV_0
\end{verbatim}
}
\noindent can therefore be used to reduce the goal to:
{\par\samepage\setseps\small
\begin{verbatim}
a + n = a ?- !k. k - 0 = m
\end{verbatim}
}
\noindent Here, a single resolvent {\small\verb%a + n = a |- n = 0%} is obtained by
matching the antecedent of {\small\verb%ADD_INV_0%} to the assumption of the goal. This is
then used to substitute {\small\verb%0%} for {\small\verb%n%} in the conclusion of the goal.
\SEEALSO
IMP_RES_TAC, MATCH_MP, RES_CANON, RES_TAC, RES_THEN.
\ENDDOC
\DOC{IMP\_TRANS}
\TYPE {\small\verb%IMP_TRANS : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Implements the transitivity of implication.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- t1 ==> t2%} and {\small\verb%A2 |- t2 ==> t3%},
the inference rule {\small\verb%IMP_TRANS%} returns the theorem {\small\verb%A1 u A2 |- t1 ==> t3%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 ==> t2 A2 |- t2 ==> t3
----------------------------------- IMP_TRANS
A1 u A2 |- t1 ==> t3
\end{verbatim}
}
\FAILURE
Fails unless the theorems are both implicative, with the consequent of the
first being the same as the antecedent of the second (up to alpha-conversion).
\SEEALSO
IMP_ANTISYM_RULE, SYM, TRANS.
\ENDDOC
\DOC{INDUCT}
\TYPE {\small\verb%INDUCT : ((thm # thm) -> thm)%}\egroup
\SYNOPSIS
Performs a proof by mathematical induction on the natural numbers.
\DESCRIBE
The derived inference rule {\small\verb%INDUCT%} implements the rule of mathematical
induction:
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- P[0] A2 |- !n. P[n] ==> P[SUC n]
----------------------------------------------- INDUCT
A1 u A2 |- !n. P[n]
\end{verbatim}
}
\noindent When supplied with a theorem {\small\verb%A1 |- P[0]%}, which asserts the base
case of a proof of the proposition {\small\verb%P[n]%} by induction on {\small\verb%n%}, and the theorem
{\small\verb%A2 |- !n. P[n] ==> P[SUC n]%}, which asserts the step case in the induction on
{\small\verb%n%}, the inference rule {\small\verb%INDUCT%} returns {\small\verb%A1 u A2 |- !n. P[n]%}.
\FAILURE
{\small\verb%INDUCT th1 th2%} fails if the theorems {\small\verb%th1%} and {\small\verb%th2%} do not have the forms
{\small\verb%A1 |- P[0]%} and {\small\verb%A2 |- !n. P[n] ==> P[SUC n]%} respectively.
\SEEALSO
INDUCT_TAC.
\ENDDOC
\DOC{INDUCT\_TAC}
\TYPE {\small\verb%INDUCT_TAC : tactic%}\egroup
\SYNOPSIS
Performs tactical proof by mathematical induction on the natural numbers.
\DESCRIBE
{\small\verb%INDUCT_TAC%} reduces a goal {\small\verb%!n.P[n]%}, where {\small\verb%n%} has type {\small\verb%num%}, to two
subgoals corresponding to the base and step cases in a proof by mathematical
induction on {\small\verb%n%}. The induction hypothesis appears among the assumptions of the
subgoal for the step case. The specification of {\small\verb%INDUCT_TAC%} is:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !n. P
======================================== INDUCT_TAC
A ?- P[0/n] A u {P} ?- P[SUC n'/n]
\end{verbatim}
}
\noindent where {\small\verb%n'%} is a primed variant of {\small\verb%n%} that does not appear free in
the assumptions {\small\verb%A%} (usually, {\small\verb%n'%} just equals {\small\verb%n%}). When {\small\verb%INDUCT_TAC%} is
applied to a goal of the form {\small\verb%!n.P%}, where {\small\verb%n%} does not appear free in {\small\verb%P%},
the subgoals are just {\small\verb%A ?- P%} and {\small\verb%A u {P} ?- P%}.
\FAILURE
{\small\verb%INDUCT_TAC g%} fails unless the conclusion of the goal {\small\verb%g%} has the form {\small\verb%!n.t%},
where the variable {\small\verb%n%} has type {\small\verb%num%}.
\SEEALSO
INDUCT.
\ENDDOC
\DOC{INDUCT\_THEN}
\TYPE {\small\verb%INDUCT_THEN : (thm -> thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Structural induction tactic for automatically-defined concrete types.
\DESCRIBE
The function {\small\verb%INDUCT_THEN%} implements structural induction tactics for
arbitrary concrete recursive types of the kind definable by {\small\verb%define_type%}. The
first argument to {\small\verb%INDUCT_THEN%} is a structural induction theorem for the
concrete type in question. This theorem must have the form of an induction
theorem of the kind returned by {\small\verb%prove_induction_thm%}. When applied to such a
theorem, the function {\small\verb%INDUCT_THEN%} constructs specialized tactic for
doing structural induction on the concrete type in question.
The second argument to {\small\verb%INDUCT_THEN%} is a function that determines what is be
done with the induction hypotheses in the goal-directed proof by structural
induction. Suppose that {\small\verb%th%} is a structural induction theorem for a concrete
data type {\small\verb%ty%}, and that {\small\verb%A ?- !x.P%} is a universally-quantified goal in which
the variable {\small\verb%x%} ranges over values of type {\small\verb%ty%}. If the type {\small\verb%ty%} has {\small\verb%n%}
constructors {\small\verb%C1%}, ..., {\small\verb%Cn%} and `{\small\verb%Ci(vs)%}' represents a (curried) application
of the {\small\verb%i%}th constructor to a sequence of variables, then if {\small\verb%ttac%} is a
function that maps the induction hypotheses {\small\verb%hypi%} of the {\small\verb%i%}th subgoal
to the tactic:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- P[Ci(vs)/x]
====================== MAP_EVERY ttac hypi
A1 ?- Gi
\end{verbatim}
}
\noindent then {\small\verb%INDUCT_THEN th ttac%} is an induction tactic that decomposes
the goal {\small\verb%A ?- !x.P%} into a set of {\small\verb%n%} subgoals, one for each constructor,
as follows:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x.P
================================ INDUCT_THEN th ttac
A1 ?- G1 ... An ?- Gn
\end{verbatim}
}
\noindent The resulting subgoals correspond to the cases in a structural
induction on the variable {\small\verb%x%} of type {\small\verb%ty%}, with induction hypotheses treated
as determined by {\small\verb%ttac%}.
\FAILURE
{\small\verb%INDUCT_THEN th ttac g%} fails if {\small\verb%th%} is not a structural induction theorem of
the form returned by {\small\verb%prove_induction_thm%}, or if the goal does not have the
form {\small\verb%A ?- !x:ty.P%} where {\small\verb%ty%} is the type for which {\small\verb%th%} is the induction
theorem, or if {\small\verb%ttac%} fails for any subgoal in the induction.
\EXAMPLE
The built-in structural induction theorem for lists is:
{\par\samepage\setseps\small
\begin{verbatim}
|- !P. P[] /\ (!t. P t ==> (!h. P(CONS h t))) ==> (!l. P l)
\end{verbatim}
}
\noindent When {\small\verb%INDUCT_THEN%} is applied to this theorem, it constructs
and returns a specialized induction tactic (parameterized by a theorem-tactic)
for doing induction on lists:
{\par\samepage\setseps\small
\begin{verbatim}
#let LIST_INDUCT_THEN = INDUCT_THEN list_INDUCT;;
LIST_INDUCT_THEN = - : (thm_tactic -> tactic)
\end{verbatim}
}
\noindent The resulting function, when supplied with the thm-tactic
{\small\verb%ASSUME_TAC%}, returns a tactic that decomposes a goal {\small\verb%?- !l.P[l]%} into the
base case {\small\verb%?- P[NIL]%} and a step case {\small\verb%P[l] ?- !h. P[CONS h l]%}, where the
induction hypothesis {\small\verb%P[l]%} in the step case has been put on the assumption
list. That is, the tactic:
{\par\samepage\setseps\small
\begin{verbatim}
LIST_INDUCT_THEN ASSUME_TAC
\end{verbatim}
}
\noindent does structural induction on lists, putting any induction hypotheses
that arise onto the assumption list:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !l. P
=======================================================
A |- P[NIL/l] A u {P[l'/l]} ?- !h. P[(CONS h l')/l]
\end{verbatim}
}
\noindent Likewise {\small\verb%LIST_INDUCT_THEN STRIP_ASSUME_TAC%} will also do induction
on lists, but will strip induction hypotheses apart before adding them to the
assumptions (this may be useful if P is a conjunction or a disjunction, or is
existentially quantified). By contrast, the tactic:
{\par\samepage\setseps\small
\begin{verbatim}
LIST_INDUCT_THEN MP_TAC
\end{verbatim}
}
\noindent will decompose the goal as follows:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !l. P
=====================================================
A |- P[NIL/l] A ?- P[l'/l] ==> !h. P[CONS h l'/l]
\end{verbatim}
}
\noindent That is, the induction hypothesis becomes the antecedent of an
implication expressing the step case in the induction, rather than an
assumption of the step-case subgoal.
\SEEALSO
define_type, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.
\ENDDOC
\DOC{infixes}
\TYPE {\small\verb%infixes : (string -> term list)%}\egroup
\SYNOPSIS
Lists the infixes in the named theory.
\DESCRIBE
The function {\small\verb%infixes%} should be applied to a string which is the name of an
ancestor theory (including the current theory; the special string {\small\verb%`-`%} is
always interpreted as the current theory). It returns a list of all the infixes
declared in that theory.
\FAILURE
Fails unless the given theory is an ancestor of the current theory.
\EXAMPLE
The theory {\small\verb%HOL%} has no infixes:
{\par\samepage\setseps\small
\begin{verbatim}
#infixes `HOL`;;
[] : term list
\end{verbatim}
}
\noindent but the theory {\small\verb%arithmetic%} has several:
{\par\samepage\setseps\small
\begin{verbatim}
#infixes `arithmetic`;;
["$DIV"; "$MOD"; "$>="; "$<="; "$>"; "$EXP"; "$*"; "$-"; "$+"]
: term list
\end{verbatim}
}
\SEEALSO
ancestors, axioms, binders, constants, definitions, new_infix,
new_infix_definition, new_infix_list_rec_definition,
new_infix_prim_rec_definition, parents, types.
\ENDDOC
\DOC{infix\_variable}
\TYPE {\small\verb%infix_variable : string -> void%}\egroup
\SYNOPSIS
Makes a HOL variable parse and print as an infix.
\DESCRIBE
A call {\small\verb%infix_variable `x`%} makes {\small\verb%x%} an infixed
variable. This is purely an interface property for the current
session. Infixed variables are assumed curried. Infixed variables used
in non-infix positions (e.g. as arguments or when being quantified)
must be preceded by {\small\verb%$%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_special_symbol `<<`;;
() : void
#infix_variable `<<`;;
() : void
#"!$<<. TRANSITIVE $<< = !(x y z:*). x << y /\ y << z ==> x << z";;
"TRANSITIVE $<< = (!x y z. x << y /\ y << z ==> x << z)" : term
\end{verbatim}
}
\ENDDOC
\DOC{inject\_input}
\TYPE {\small\verb%inject_input : (int list -> void)%}\egroup
\SYNOPSIS
Passes a list of character codes to the ML interpreter.
\DESCRIBE
When applied to a list of character codes, {\small\verb%inject_input%} passes these to the
ML interpreter, which will, after evaluating other pending phrases, interpret
them.
\FAILURE
The injection of input never fails, but of course the subsequent interpretation
may do.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#inject_input (map ascii_code (explode `tty_write \`Yo!\`;;\
#`));;
() : void
Yo!() : void
\end{verbatim}
}
\COMMENTS
The function {\small\verb%ML_eval%} is similar, and easier to use.
\SEEALSO
let_after, let_before, ML_eval.
\ENDDOC
\DOC{inl}
\TYPE {\small\verb%inl : (* -> (* + **))%}\egroup
\SYNOPSIS
Injects into left of disjoint union type.
\DESCRIBE
The function {\small\verb%inl%} is a constructor function for disjoint union (sum) types,
which takes an element of an arbitrary type {\small\verb%*%} and creates an element of type
{\small\verb%* # **%} which holds the same data.
\FAILURE
Never fails
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let x = inl 1;;
x = inl 1 : (int + *)
#let y = inl `hello` : string + int;;
y = inl `hello` : (string + int)
\end{verbatim}
}
\SEEALSO
inr, isl, outl, outr.
\ENDDOC
\DOC{inr}
\TYPE {\small\verb%inr : (* -> (** + *))%}\egroup
\SYNOPSIS
Injects into right of disjoint union type.
\DESCRIBE
The function {\small\verb%inr%} is a constructor function for disjoint union (sum) types,
which takes an element of an arbitrary type {\small\verb%**%} and creates an element of type
{\small\verb%* # **%} which holds the same data.
\FAILURE
Never fails
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let x = inr 1;;
x = inr 1 : (* + int)
#let y = inr 12 : string + int;;
y = inr 12 : (string + int)
\end{verbatim}
}
\SEEALSO
inl, isl, outl, outr.
\ENDDOC
\DOC{install}
\TYPE {\small\verb%install : (string -> void)%}\egroup
\SYNOPSIS
Informs HOL of the absolute pathname to the hol distribution directory.
\DESCRIBE
{\small\verb%install%} reconfigures a running HOL system to a new root directory. The
string argument to {\small\verb%install%} should be the absolute path name to the
directory in which the HOL system is located. Executing
{\par\samepage\setseps\small
\begin{verbatim}
install `/dir1/dir2/dir3/.../hol`;;
\end{verbatim}
}
\noindent sets the internal HOL search path to:
{\par\samepage\setseps\small
\begin{verbatim}
[``; `~/`; `/dir1/dir2/dir3/.../hol/theories/`]
\end{verbatim}
}
\noindent In addition, {\small\verb%install%} sets the internal search path used by HOL to
find the standard online help files and the internal search path used by HOL to
find libraries.
\FAILURE
Never fails.
\COMMENTS
The effect persists only for the current HOL session. To change the image
permanently, use the {\small\verb%save%} function after installation.
\SEEALSO
help_search_path, library_pathname, library_search_path, search_path,
set_help_search_path, set_library_search_path, set_search_path.
\ENDDOC
\DOC{inst\_check}
\TYPE {\small\verb%inst_check : (((type # type) list # term list) -> term list)%}\egroup
\SYNOPSIS
Checks the validity of type instantiations.
\DESCRIBE
If the {\small\verb%t1...tn%} are types (monomorphic or polymorphic), the {\small\verb%v1...vn%} type
variables (e.g. {\small\verb%":*"%}), and {\small\verb%tm1...tmn%} terms, the call
{\par\samepage\setseps\small
\begin{verbatim}
inst_check ([(t1,v1);...;(tn,vn)],[tm1;...;tmn])
\end{verbatim}
}
\noindent will return a list of the variables free in the {\small\verb%tm1...tmn%}, provided
none of the type variables {\small\verb%v1...vn%} are free in {\small\verb%tm1...tmn%}. If this condition
is not met, or any of the {\small\verb%v%}'s are not simply type variables, the call fails.
\FAILURE
Fails if any of the {\small\verb%v%}'s are not simple type variables, or if any of them are
free in the terms {\small\verb%v1...vn%}.
\USES
Checking the validity of type instantiations (for example, if the terms are the
hypotheses of a theorem).
\SEEALSO
inst, inst_rename_list, inst_type, INST_TYPE.
\ENDDOC
\DOC{inst}
\TYPE {\small\verb%inst : (term list -> (type # type) list -> term -> term)%}\egroup
\SYNOPSIS
Performs type instantiations in a term, avoiding certain ones.
\DESCRIBE
The function {\small\verb%inst%} should be used as follows:
{\par\samepage\setseps\small
\begin{verbatim}
inst [tm1;...;tmn] [(t1',t1);...;(tn',tn)] tm
\end{verbatim}
}
\noindent where {\small\verb%tm1...tmn%} are variables, {\small\verb%t1...tn,t1'...tn'%} types and {\small\verb%tm%} a
term to be type-instantiated. This call will instantiate, in parallel, the
types {\small\verb%t1'...tn'%} for the types {\small\verb%t1...tn%} wherever they appear in {\small\verb%tm%}
(possibly nowhere). However, if the name (not necessarily the type) of any
variable being instantiated matches one of the {\small\verb%[tm1...tmn]%}, it will be
renamed (by adding primes) prior to the instantiation. This is useful to avoid
obscure problems of free variable capture when type-instantiating theorems.
\FAILURE
Fails if the instantiation list is non-empty and some of the {\small\verb%tm1...tmn%} are
not simply variables.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#inst [] [(":num",":*")] "(x:*) = (x:*)";;
"x = x" : term
#inst ["x:bool"] [(":num",":*")] "(x:*) = (x:*)";;
"x' = x'" : term
#inst [] [(":num",":bool")] "x:bool";;
"x" : term
#type_of it;;
":num" : type
\end{verbatim}
}
\USES
Performing internal functions connected with type instantiation.
\SEEALSO
inst_check, inst_rename_list, inst_type, INST_TYPE.
\ENDDOC
\DOC{INST}
\TYPE {\small\verb%INST : ((term # term) list -> thm -> thm)%}\egroup
\SYNOPSIS
Instantiates free variables in a theorem.
\DESCRIBE
{\small\verb%INST%} is a rule for substituting arbitrary terms for free variables
in a theorem:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
----------------------------- INST [(t1,x1);...;(tn,xn)]
A |- t[t1,...,tn/x1,...,xn]
\end{verbatim}
}
\noindent where the variables {\small\verb%x1, ..., xn%} are not free in the
assumptions {\small\verb%A%}.
\FAILURE
{\small\verb%INST%} fails if a variable being instantiated is free in the
assumptions.
\EXAMPLE
In the following example a theorem is instantiated for a specific term:
{\par\samepage\setseps\small
\begin{verbatim}
#CONJUNCT1 ADD_CLAUSES ;;
|- 0 + m = m
#INST [("2 * x","m:num")] (CONJUNCT1 ADD_CLAUSES) ;;
|- 0 + (2 * x) = 2 * x
\end{verbatim}
}
\SEEALSO
INST_TY_TERM, INST_TYPE, ISPEC, ISPECL, SPEC; SPECL, SUBS, subst, SUBST.
\ENDDOC
\DOC{inst\_rename\_list}
\TYPE {\small\verb%inst_rename_list : (term -> term list)%}\egroup
\SYNOPSIS
Looks for variables which could become bound after type instantiation.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
inst_rename_list tm
\end{verbatim}
}
\noindent will return a list of those variables in {\small\verb%tm%} which are in the scope
of a binding of a variable with the same name but a different type. This means
that instantiating the type of a variable of that name could lead to free
variable capture.
\FAILURE
Never fails.
\EXAMPLE
The examples needed to exercise this routine cannot be created using a single
quoted term, since the quotation parser assumes that all variables with the
same name are identical.
{\par\samepage\setseps\small
\begin{verbatim}
#let tm = mk_abs("x:num","~x");;
tm = "\x. ~x" : term
#inst_rename_list tm;;
["x"] : term list
#type_of (hd it);;
":bool" : type
\end{verbatim}
}
\USES
Checking the validity of type instantiations.
\SEEALSO
inst, inst_check, inst_type, INST_TYPE.
\ENDDOC
\DOC{inst\_type}
\TYPE {\small\verb%inst_type : ((type # type) list -> type -> type)%}\egroup
\SYNOPSIS
Instantiates types in a type.
\DESCRIBE
If {\small\verb%[(t1',t1);...;(tn',tn)]%} is a list of type instantiations, where {\small\verb%t1...tn%}
are the initial types, and {\small\verb%t1'...tn'%} the desired instantiations, and {\small\verb%ty%} is
a type to instantiate, the call
{\par\samepage\setseps\small
\begin{verbatim}
inst_type [(t1',t1);...;(tn',tn)] ty
\end{verbatim}
}
\noindent will appropriately instantiate the type {\small\verb%ty%}. The instantiations will
be performed in parallel. If several of the type instantiations are applicable,
the choice is undefined. In normal use the {\small\verb%t1...tn%} are type variables,
although this is not essential. Neither is it necessary that any or all of the
types {\small\verb%t1...tn%} should in fact appear in {\small\verb%ty%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#inst_type [(":bool",":*")] ":* # **";;
":bool # **" : type
#inst_type [(":num",":* # **"); (":bool",":*")] ":* # **";;
":num" : type
#inst_type [(":bool",":*"); (":num",":* # **")] ":* # **";;
":num" : type
#inst_type [(":bool",":num"); (":num",":bool")] ":(bool)list";;
":(num)list" : type
\end{verbatim}
}
\SEEALSO
inst, inst_check, inst_type, INST_TYPE.
\ENDDOC
\DOC{INST\_TYPE}
\TYPE {\small\verb%INST_TYPE : ((type # type) list -> thm -> thm)%}\egroup
\SYNOPSIS
Instantiates types in a theorem.
\DESCRIBE
{\small\verb%INST_TYPE%} is a primitive rule in the HOL logic, which allows
instantiation of type variables.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t
----------------------------------- INST_TYPE [(ty1,vty1);...;(tyn,vtyn)]
A |- t[ty1,...,tyn/vty1,...,vtyn]
\end{verbatim}
}
\noindent where none of the types {\small\verb%vtyi%} are free in the assumption list.
Variables will be renamed if necessary to prevent distinct variables becoming
identical after the instantiation.
\FAILURE
{\small\verb%INST_TYPE%} fails if any of the type variables occurs free in the
hypotheses of the theorem, or if upon instantiation two distinct
variables (with the same name) become equal.
\USES
{\small\verb%INST_TYPE%} is employed to make use of polymorphic theorems.
\EXAMPLE
Suppose one wanted to specialize the theorem {\small\verb%EQ_SYM_EQ%} for
particular values, the first attempt could be to use {\small\verb%SPECL%} as
follows:
{\par\samepage\setseps\small
\begin{verbatim}
#SPECL ["a:num"; "b:num"] EQ_SYM_EQ ;;
evaluation failed SPECL
\end{verbatim}
}
\noindent The failure occurred because {\small\verb%EQ_SYM_EQ%} contains polymorphic types.
The desired specialization can be obtained by using {\small\verb%INST_TYPE%}:
{\par\samepage\setseps\small
\begin{verbatim}
#SPECL ["a:num"; "b:num"] (INST_TYPE [":num",":*"] EQ_SYM_EQ) ;;
|- (a = b) = (b = a)
\end{verbatim}
}
\SEEALSO
INST, INST_TY_TERM.
\ENDDOC
\DOC{INST\_TY\_TERM}
\TYPE {\small\verb%INST_TY_TERM : (((term # term) list # (type # type) list) -> thm -> thm)%}\egroup
\SYNOPSIS
Instantiates terms and types of a theorem.
\DESCRIBE
{\small\verb%INST_TY_TERM%} instantiates types in a theorem, in the same way
{\small\verb%INST_TYPE%} does. Then it instantiates some or all of the free
variables in the resulting theorem, in the same way as {\small\verb%INST%}.
\FAILURE
{\small\verb%INST_TY_TERM%} fails under the same conditions as either {\small\verb%INST%} or
{\small\verb%INST_TYPE%} fail.
\SEEALSO
INST, INST_TYPE, ISPEC, SPEC, SUBS, SUBST.
\ENDDOC
\DOC{interface\_map}
\TYPE {\small\verb%interface_map : (void -> (string # string) list)%}\egroup
\SYNOPSIS
Returns the current interface map.
\DESCRIBE
A call {\small\verb%interface_map()%} will return the current interface map. This is a list
of string pairs which specify different toplevel representations for constants;
see the DESCRIPTION for further details.
\FAILURE
Never fails.
\SEEALSO
set_interface_map.
\ENDDOC
\DOC{intersect}
\TYPE {\small\verb%intersect : (* list -> * list -> * list)%}\egroup
\SYNOPSIS
Computes the intersection of two `sets'.
\DESCRIBE
{\small\verb%intersect l1 l2%} returns a list consisting of those elements of {\small\verb%l1%} that
also appear in {\small\verb%l2%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#intersect [1;2;3] [3;5;4;1];;
[1; 3] : int list
#intersect [1;2;4;1] [1;2;3;2];;
[1; 2; 1] : int list
\end{verbatim}
}
\SEEALSO
setify, set_equal, union, subtract.
\ENDDOC
\DOC{int\_of\_string}
\TYPE {\small\verb%int_of_string : (string -> int)%}\egroup
\SYNOPSIS
Maps a string of numbers to the corresponding integer.
\DESCRIBE
Given a string representing an integer in standard decimal notation,
possibly including a leading plus sign or minus sign and/or leading zeros,
{\small\verb%int_of_string%} returns the corresponding integer constant.
\FAILURE
Fails unless the string is a valid decimal representation as specified
above.
\SEEALSO
ascii, ascii_code, string_of_int.
\ENDDOC
\DOC{int\_of\_term}
\TYPE {\small\verb%int_of_term : (term -> int)%}\egroup
\SYNOPSIS
Maps a numeric term to the corresponding ML integer.
\DESCRIBE
Given a term representing a natural number, i.e., of type {\small\verb%:num%}
{\small\verb%int_of_term%} returns the corresponding ML integer constant.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#int_of_term "2";;
2 : int
\end{verbatim}
}
\SEEALSO
term_of_int, string_of_int, int_of_string.
\ENDDOC
\DOC{is\_abs}
\TYPE {\small\verb%is_abs : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is an abstraction.
\DESCRIBE
{\small\verb%is_abs "\var. t"%} returns {\small\verb%true%}. If the term is not an abstraction the
result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_abs, dest_abs, is_var, is_const, is_comb.
\ENDDOC
\DOC{is\_alphanum}
\TYPE {\small\verb%is_alphanum : (string -> bool)%}\egroup
\SYNOPSIS
Tests whether a character is alphanumeric.
\DESCRIBE
When given a string, which should be of length 1, {\small\verb%is_alphanum%} returns
{\small\verb%true%} iff the character is alphanumeric. By default this means that it
is an upper or lower case letter, a digit, a prime ({\small\verb%'%}) or an
underscore ({\small\verb%_%}). However the definition can be changed using the function
{\small\verb%new_alphanum%}.
\FAILURE
Fails if the string has length greater than 1. Returns {\small\verb%false%} for the
null string ({\small\verb%``%}).
\SEEALSO
ascii, ascii_code, is_letter, new_alphanum, new_letter.
\ENDDOC
\DOC{is\_axiom}
\TYPE {\small\verb%is_axiom : ((string # string) -> bool)%}\egroup
\SYNOPSIS
Tests if there is an axiom with the given name in the given theory.
\DESCRIBE
The call {\small\verb%is_axiom(`th`,`ax`)%}, where {\small\verb%th%} is the name of a theory (as
usual {\small\verb%`-`%} means the current theory), tests if there is an axiom called {\small\verb%ax%}
in that theory.
\FAILURE
Fails unless the given theory is an ancestor.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_axiom(`bool`,`BOOL_CASES_AX`);;
true : bool
#is_axiom(`bool`,`INFINITY_AX`);;
false : bool
#is_axiom(`ind`,`INFINITY_AX`);;
true : bool
\end{verbatim}
}
\SEEALSO
axioms, new_axiom.
\ENDDOC
\DOC{is\_binder}
\TYPE {\small\verb%is_binder : (string -> bool)%}\egroup
\SYNOPSIS
Determines whether a given string represents a binder.
\DESCRIBE
This predicate returns true if the given string argument is the name of
a binder: it returns false otherwise.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#binders `bool`;;
["$?!"; "$!"; "$@"] : term list
#is_binder `$?!`;;
false : bool
#is_binder `?!`;;
true : bool
\end{verbatim}
}
\SEEALSO
binders, is_binder_type, is_infix, is_constant
\ENDDOC
\DOC{is\_binder\_type}
\TYPE {\small\verb%is_binder_type : (type -> bool)%}\egroup
\SYNOPSIS
Determines whether a given type is an appropriate type for a binder.
\DESCRIBE
The most general binder type is {\small\verb%":(* -> **) -> ***"%}. The function
{\small\verb%is_binder_type%} returns {\small\verb%true%} if the given type is an instance of the
most general binder type: it returns false otherwise.
\FAILURE
Sometimes fails in a nasty way: e.g.,
{\par\samepage\setseps\small
\begin{verbatim}
#is_binder_type ":(* -> **)";;
evaluation failed dest_type
\end{verbatim}
}
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_binder_type ":(* -> **) -> ***";;
true : bool
#is_binder_type ":(* -> **) -> (* -> **)";;
true : bool
#is_binder_type ":(num -> bool) -> bool";;
true : bool
#is_binder_type ":(num)list";;
false : bool
\end{verbatim}
}
\SEEALSO
is_binder, is_infix_type, is_type
\ENDDOC
\DOC{is\_comb}
\TYPE {\small\verb%is_comb : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a combination (function application).
\DESCRIBE
{\small\verb%is_comb "t1 t2"%} returns {\small\verb%true%}. If the term is not a combination the result
is {\small\verb%false%}.
\FAILURE
Never fails
\SEEALSO
mk_comb, dest_comb, is_var, is_const, is_abs.
\ENDDOC
\DOC{is\_cond}
\TYPE {\small\verb%is_cond : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a conditional.
\DESCRIBE
{\small\verb%is_cond "t => t1 | t2"%} returns {\small\verb%true%}. If the term is not a conditional the
result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_cond, dest_cond.
\ENDDOC
\DOC{is\_conj}
\TYPE {\small\verb%is_conj : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a conjunction.
\DESCRIBE
{\small\verb%is_conj "t1 /\ t2"%} returns {\small\verb%true%}. If the term is not a conjunction the
result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_conj, dest_conj.
\ENDDOC
\DOC{is\_cons}
\TYPE {\small\verb%is_cons : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is an application of {\small\verb%CONS%}.
\DESCRIBE
{\small\verb%is_cons%} returns {\small\verb%true%} of a term representing a non-empty list. Otherwise it
returns {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_cons, dest_cons, mk_list, dest_list, is_list.
\ENDDOC
\DOC{is\_constant}
\TYPE {\small\verb%is_constant : (string -> bool)%}\egroup
\SYNOPSIS
Determines whether a string is the name of a constant.
\DESCRIBE
This predicate returns {\small\verb%true%} if the given string argument is the name
of a constant defined in the current theory or its ancestors:
it returns {\small\verb%false%} otherwise.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_constant `SUC`;;
true : bool
#is_constant `3`;;
true : bool
#is_constant `$!`;;
false : bool
#is_constant `!`;;
true : bool
#is_constant `xx`;;
false : bool
\end{verbatim}
}
\SEEALSO
is_infix, is_binder
\ENDDOC
\DOC{is\_const}
\TYPE {\small\verb%is_const : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a constant.
\DESCRIBE
{\small\verb%is_const "const:ty"%} returns {\small\verb%true%}. If the term is not a constant the
result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_const, dest_const, is_var, is_comb, is_abs.
\ENDDOC
\DOC{is\_definition}
\TYPE {\small\verb%is_definition : (term -> bool)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{is\_disj}
\TYPE {\small\verb%is_disj : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a disjunction.
\DESCRIBE
{\small\verb%is_disj "t1 \/ t2"%} returns {\small\verb%true%}. If the term is not a disjunction the
result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_disj, dest_disj.
\ENDDOC
\DOC{IS\_EL\_CONV}
\TYPE {\small\verb%IS_EL_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of testing whether a list contains acertain element.
\DESCRIBE
{\small\verb%IS_EL_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
IS_EL x [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- IS_EL x [x0;...xn] = F
\end{verbatim}
}
\noindent if for every {\small\verb%xi%} occurred in the list, {\small\verb%conv "x = xi"%}
returns a theorem {\small\verb%|- P xi = F%}, otherwise, if for at least one {\small\verb%xi%},
evaluating {\small\verb%conv "P xi"%} returns the theorem {\small\verb%|- P xi = T%}, then it
returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- IS_EL P [x0;...xn] = T
\end{verbatim}
}
\FAILURE
{\small\verb%IS_EL_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above, or
failure occurs when evaluating {\small\verb%conv "x = xi"%} for some {\small\verb%xi%}.
\EXAMPLE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
IS_EL_CONV bool_EQ_CONV "IS_EL T [T;F;T]";;
\end{verbatim}
}
\noindent returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- IS_EL($= T)[F;F] = F
\end{verbatim}
}
\SEEALSO
SOME_EL_CONV, ALL_EL_CONV, FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{is\_eq}
\TYPE {\small\verb%is_eq : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is an equation.
\DESCRIBE
{\small\verb%is_eq "t1 = t2"%} returns {\small\verb%true%}. If the term is not an equation the result
is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_eq, dest_eq.
\ENDDOC
\DOC{is\_exists}
\TYPE {\small\verb%is_exists : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it as an existential quantification.
\DESCRIBE
{\small\verb%is_exists "?var. t"%} returns {\small\verb%true%}. If the term is not an existential
quantification the result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_exists, dest_exists.
\ENDDOC
\DOC{is\_forall}
\TYPE {\small\verb%is_forall : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a universal quantification.
\DESCRIBE
{\small\verb%is_forall "!var. t"%} returns {\small\verb%true%}. If the term is not a universal
quantification the result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_forall, dest_forall.
\ENDDOC
\DOC{is\_hidden}
\TYPE {\small\verb%is_hidden : (string -> bool)%}\egroup
\SYNOPSIS
Determines whether a constant is hidden.
\DESCRIBE
This predicate returns {\small\verb%true%} if the named {\small\verb%ML%} constant has been hidden by
the function {\small\verb%hide_constant%}; it returns {\small\verb%false%} if the constant is not hidden.
Hiding a constant forces the quotation parser to treat the constant as
a variable (lexical rules permitting).
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_hidden `0`;;
false : bool
#hide_constant `0`;;
() : void
#is_hidden `0`;;
true : bool
#unhide_constant `0`;;
() : void
#is_hidden `0`;;
false : bool
\end{verbatim}
}
\SEEALSO
hide_constant, unhide_constant
\ENDDOC
\DOC{is\_imp}
\TYPE {\small\verb%is_imp : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is an implication.
\DESCRIBE
{\small\verb%is_imp "t1 ==> t2"%} returns {\small\verb%true%}.
If the term is not an implication the result is {\small\verb%false%}.
\FAILURE
Never fails.
\COMMENTS
This function used to take negation as an implication with {\small\verb%F%} conclusion.
This behaviour is implemented by the function {\small\verb%is_neg_imp%}.
\SEEALSO
mk_imp, dest_imp, dest_neg_imp, is_neg_imp.
\ENDDOC
\DOC{is\_infix}
\TYPE {\small\verb%is_infix : (string -> bool)%}\egroup
\SYNOPSIS
Determines whether an operator is infix.
\DESCRIBE
This predicate returns {\small\verb%true%} if the given string argument is the name of
an infix operator (a constant); it returns {\small\verb%false%} otherwise.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_infix `$+`;;
false : bool
#is_infix `+`;;
true : bool
#is_infix `SUC`;;
false : bool
\end{verbatim}
}
\SEEALSO
infixes, is_binder, is_constant.
\ENDDOC
\DOC{is\_infix\_type}
\TYPE {\small\verb%is_infix_type : (type -> bool)%}\egroup
\SYNOPSIS
Determines whether a given type is an appropriate infix type.
\DESCRIBE
The most general infix type is {\small\verb%":* -> (** -> ***)"%}. The function
{\small\verb%is_infix_type%} returns {\small\verb%true%} if the given type is an instance of the
most general infix type: it returns {\small\verb%false%} otherwise.
\FAILURE
Sometimes fails in a nasty way: e.g.,
{\par\samepage\setseps\small
\begin{verbatim}
#is_infix_type ":(* -> **)";;
evaluation failed dest_type
\end{verbatim}
}
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_infix_type ":*->**->***";;
true : bool
#is_infix_type ":bool->num->bool";;
true : bool
#is_infix_type ":(bool->bool)";;
false : bool
#is_infix_type ":bool";;
false : bool
\end{verbatim}
}
\SEEALSO
is_infix, is_type, is_binder_type
\ENDDOC
\DOC{isl}
\TYPE {\small\verb%isl : ((* + **) -> bool)%}\egroup
\SYNOPSIS
Tests for membership of left summand.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let x = inl 1 and y = inr 2;;
#isl x;;
true : bool
#isl y;;
false : bool
\end{verbatim}
}
\SEEALSO
inl, inr
\ENDDOC
\DOC{is\_let}
\TYPE {\small\verb%is_let : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a {\small\verb%let%}-expression.
\DESCRIBE
{\small\verb%is_let "LET f x"%} returns {\small\verb%true%}. If the term is not a {\small\verb%let%}-expression (or
of the more general {\small\verb%"LET f x"%} form) the result is {\small\verb%false%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_let "LET ($= 1) 2";;
true : bool
#is_let "let x = 2 in (x = 1)";;
true : bool
\end{verbatim}
}
\SEEALSO
mk_let, dest_let.
\ENDDOC
\DOC{is\_letter}
\TYPE {\small\verb%is_letter : (string -> bool)%}\egroup
\SYNOPSIS
Tests whether a character is a letter.
\DESCRIBE
When given a string, which should be of length 1, {\small\verb%is_letter%} returns
{\small\verb%true%} iff the character is a letter. By default this means what one
would expect, namely one of {\small\verb%a..z A..Z%}. However the scope of the
definition can be increased using {\small\verb%new_letter%}.
\FAILURE
Fails if the string has length greater than 1. Returns {\small\verb%false%} for the
null string ({\small\verb%``%}).
\SEEALSO
ascii, ascii_code, is_alphanum, new_alphanum, new_letter.
\ENDDOC
\DOC{is\_list}
\TYPE {\small\verb%is_list : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a list.
\DESCRIBE
{\small\verb%is_list%} returns {\small\verb%true%} of a term representing a list. Otherwise it returns
{\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_list, dest_list, mk_cons, dest_cons, is_cons.
\ENDDOC
\DOC{is\_ml\_curried\_infix}
\TYPE {\small\verb%is_ml_curried_infix : (string -> bool)%}\egroup
\SYNOPSIS
Tests whether a string is the name of a user-defined curried ML infix.
\DESCRIBE
{\small\verb%is_ml_curried_infix `string`%} returns {\small\verb%true%} if {\small\verb%string%} is the name of a
user-defined curried ML infix, and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\SEEALSO
is_ml_paired_infix, is_ml_infix, ml_curried_infix.
\ENDDOC
\DOC{is\_ml\_infix}
\TYPE {\small\verb%is_ml_infix : (string -> bool)%}\egroup
\SYNOPSIS
Tests whether a string is the name of an ML infix.
\DESCRIBE
{\small\verb%is_ml_infix `string`%} returns {\small\verb%true%} if {\small\verb%string%} is the name of a built-in
or user-defined ML infix, and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\SEEALSO
is_ml_paired_infix, is_ml_curried_infix, ml_paired_infix, ml_curried_infix.
\ENDDOC
\DOC{is\_ml\_paired\_infix}
\TYPE {\small\verb%is_ml_paired_infix : (string -> bool)%}\egroup
\SYNOPSIS
Tests whether a string is the name of a user-defined paired ML infix.
\DESCRIBE
{\small\verb%is_ml_paired_infix `string`%} returns {\small\verb%true%} if {\small\verb%string%} is the name of a
user-defined paired ML infix, and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\SEEALSO
is_ml_curried_infix, is_ml_infix, ml_paired_infix.
\ENDDOC
\DOC{is\_neg}
\TYPE {\small\verb%is_neg : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a negation.
\DESCRIBE
{\small\verb%is_neg "~t"%} returns {\small\verb%true%}. If the term is not a negation the result is
{\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_neg, dest_neg.
\ENDDOC
\DOC{is\_neg\_imp}
\TYPE {\small\verb%is_neg_imp : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is an implication or a negation.
\DESCRIBE
{\small\verb%is_neg_imp "t1 ==> t2"%} returns {\small\verb%true%}. {\small\verb%is_neg_imp "~t"%} returns {\small\verb%true%}.
If the term is neither an implication nor a negation the result is {\small\verb%false%}.
\FAILURE
Never fails.
\COMMENTS
Yields true of negations because {\small\verb%dest_neg_imp%} destructs negations (for
compatibility with PPLAMBDA code). This function used to be called {\small\verb%is_imp%}.
\SEEALSO
dest_neg_imp, is_imp, dest_imp.
\ENDDOC
\DOC{is\_pabs}
\TYPE {\small\verb%is_pabs : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a paired abstraction.
\DESCRIBE
{\small\verb%is_pabs "\(v1..(..)..vn). t"%} returns {\small\verb%true%}. If the term is not a paired
abstraction the result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_pabs, dest_pabs, is_abs, is_var, is_const, is_comb.
\ENDDOC
\DOC{is\_pair}
\TYPE {\small\verb%is_pair : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a pair.
\DESCRIBE
{\small\verb%is_pair "(t1,t2)"%} returns {\small\verb%true%}. If the term is not a pair the result is
{\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_pair, dest_pair.
\ENDDOC
\DOC{ISPEC}
\TYPE {\small\verb%ISPEC : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Specializes a theorem, with type instantiation if necessary.
\DESCRIBE
This rule specializes a quantified variable as does {\small\verb%SPEC%}; it differs
from it in also instantiating the type if needed:
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x:ty.tm
----------------------- ISPEC "t:ty'"
A |- tm[t/x]
\end{verbatim}
}
\noindent (where {\small\verb%t%} is free for {\small\verb%x%} in {\small\verb%tm%}, and {\small\verb%ty'%} is an instance
of {\small\verb%ty%}).
\FAILURE
{\small\verb%ISPEC%} fails if the input theorem is not universally quantified, if
the type of the given term is not an instance of the type of the
quantified variable, or if the type variable is free in the
assumptions.
\SEEALSO
INST_TY_TERM, INST_TYPE, ISPECL, SPEC, match.
\ENDDOC
\DOC{ISPECL}
\TYPE {\small\verb%ISPECL : (term list -> thm -> thm)%}\egroup
\SYNOPSIS
Specializes a theorem zero or more times, with type instantiation if necessary.
\DESCRIBE
{\small\verb%ISPECL%} is an iterative version of {\small\verb%ISPEC%}
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x1...xn.t
---------------------------- ISPECL ["t1",...,"tn"]
A |- t[t1,...tn/x1,...,xn]
\end{verbatim}
}
\noindent (where {\small\verb%ti%} is free for {\small\verb%xi%} in {\small\verb%tm%}).
\FAILURE
{\small\verb%ISPECL%} fails if the list of terms is longer than the number of
quantified variables in the term, if the type instantiation fails, or
if the type variable being instantiated is free in the assumptions.
\SEEALSO
INST_TYPE, INST_TY_TERM, ISPEC, MATCH, SPEC, SPECL.
\ENDDOC
\DOC{is\_pred}
\TYPE {\small\verb%is_pred : (term -> bool)%}\egroup
\SYNOPSIS
Determines whether the operator of a combination is a constant.
\DESCRIBE
The function {\small\verb%is_pred%} returns {\small\verb%true%} when applied to a term of the form {\small\verb%"c
tm"%} where {\small\verb%c%} is a constant. Otherwise it returns {\small\verb%false%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_pred "SUC 0";;
true : bool
\end{verbatim}
}
\COMMENTS
This function may be reimplemented.
\SEEALSO
dest_pred
\ENDDOC
\DOC{is\_recording\_proof}
\TYPE {\small\verb%is_recording_proof : void -> bool%}\egroup
\SYNOPSIS
Get the current state of proof recorder.
\DESCRIBE
A proof is a list of inference steps. After the proof recorder is
enabled, every inference performed by the system is recorded and
cumulated in an internal buffer. When a proof is completed, the raw
records can then be processed and output to a disk file.
{\small\verb%is_recording_proof%} is a low level user function for managing the proof
recorder. It returns {\small\verb%true%} is the proof recording is currently enabled.
Otherwise, it returns {\small\verb%false%}.
\FAILURE
Never fail.
\COMMENTS
This function is used to implement higher level user functions for
recording proof in the library {\small\verb%record_proof%}. It is much more
convenient to use those functions than the low level functions
such as {\small\verb%is_recording_proof%} directly.
\SEEALSO
record_proof, RecordStep, get_steps, suspend_recording, resume_recording,
current_proof, current_proof_file,
new_proof_file, close_proof_file, begin_proof, end_proof,
TAC_PROOF, PROVE, prove, prove_thm.
\ENDDOC
\DOC{is\_select}
\TYPE {\small\verb%is_select : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a choice binding.
\DESCRIBE
{\small\verb%is_select "@var. t"%} returns {\small\verb%true%}. If the term is not an epsilon-term the
result is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_select, dest_select.
\ENDDOC
\DOC{is\_type}
\TYPE {\small\verb%is_type : (string -> bool)%}\egroup
\SYNOPSIS
Tests whether a string is the name of a type.
\DESCRIBE
{\small\verb%is_type `op`%} returns {\small\verb%true%} if {\small\verb%`op'%} is the name of a type or type operator
and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\SEEALSO
arity.
\ENDDOC
\DOC{is\_var}
\TYPE {\small\verb%is_var : (term -> bool)%}\egroup
\SYNOPSIS
Tests a term to see if it is a variable.
\DESCRIBE
{\small\verb%is_var "var:ty"%} returns {\small\verb%true%}. If the term is not a variable the result
is {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
mk_var, dest_var, is_const, is_comb, is_abs.
\ENDDOC
\DOC{is\_vartype}
\TYPE {\small\verb%is_vartype : (type -> bool)%}\egroup
\SYNOPSIS
Tests a type to see if it is a type variable.
\DESCRIBE
{\small\verb%is_vartype(":*...")%} returns {\small\verb%true%}. For types which are not type variables
it returns {\small\verb%false%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#is_vartype ":*test";;
true : bool
#is_vartype ":bool";;
false : bool
#is_vartype ":* -> bool";;
false : bool
\end{verbatim}
}
\SEEALSO
mk_vartype, dest_vartype.
\ENDDOC
\DOC{it}
\TYPE {\small\verb%it : (*)%}\egroup
\SYNOPSIS
Binds the value of the last expression evaluated at top level.
\DESCRIBE
The identifier {\small\verb%it%} is bound to the value of the last expression evaluated
at top level. Declarations do not effect the value of {\small\verb%it%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#2 + 3;;
5 : int
#let x = 2*3;;
x = 6 : int
#it;;
5 : int
\end{verbatim}
}
\USES
Used in evaluating expressions that require the value of the last evaluated
expression.
\ENDDOC
\DOC{itlist2}
\TYPE {\small\verb%itlist2 : (((* # **) -> *** -> ***) -> (* list # ** list) -> *** -> ***)%}\egroup
\SYNOPSIS
Applies a paired function between adjacent elements of 2 lists.
\DESCRIBE
{\small\verb%itlist2 f ([x1;...;xn],[y1;...;yn]) z%} returns
{\par\samepage\setseps\small
\begin{verbatim}
f (x1,y1) (f (x2,y2) ... (f (xn,yn) z)...)
\end{verbatim}
}
\noindent It returns {\small\verb%z%} if both lists are empty.
\FAILURE
Fails with {\small\verb%itlist2%} if the two lists are of different lengths.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#itlist2 (\(x,y) z. (x * y) + z) ([1;2],[3;4]) 0;;
11 : int
\end{verbatim}
}
\SEEALSO
itlist, rev_itlist, end_itlist, uncurry.
\ENDDOC
\DOC{itlist}
\TYPE {\small\verb%itlist : ((* -> ** -> **) -> * list -> ** -> **)%}\egroup
\SYNOPSIS
List iteration function. Applies a binary function between adjacent elements
of a list.
\DESCRIBE
{\small\verb%itlist f [x1;...;xn] y%} returns
{\par\samepage\setseps\small
\begin{verbatim}
f x1 (f x2 ... (f xn y)...)
\end{verbatim}
}
\noindent It returns {\small\verb%y%} if list is empty.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#itlist (\x y. x + y) [1;2;3;4] 0;;
10 : int
\end{verbatim}
}
\SEEALSO
rev_itlist, end_itlist.
\ENDDOC
\DOC{K}
\TYPE {\small\verb%K : (* -> ** -> *)%}\egroup
\SYNOPSIS
Forms a constant function: {\small\verb%(K x) y%} = {\small\verb%x%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, CB, Co, I, KI, o, oo, S, W.
\ENDDOC
\DOC{KI}
\TYPE {\small\verb%KI : (* -> ** -> **)%}\egroup
\SYNOPSIS
Maps a value to the identity function: {\small\verb%(KI x) y%} = {\small\verb%y%}.
\COMMENTS
This is the combinator dual to {\small\verb%K%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, CB, Co, I, K, o, oo, S, W.
\ENDDOC
\DOC{LAST\_CONV}
\TYPE {\small\verb%LAST_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of taking the last element of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...x(n-1)]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
LAST_CONV "LAST [x0;...;x(n-1)]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- LAST [x0;...;x(n-1)] = x(n-1)
\end{verbatim}
}
\FAILURE
{\small\verb%LAST_CONV tm%} fails if {\small\verb%tm%} is an empty list.
\ENDDOC
\DOC{last}
\TYPE {\small\verb%last : (* list -> *)%}\egroup
\SYNOPSIS
Computes the last element of a list.
\DESCRIBE
{\small\verb%last [x1;...;xn]%} returns {\small\verb%xn%}.
\FAILURE
Fails with {\small\verb%last%} if the list is empty.
\SEEALSO
butlast, hd, tl, el, null.
\ENDDOC
\DOC{LASTN\_CONV}
\TYPE {\small\verb%LASTN_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of taking the last n elements of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...x(n-k);...;x(n-1)]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
LASTN_CONV "LASTN k [x0;...x(n-k);...;x(n-1)]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- LASTN k [x0;...;x(n-k);...;x(n-1)] = [x(n-k);...;x(n-1)]
\end{verbatim}
}
\FAILURE
{\small\verb%LASTN_CONV tm%} fails if {\small\verb%tm%} is not of the form described above,
or {\small\verb%k%} is greater than the length of the list.
\ENDDOC
\DOC{LEFT\_AND\_EXISTS\_CONV}
\TYPE {\small\verb%LEFT_AND_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification of the left conjunct outwards through a
conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(?x.P) /\ Q%}, the conversion
{\small\verb%LEFT_AND_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x.P) /\ Q = (?x'. P[x'/x] /\ Q)
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%(?x.P) /\ Q%}.
\SEEALSO
AND_EXISTS_CONV, EXISTS_AND_CONV, RIGHT_AND_EXISTS_CONV.
\ENDDOC
\DOC{LEFT\_AND\_FORALL\_CONV}
\TYPE {\small\verb%LEFT_AND_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification of the left conjunct outwards through a
conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(!x.P) /\ Q%}, the conversion
{\small\verb%LEFT_AND_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x.P) /\ Q = (!x'. P[x'/x] /\ Q)
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%(!x.P) /\ Q%}.
\SEEALSO
AND_FORALL_CONV, FORALL_AND_CONV, RIGHT_AND_FORALL_CONV.
\ENDDOC
\DOC{LEFT\_IMP\_EXISTS\_CONV}
\TYPE {\small\verb%LEFT_IMP_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification of the antecedent outwards through an
implication.
\DESCRIBE
When applied to a term of the form {\small\verb%(?x.P) ==> Q%}, the conversion
{\small\verb%LEFT_IMP_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x.P) ==> Q = (!x'. P[x'/x] ==> Q)
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%(?x.P) ==> Q%}.
\SEEALSO
FORALL_IMP_CONV, RIGHT_IMP_FORALL_CONV.
\ENDDOC
\DOC{LEFT\_IMP\_FORALL\_CONV}
\TYPE {\small\verb%LEFT_IMP_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification of the antecedent outwards through an
implication.
\DESCRIBE
When applied to a term of the form {\small\verb%(!x.P) ==> Q%}, the conversion
{\small\verb%LEFT_IMP_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x.P) ==> Q = (?x'. P[x'/x] ==> Q)
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%(!x.P) ==> Q%}.
\SEEALSO
EXISTS_IMP_CONV, RIGHT_IMP_FORALL_CONV.
\ENDDOC
\DOC{LEFT\_OR\_EXISTS\_CONV}
\TYPE {\small\verb%LEFT_OR_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification of the left disjunct outwards through a
disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(?x.P) \/ Q%}, the conversion
{\small\verb%LEFT_OR_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x.P) \/ Q = (?x'. P[x'/x] \/ Q)
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%(?x.P) \/ Q%}.
\SEEALSO
EXISTS_OR_CONV, OR_EXISTS_CONV, RIGHT_OR_EXISTS_CONV.
\ENDDOC
\DOC{LEFT\_OR\_FORALL\_CONV}
\TYPE {\small\verb%LEFT_OR_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification of the left disjunct outwards through a
disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(!x.P) \/ Q%}, the conversion
{\small\verb%LEFT_OR_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x.P) \/ Q = (!x'. P[x'/x] \/ Q)
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%(!x.P) \/ Q%}.
\SEEALSO
OR_FORALL_CONV, FORALL_OR_CONV, RIGHT_OR_FORALL_CONV.
\ENDDOC
\DOC{LENGTH\_CONV}
\TYPE {\small\verb%LENGTH_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the length of an object-language list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x1;x2;...;xn]"%}, where {\small\verb%x1%},
{\small\verb%x2%}, ..., {\small\verb%xn%} are arbitrary terms of the same type, the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
LENGTH_CONV "LENGTH [x1;x2;...;xn]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- LENGTH [x1;x2;...;xn] = n
\end{verbatim}
}
\noindent where {\small\verb%n%} is the numeral constant that denotes the length of the
list.
\FAILURE
{\small\verb%LENGTH_CONV tm%} fails if {\small\verb%tm%} is not of the form {\small\verb%"LENGTH [x1;x2;...;xn]"%} or
{\small\verb%"LENGTH []"%}.
\ENDDOC
\DOC{length}
\TYPE {\small\verb%length : (* list -> int)%}\egroup
\SYNOPSIS
Computes the length of a list: {\small\verb%length [x1;...;xn]%} returns {\small\verb%n%}.
\FAILURE
Never fails.
\ENDDOC
\DOC{let\_after}
\TYPE {\small\verb%let_after : ((string # string # string list) -> void)%}\egroup
\SYNOPSIS
Makes an ML declaration dynamically after other pending declarations.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
let_after(`x`,`f`,[`arg1`;...;`argn`])
\end{verbatim}
}
\noindent puts an ML declaration
{\par\samepage\setseps\small
\begin{verbatim}
let x = f [`arg1`;...;`argn`];;
\end{verbatim}
}
\noindent at the end of the queue of currently pending toplevel items. It will
be evaluated after the phrase which invoked {\small\verb%let_after%}, and any other pending
evaluations. This gives a way of performing declarations dynamically. Note that
the first two argument strings are interpreted as single identifiers, whereas
the arguments are passed as literal strings.
\FAILURE
Never fails, although the subsequent declaration may well fail for any of the
usual reasons.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let fn = \l:(string)list. 1;;
fn = - : (string list -> int)
#let_after(`x`,`fn`,[]);;
() : void
x = 1 : int
#x;;
1 : int
\end{verbatim}
}
\USES
Performing variants on autoloading.
\SEEALSO
inject_input, let_before, ML_eval.
\ENDDOC
\DOC{let\_before}
\TYPE {\small\verb%let_before : ((string # string # string list) -> void)%}\egroup
\SYNOPSIS
Makes an ML declaration dynamically before other pending declarations.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
let_before(`x`,`f`,[`arg1`;...;`argn`])
\end{verbatim}
}
\noindent puts an ML declaration
{\par\samepage\setseps\small
\begin{verbatim}
let x = f [`arg1`;...;`argn`];;
\end{verbatim}
}
\noindent at the head of the queue of currently pending toplevel items. It will
be evaluated after the phrase which invoked {\small\verb%let_before%}. This gives a way of
performing declarations dynamically. Note that the first two argument strings
are interpreted as single identifiers, whereas the arguments are passed as
literal strings.
\FAILURE
Never fails, although the subsequent declaration may well fail for any of the
usual reasons.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let fn = \l:(string)list. 1;;
fn = - : (string list -> int)
#let_before(`x`,`fn`,[]);;
() : void
x = 1 : int
#x;;
1 : int
\end{verbatim}
}
\USES
Performing variants on autoloading.
\SEEALSO
inject_input, let_after, ML_eval.
\ENDDOC
\DOC{let\_CONV}
\TYPE {\small\verb%let_CONV : conv%}\egroup
\SYNOPSIS
Evaluates {\small\verb%let%}-terms in the HOL logic.
\DESCRIBE
The conversion {\small\verb%let_CONV%} implements evaluation of object-language {\small\verb%let%}-terms.
When applied to a {\small\verb%let%}-term of the form:
{\par\samepage\setseps\small
\begin{verbatim}
let v1 = t1 and ... and vn = tn in t
\end{verbatim}
}
\noindent where {\small\verb%v1%}, ..., {\small\verb%vn%} are variables, {\small\verb%let_CONV%} proves and returns
the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (let v1 = t1 and ... and vn = tn in t) = t[t1,...,tn/v1,...,vn]
\end{verbatim}
}
\noindent where {\small\verb%t[t1,...,tn/v1,...,vn]%} denotes the result of substituting
{\small\verb%ti%} for {\small\verb%v1%} in parallel in {\small\verb%t%}, with automatic renaming of bound variables
to prevent free variable capture.
{\small\verb%let_CONV%} also works on {\small\verb%let%}-terms that bind tuples of variables to tuples of
values. That is, if {\small\verb%<tup>%} is an arbitrarily-nested tuple of distinct
variables {\small\verb%v1%}, ..., {\small\verb%vn%} and {\small\verb%<val>%} is a structurally similar tuple of
values, that is {\small\verb%<val>%} equals {\small\verb%<tup>[t1,...,tn/v1,...,vn]%} for some terms
{\small\verb%t1%}, ..., {\small\verb%tn%}, then:
{\par\samepage\setseps\small
\begin{verbatim}
let_CONV "let <tup> = <val> in t"
\end{verbatim}
}
\noindent returns
{\par\samepage\setseps\small
\begin{verbatim}
|- (let <tup> = <val> in t) = t[t1,...,tn/v1,...,vn]
\end{verbatim}
}
\noindent That is, the term {\small\verb%ti%} is substituted for the corresponding variable
{\small\verb%vi%} in {\small\verb%t%}. This form of {\small\verb%let%}-reduction also works with simultaneous binding
of tuples using {\small\verb%and%}.
Finally, {\small\verb%let_CONV%} also handles {\small\verb%let%}-terms that introduce local definitions
of functions. When applied to a term of the form:
{\par\samepage\setseps\small
\begin{verbatim}
"let f v1 ... vn = tm in t"
\end{verbatim}
}
\noindent {\small\verb%let_CONV%} returns:
{\par\samepage\setseps\small
\begin{verbatim}
|- (let f v1 ... vn = tm in t) = t'
\end{verbatim}
}
\noindent where {\small\verb%t'%} is obtained by rewriting all applications of the function
{\small\verb%f%} in {\small\verb%t%} using the defining equation {\small\verb%f v1 ... vn = tm%}. Partial applications
of the form {\small\verb%f x1 ... xm%} where {\small\verb%m%} is less that {\small\verb%n%} are rewritten to
lambda-abstractions (see the example given below). Simultaneous introduction
of functions using {\small\verb%and%} is handled, and each of {\small\verb%v1%}, ..., {\small\verb%vn%} in the pattern
shown above can be either a variable or a tuple of variables.
\FAILURE
{\small\verb%let_CONV tm%} fails if {\small\verb%tm%} is not a reducible {\small\verb%let%}-term of one of the forms
specified above.
\EXAMPLE
A simple example of the use of {\small\verb%let_CONV%} to eliminate a single local variable
is the following:
{\par\samepage\setseps\small
\begin{verbatim}
#let_CONV "let x = 1 in x+y";;
|- (let x = 1 in x + y) = 1 + y
\end{verbatim}
}
\noindent and an example showing a tupled binding is:
{\par\samepage\setseps\small
\begin{verbatim}
#let_CONV "let (x,y) = (1,2) in x+y";;
|- (let (x,y) = 1,2 in x + y) = 1 + 2
\end{verbatim}
}
\noindent Simultaneous introduction of two local functions {\small\verb%f%} and {\small\verb%g%}
and rewriting is illustrated by:
{\par\samepage\setseps\small
\begin{verbatim}
#let_CONV "let f x = x + 1 and g x = x + 2 in !x. g(f(g x)) = x + 5";;
|- (let f x = x + 1 and g x = x + 2 in (!x. g(f(g x)) = x + 5)) =
(!x. ((x + 2) + 1) + 2 = x + 5)
\end{verbatim}
}
\noindent and an example of partial application is:
{\par\samepage\setseps\small
\begin{verbatim}
#let_CONV "let f x y = x+y in f 1";;
|- (let f x y = x + y in f 1) = (\y. 1 + y)
\end{verbatim}
}
\noindent Note the introduction of a lambda-abstraction in the result.
\SEEALSO
BETA_CONV, PAIRED_BETA_CONV.
\ENDDOC
\DOC{lhs}
\TYPE {\small\verb%lhs : (term -> term)%}\egroup
\SYNOPSIS
Returns the left-hand side of an equation.
\DESCRIBE
{\small\verb%lhs "t1 = t2"%} returns {\small\verb%"t1"%}.
\FAILURE
Fails with {\small\verb%lhs%} if the term is not an equation.
\SEEALSO
rhs, dest_eq.
\ENDDOC
\DOC{libraries}
\TYPE {\small\verb%libraries : (void -> string list)%}\egroup
\SYNOPSIS
Evaluating {\small\verb%libraries()%} returns a list of the libraries that have been
successfully loaded during the current session.
\FAILURE
Never fails.
\SEEALSO
library_pathname, load_library.
\ENDDOC
\DOC{library\_loader}
{\small
\begin{verbatim}
library_loader : ((string # string list # string list #
string list # string # string # string list) -> void)
\end{verbatim}
}\egroup
\SYNOPSIS
Performs the actual loading of a library.
\DESCRIBE
This function is a generic library loader which carries out the
standard loading procedures for loading library. This provides a
simple interface for library authors to write the library load file.
A library consists of three parts: theories, codes and document. Any
of these may be absent (however, it is strongly recommanded to provide
proper document for all libraries). The standard procedures of loading
a library are:
1) update the system search path to include the library directory;
2) load any libraries on which the current library depends;
3) load the theories (if there are any);
4) load the codes (if there are any);
5) update the help search path to include the current library document;
6) set up auto-loading of theorems, definitions, etc.
When a library, say {\small\verb%foo%}, is loaded into a HOL session by evaluating
{\par\samepage\setseps\small
\begin{verbatim}
load_library `foo`;;
\end{verbatim}
}
\noindent the system will load a file named `{\small\verb%foo.ml%}' in the directory
`{\small\verb%foo%}' which is in the library search path. The generic library
loader {\small\verb%library_loader%} should be called with appropriate arguments
in this file. In addition to the standard loading procedures, extra
functions may be called in this file to set up special environment
necessary for working with the library.
The function {\small\verb%library_loader%} takes a 6-tuple
{\par\samepage\setseps\small
\begin{verbatim}
(lib_name, parent_libs, theories, codes, load_parent, part_path, help_paths)
\end{verbatim}
}
\noindent as its argument. The meanings of the fields are described below.
{\small\verb%lib_name : string%} is the name of the library. It should be the name
of the directory where the library is found, and the basename of
the load file.
{\small\verb%parent_libs : string list%} are the names of the libraries on which the
current library depends. They will be loaded in the order given
before the theories and codes of the current library are loaded.
{\small\verb%theories : string list%} are the names of the theories in this
library. If the library contains more than one theory, the
descendant of all other theories should be the first in the list.
This theory will be loaded and it becomes the current theory or the new
parent of the current theory depending on whether the system is in
draft mode. If we are not in draft mode and this theory is not an
ancestor of the current theory, it will not be loaded. Instead, a
function whose name is created by prefixing the string {\small\verb%load_%} to
the name of the library is defined. This may be called later to
complete the loading of the library. The order of other names is
not important. The axioms, definitions and theorems in all the
theories listed are set up to be autoloaded. If there is no theory
in the library, this field should be a null list.
{\small\verb%codes : string list%} are the names of the code files. They will be
loaded in the order given after loading the first theory in
{\small\verb%theories%}. If there is no code files in the library, this field should
be a null list.
{\small\verb%load_parent : string%} is the name of a file to be loaded before the
code files are loaded. If we are not currently in draft mode, the
parent libraries may not be loaded completely. Instead, functions
having name prefixed by {\small\verb%load_%} will be defined. If the codes of
the current theory depend on the parent libraries, these loading
functions should be called before loading the codes. A file
containing the calls of the loading functions and possibly other
neccessory functions to set up the working environment will be
loaded. The name of this file is given in this field.
{\small\verb%part_path : string%} is the directory name of the library part. If
only part of the library is to be loaded, the string {\small\verb%lib_name%} should have
the part separator {\small\verb%:%} in it, e.g. {\small\verb%`lib:part`%}. It such case, the
files of the library part may reside in a sub-directory. The name of
this sub-directory is specified by this field, and it is added to
the search path.
{\small\verb%help_paths : string list%} are the names of directories containing the
help files. These are relative to the subdirectory `help` of the
library. They are added to the {\small\verb%help_search_path%}.
\FAILURE
It fails if any parent libraries, theories or files cannot be loaded.
\EXAMPLE
Suppose the the name of the library is {\small\verb%mylib%}. It depends on the
libraries {\small\verb%lib1%} and {\small\verb%lib2%}, and it consists of two theories {\small\verb%thy1%}
and {\small\verb%thy2%}, and a single code file {\small\verb%mylib_convs.ml%}. A load file for
this library will be as below:
{\par\samepage\setseps\small
\begin{verbatim}
let this_lib_name = `mylib`
and parent_libs = [`lib1`; `lib2`]
and theories = [`thy2`; `thy1`]
and codes = [`mylib_convs`]
and load_parent = `load_parent`
and part_path = ``
and help_paths = [`entries`]
in
library_loader (this_lib_name, parent_libs, theories, codes,
load_parent, part_path, help_paths);;
\end{verbatim}
}
\noindent If both of the libraries {\small\verb%lib1%} and {\small\verb%lib2%} have theories and they are
independent, and if the library {\small\verb%mylib%} is loaded when we are not in
draft mode, a function for loading the second parent {\small\verb%lib2%}, namely
{\small\verb%load_lib2%}, will be defined. This should be called in the file
{\small\verb%load_parent.ml%} to complete the loading of {\small\verb%lib2%}.
\USES
This function is primarily used in library load files. The user
function for loading a library is {\small\verb%load_library%}.
\SEEALSO
library_pathname, load_library, set_library_search_path,
define_load_lib_function.
\ENDDOC
\DOC{library\_pathname}
\TYPE {\small\verb%library_pathname : (void -> string)%}\egroup
\SYNOPSIS
Returns the pathname to the current library directory.
\DESCRIBE
Evaluating {\small\verb%library_pathname()%} returns a string giving the root pathname of
the current library directory. Usually, this is just the absolute pathname
to the HOL system library. But during the evaluation of a call to
{\small\verb%load_library%}, the string returned by {\small\verb%library_pathname()%} is the library
directory in which the library being loaded resides.
\FAILURE
Never fails.
\EXAMPLE
A very typical application is illustrated by the following code from the
load file for the built-in {\small\verb%string%} library:
{\par\samepage\setseps\small
\begin{verbatim}
let path = library_pathname() ^ `/string/` in
set_search_path (union (search_path()) [path]);;
\end{verbatim}
}
\noindent When the {\small\verb%string%} library load file is loaded using {\small\verb%load_library%},
this part of the code adds the pathname to the {\small\verb%string%} library to the internal
HOL search path.
\USES
The main purpose of the function {\small\verb%library_pathname%} is to allow library
load files to update the internal HOL search paths in a site-independent way.
\SEEALSO
install, library_search_path, set_library_search_path.
\ENDDOC
\DOC{library\_search\_path}
\TYPE {\small\verb%library_search_path : (void -> string list)%}\egroup
\SYNOPSIS
Returns the internal search path use by HOL to find libraries.
\DESCRIBE
Evaluating {\small\verb%library_search_path()%} returns a list of strings representing the
pathnames of the directories that are searched when the {\small\verb%load_library%} function
searches for libraries. Although the library search path can be set to an
arbitrary list of strings, each string is normally expected to be a pathname
with `{\small\verb%/%}' as its final character. When {\small\verb%load_library%} looks for a library
load file, the directories in the library search path are searched in the order
in which they occur in the list returned by {\small\verb%library_search_path%}.
\FAILURE
Never fails.
\SEEALSO
library_pathname, load_library, set_library_search_path.
\ENDDOC
\DOC{link}
\TYPE {\small\verb%link : ((string # string) -> void)%}\egroup
\SYNOPSIS
Makes a new link to a file.
\DESCRIBE
If {\small\verb%old%} and {\small\verb%new%} are filenames, where {\small\verb%old%} exists and {\small\verb%new%} does not, then
the call
{\par\samepage\setseps\small
\begin{verbatim}
link(`old`,`new`)
\end{verbatim}
}
\noindent will link the name {\small\verb%new%} to the file {\small\verb%old%} in the manner of the Unix
shell command
{\par\samepage\setseps\small
\begin{verbatim}
ln old new
\end{verbatim}
}
\FAILURE
A call to {\small\verb%link%} may fail in various system-related ways, in particular if
{\small\verb%old%} does not exist, or is a directory, or {\small\verb%new%} already exists.
\EXAMPLE
The following example is assumed to be run under Unix:
{\par\samepage\setseps\small
\begin{verbatim}
#system `touch test-file`;;
0 : int
#link(`test-file`,`test-link`);;
() : void
\end{verbatim}
}
\COMMENTS
This call is somewhat Unix-related, and may not work under other operating
systems.
\SEEALSO
system, unlink.
\ENDDOC
\DOC{lisp\_dir\_pathname}
\TYPE {\small\verb%lisp_dir_pathname : string%}\egroup
\SYNOPSIS
Absolute pathname to the HOL lisp sources.
\DESCRIBE
For implementation reasons, the ML variable {\small\verb%lisp_dir_pathname%} is bound when
the system if built to a string giving the absolute pathname of the directory
containing the HOL lisp sources. This value is not for general use.
\FAILURE
Evaluating {\small\verb%lisp_dir_pathname%} never fails.
\SEEALSO
ml_dir_pathname.
\ENDDOC
\DOC{lisp}
\TYPE {\small\verb%lisp : (string -> void)%}\egroup
\SYNOPSIS
Executes a lisp command from ML.
\DESCRIBE
{\small\verb%lisp%} executes a lisp s-expression (written as an ML string). Returned
values do not appear on the standard output, unless they are explicitly
printed.
\FAILURE
Fails if the s-expression is improperly constructed or fails when
evaluated by lisp.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#lisp `(princ "hello")`;;
hello() : void
#lisp `(cons 'a 'b)`;;
() : void
#lisp `(princ (cons 'a 'b))`;;
(A . B)() : void
#lisp `(car 'a)`;;
Error: Attempt to take the car of A which is not a cons.
evaluation failed lisp -- NIL
#lisp `(princ "hello"`;;
Error: eof encountered on input stream #<string input stream @ #x869fe6>
evaluation failed lisp -- NIL
\end{verbatim}
}
\COMMENTS
{\small\verb%lisp%} is not meant for general use, and should be treated with great
care. If one is not wary, it is entirely possible to corrupt HOL by
using it.
\SEEALSO
dropout, lsp.
\ENDDOC
\DOC{LIST\_BETA\_CONV}
\TYPE {\small\verb%LIST_BETA_CONV : conv%}\egroup
\SYNOPSIS
Performs an iterated beta conversion.
\DESCRIBE
The conversion {\small\verb%LIST_BETA_CONV%} maps terms of the form
{\par\samepage\setseps\small
\begin{verbatim}
"(\x1 x2 ... xn. u) v1 v2 ... vn"
\end{verbatim}
}
\noindent to the theorems of the form
{\par\samepage\setseps\small
\begin{verbatim}
|- (\x1 x2 ... xn. u) v1 v2 ... vn = u[v1/x1][v2/x2] ... [vn/xn]
\end{verbatim}
}
\noindent where {\small\verb%u[vi/xi]%} denotes the result of substituting {\small\verb%vi%} for all free
occurrences of {\small\verb%xi%} in {\small\verb%u%}, after renaming sufficient bound variables to avoid
variable capture.
\FAILURE
{\small\verb%LIST_BETA_CONV tm%} fails if {\small\verb%tm%} does not have the form
{\small\verb%"(\x1 ... xn. u) v1 ... vn"%} for {\small\verb%n%} greater than 0.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#LIST_BETA_CONV "(\x y. x+y) 1 2";;
|- (\x y. x + y)1 2 = 1 + 2
\end{verbatim}
}
\SEEALSO
BETA_CONV, BETA_RULE, BETA_TAC, RIGHT_BETA, RIGHT_LIST_BETA.
\ENDDOC
\DOC{LIST\_CONJ}
\TYPE {\small\verb%LIST_CONJ : (thm list -> thm)%}\egroup
\SYNOPSIS
Conjoins the conclusions of a list of theorems.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 ... An |- tn
---------------------------------- LIST_CONJ
A1 u ... u An |- t1 /\ ... /\ tn
\end{verbatim}
}
\FAILURE
{\small\verb%LIST_CONJ%} will fail with {\small\verb%`end_itlist`%} if applied to an empty list
of theorems.
\COMMENTS
The system shows the type as {\small\verb%proof%}.
{\small\verb%LIST_CONJ%} does not check for alpha-equivalence of assumptions when forming
their union. If a particular assumption is duplicated within one of the input
theorems assumption lists, then it may be duplicated in the resulting
assumption list.
\SEEALSO
BODY_CONJUNCTS, CONJ, CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_PAIR, CONJ_TAC.
\ENDDOC
\DOC{list\_EQ\_CONV}
\TYPE {\small\verb%list_EQ_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Prove equality or inequality of two lists.
\DESCRIBE
{\small\verb%list_EQ_CONV c%} implements a decision procedure for equality of lists of type
{\small\verb%(ty)list%} where the conversion {\small\verb%c%} decides equality of values of type {\small\verb%ty%}.
More precisely, the argument to {\small\verb%list_EQ_CONV%} is expected to be a conversion
{\small\verb%c%} which implements a decision procedure for values of some base type {\small\verb%ty%}, in
the sense that {\small\verb%c "t1 = t2"%} returns {\small\verb%|- (t1 = t2) = T%} if {\small\verb%t1%} denotes the
same value as {\small\verb%t2%} and {\small\verb%|- (t1 = t2) = F%} if {\small\verb%t1%} and {\small\verb%t2%} denote different
values. Given such a conversion {\small\verb%c%}, evaluating:
{\par\samepage\setseps\small
\begin{verbatim}
list_EQ_CONV c "[t1;...;tn] = [u1;...;um]"
\end{verbatim}
}
\noindent where all the {\small\verb%ti%} and {\small\verb%ui%} have type {\small\verb%ty%}, returns:
{\par\samepage\setseps\small
\begin{verbatim}
|- ([t1;...;tn] = [u1;...;um]) = F
\end{verbatim}
}
\noindent if {\small\verb%n%} is not equal to {\small\verb%m%} (i.e. if the two lists have different
lengths) or if {\small\verb%n%} = {\small\verb%m%} and the conversion {\small\verb%c%} proves {\small\verb%|- (ti = ui) = F%} for
some {\small\verb%i%} between {\small\verb%1%} and {\small\verb%n%}. The theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ([t1;...;tn] = [u1;...;um]) = T
\end{verbatim}
}
\noindent is returned if {\small\verb%n%} equals {\small\verb%m%} and for all {\small\verb%i%} from {\small\verb%1%} to {\small\verb%n%} either
{\small\verb%ti%} is syntactically identical to {\small\verb%ui%} or {\small\verb%c%} proves {\small\verb%|- (ti = ui) = T%}
\FAILURE
{\small\verb%list_EQ_CONV t%} fails if {\small\verb%t%} is not a term of the form
{\small\verb%"[t1;...;tn] = [u1;...;um]"%}, or if {\small\verb%n%} equals {\small\verb%m%} and some {\small\verb%ti%} is not
syntactically identical to {\small\verb%ui%} but {\small\verb%c%} fails to prove either of the
theorems {\small\verb%|- (ti = ui) = T%} or {\small\verb%|- (ti = ui) = F%} when applied to {\small\verb%"ti = ui"%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_EQ_CONV num_EQ_CONV "[1;SUC 1;3] = [1;2;3]";;
|- ([1;SUC 1;3] = [1;2;3]) = T
\end{verbatim}
}
\ENDDOC
\DOC{list\_FOLD\_CONV}
\TYPE {\small\verb%list_FOLD_CONV : thm -> conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a function to elements of a list.
\DESCRIBE
Evaluating {\small\verb%list_FOLD_CONV fthm conv tm%} returns a theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- CONST x0' ... xi' ... xn' = tm'
\end{verbatim}
}
\noindent The first argument {\small\verb%fthm%} should be a theorem of the form
{\par\samepage\setseps\small
\begin{verbatim}
|- !x0 ... xi ... xn. CONST x0 ... xi ... xn = FOLD[LR] f e xi
\end{verbatim}
}
\noindent where {\small\verb%FOLD[LR]%} means either {\small\verb%FOLDL%} or {\small\verb%FOLDR%}. The last
argument {\small\verb%tm%} is a term of the following form:
{\par\samepage\setseps\small
\begin{verbatim}
CONST x0' ... xi' ... xn'
\end{verbatim}
}
\noindent where {\small\verb%xi'%} is a concrete list. {\small\verb%list_FOLD_CONV%} first
instantiates the input theorem using {\small\verb%tm%}. It then calls either
{\small\verb%FOLDL_CONV%} or {\small\verb%FOLDR_CONV%} with the user supplied conversion {\small\verb%conv%}
on the right-hand side.
\FAILURE
{\small\verb%list_FOLD_CONV fthm conv tm%} fails if {\small\verb%fthm%} or {\small\verb%tm%} is not of the
form described above, or if they do not agree, or the call to
{\small\verb%FOLDL_CONV%} OR {\small\verb%FOLDR_CONV%} fails.
\USES
This function is used to implement conversion for logical constants
which can be expressed in terms of the fold operators. For example,
the constant {\small\verb%SUM%} can be expressed in terms of {\small\verb%FOLDR%} as in the
following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !l. SUM l = FOLDR $+ 0 l
\end{verbatim}
}
\noindent A conversion for {\small\verb%SUM%} can be implemented as
{\par\samepage\setseps\small
\begin{verbatim}
let SUM_CONV =
list_FOLD_CONV (theorem `list` `SUM_FOLDR`) ADD_CONV;;
\end{verbatim}
}
\noindent Then, evaluating {\small\verb%SUM_CONV "SUM [0;1;2;3]"%} will return
the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- SUM [0;1;2;3] = 6
\end{verbatim}
}
\SEEALSO
FOLDL_CONV, FOLDR_CONV.
\ENDDOC
\DOC{LIST\_INDUCT}
\TYPE {\small\verb%LIST_INDUCT : ((thm # thm) -> thm)%}\egroup
\SYNOPSIS
Performs proof by structural induction on lists.
\DESCRIBE
The derived inference rule {\small\verb%LIST_INDUCT%} implements the rule of mathematical
induction:
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- P[NIL/l] A2 |- !t. P[t/l] ==> !h. P[CONS h t/l]
------------------------------------------------------------ LIST_INDUCT
A1 u A2 |- !l. P
\end{verbatim}
}
\noindent When supplied with a theorem {\small\verb%A1 |- P[NIL]%}, which asserts the base
case of a proof of the proposition {\small\verb%P[l]%} by structural induction on the list
{\small\verb%l%}, and the theorem
{\par\samepage\setseps\small
\begin{verbatim}
A2 |- !t. P[t] ==> !h. P[CONS h t]
\end{verbatim}
}
\noindent which asserts the step case in the induction on {\small\verb%l%}, the inference
rule {\small\verb%LIST_INDUCT%} returns {\small\verb%A1 u A2 |- !l. P[l]%}.
\FAILURE
{\small\verb%LIST_INDUCT th1 th2%} fails if the theorems {\small\verb%th1%} and {\small\verb%th2%} do not have the
forms {\small\verb%A1 |- P[NIL]%} and {\small\verb%A2 |- !t. P[t] ==> !h. P[CONS h t]%} respectively
(where the empty list {\small\verb%NIL%} in {\small\verb%th1%} and the list {\small\verb%CONS h t%} in {\small\verb%th2%} have
the same type).
\SEEALSO
LIST_INDUCT_TAC.
\ENDDOC
\DOC{LIST\_INDUCT\_TAC}
\TYPE {\small\verb%LIST_INDUCT_TAC : tactic%}\egroup
\SYNOPSIS
Performs tactical proof by structural induction on lists.
\DESCRIBE
{\small\verb%LIST_INDUCT_TAC%} reduces a goal {\small\verb%!l.P[l]%}, where {\small\verb%l%} ranges over lists, to two
subgoals corresponding to the base and step cases in a proof by structural
induction on {\small\verb%l%}. The induction hypothesis appears among the assumptions of the
subgoal for the step case. The specification of {\small\verb%LIST_INDUCT_TAC%} is:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !l. P
===================================================== LIST_INDUCT_TAC
A |- P[NIL/l] A u {P[l'/l]} ?- !h. P[CONS h l'/l]
\end{verbatim}
}
\noindent where {\small\verb%l'%} is a primed variant of {\small\verb%l%} that does not appear free in
the assumptions {\small\verb%A%} (usually, {\small\verb%l'%} is just {\small\verb%l%}). When {\small\verb%LIST_INDUCT_TAC%} is
applied to a goal of the form {\small\verb%!l.P%}, where {\small\verb%l%} does not appear free in {\small\verb%P%},
the subgoals are just {\small\verb%A ?- P%} and {\small\verb%A u {P} ?- !h.P%}.
\FAILURE
{\small\verb%LIST_INDUCT_TAC g%} fails unless the conclusion of the goal {\small\verb%g%} has the form
{\small\verb%!l.t%}, where the variable {\small\verb%l%} has type {\small\verb%(ty)list%} for some type {\small\verb%ty%}.
\SEEALSO
LIST_INDUCT.
\ENDDOC
\DOC{list\_mk\_abs}
\TYPE {\small\verb%list_mk_abs : ((term list # term) -> term)%}\egroup
\SYNOPSIS
Iteratively constructs abstractions.
\DESCRIBE
{\small\verb%list_mk_abs(["x1";...;"xn"],"t")%} returns {\small\verb%"\x1 ... xn. t"%}.
\FAILURE
Fails with {\small\verb%list_mk_abs%} if the terms in the list are not variables.
\COMMENTS
The system shows the type as {\small\verb%goal -> term%}.
\SEEALSO
strip_abs, mk_abs.
\ENDDOC
\DOC{list\_mk\_comb}
\TYPE {\small\verb%list_mk_comb : ((term # term list) -> term)%}\egroup
\SYNOPSIS
Iteratively constructs combinations (function applications).
\DESCRIBE
{\small\verb%list_mk_comb("t",["t1";...;"tn"])%} returns {\small\verb%"t t1 ... tn"%}.
\FAILURE
Fails with {\small\verb%list_mk_comb%} if the types of {\small\verb%t1%},...,{\small\verb%tn%} are not equal to the
argument types of {\small\verb%t%}. It is not necessary for all the arguments of {\small\verb%t%} to be
given. In particular the list of terms {\small\verb%t1%},...,{\small\verb%tn%} may be empty.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_comb("1",[]);;
"1" : term
#list_mk_comb("$/\",["T"]);;
"$/\ T" : term
#list_mk_comb("$/\",["1"]);;
evaluation failed list_mk_comb
\end{verbatim}
}
\SEEALSO
strip_comb, mk_comb.
\ENDDOC
\DOC{list\_mk\_conj}
\TYPE {\small\verb%list_mk_conj : (term list -> term)%}\egroup
\SYNOPSIS
Constructs the conjunction of a list of terms.
\DESCRIBE
{\small\verb%list_mk_conj(["t1";...;"tn"])%} returns {\small\verb%"t1 /\ ... /\ tn"%}.
\FAILURE
Fails with {\small\verb%list_mk_conj%} if the list is empty or if the list has more than
one element, one or more of which are not of type {\small\verb%":bool"%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_conj ["T";"F";"T"];;
"T /\ F /\ T" : term
#list_mk_conj ["T";"1";"F"];;
evaluation failed list_mk_conj
#list_mk_conj ["1"];;
"1" : term
\end{verbatim}
}
\SEEALSO
conjuncts, mk_conj.
\ENDDOC
\DOC{list\_mk\_disj}
\TYPE {\small\verb%list_mk_disj : (term list -> term)%}\egroup
\SYNOPSIS
Constructs the disjunction of a list of terms.
\DESCRIBE
{\small\verb%list_mk_disj(["t1";...;"tn"])%} returns {\small\verb%"t1 \/ ... \/ tn"%}.
\FAILURE
Fails with {\small\verb%list_mk_disj%} if the list is empty or if the list has more than
one element, one or more of which are not of type {\small\verb%":bool"%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_disj ["T";"F";"T"];;
"T \/ F \/ T" : term
#list_mk_disj ["T";"1";"F"];;
evaluation failed list_mk_disj
#list_mk_disj ["1"];;
"1" : term
\end{verbatim}
}
\SEEALSO
disjuncts, mk_disj.
\ENDDOC
\DOC{list\_mk\_exists}
\TYPE {\small\verb%list_mk_exists : ((term list # term) -> term)%}\egroup
\SYNOPSIS
Iteratively constructs existential quantifications.
\DESCRIBE
{\small\verb%list_mk_exists(["x1";...;"xn"],"t")%} returns {\small\verb%"?x1 ... xn. t"%}.
\FAILURE
Fails with {\small\verb%list_mk_exists%} if the terms in the list are not variables or if
{\small\verb%t%} is not of type {\small\verb%":bool"%} and the list of terms is non-empty. If the list
of terms is empty the type of {\small\verb%t%} can be anything.
\COMMENTS
The system shows the type as {\small\verb%(goal -> term)%}.
\SEEALSO
strip_exists, mk_exists.
\ENDDOC
\DOC{LIST\_MK\_EXISTS}
\TYPE {\small\verb%LIST_MK_EXISTS : (term list -> thm -> thm)%}\egroup
\SYNOPSIS
Multiply existentially quantifies both sides of an equation using the given
variables.
\DESCRIBE
When applied to a list of terms {\small\verb%[x1;...;xn]%}, where the {\small\verb%ti%} are all
variables, and a theorem {\small\verb%A |- t1 = t2%}, the inference rule
{\small\verb%LIST_MK_EXISTS%} existentially quantifies both sides of the equation
using the variables given, none of which should be free in the assumption
list.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
-------------------------------------- LIST_MK_EXISTS ["x1";...;"xn"]
A |- (?x1...xn. t1) = (?x1...xn. t2)
\end{verbatim}
}
\FAILURE
Fails if any term in the list is not a variable or is free in the assumption
list, or if the theorem is not equational.
\SEEALSO
EXISTS_EQ, MK_EXISTS.
\ENDDOC
\DOC{list\_mk\_forall}
\TYPE {\small\verb%list_mk_forall : ((term list # term) -> term)%}\egroup
\SYNOPSIS
Iteratively constructs a universal quantification.
\DESCRIBE
{\small\verb%list_mk_forall(["x1";...;"xn"],"t")%} returns {\small\verb%"!x1 ... xn. t"%}.
\FAILURE
Fails with {\small\verb%list_mk_forall%} if the terms in the list are not variables or if
{\small\verb%t%} is not of type {\small\verb%":bool"%} and the list of terms is non-empty. If the list
of terms is empty the type of {\small\verb%t%} can be anything.
\COMMENTS
The system shows the type as {\small\verb%(goal -> term)%}.
\SEEALSO
strip_forall, mk_forall.
\ENDDOC
\DOC{list\_mk\_imp}
\TYPE {\small\verb%list_mk_imp : (goal -> term)%}\egroup
\SYNOPSIS
Iteratively constructs implications.
\DESCRIBE
{\small\verb%list_mk_imp(["t1";...;"tn"],"t")%} returns {\small\verb%"t1 ==> ( ... (tn ==> t)...)"%}.
\FAILURE
Fails with {\small\verb%list_mk_imp%} if any of {\small\verb%t1%},...,{\small\verb%tn%} are not of type {\small\verb%":bool"%} or
if the list of terms is non-empty and {\small\verb%t%} is not of type {\small\verb%":bool"%}. If the
list of terms is empty the type of {\small\verb%t%} can be anything.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_imp (["T";"F"],"T");;
"T ==> F ==> T" : term
#list_mk_imp (["T";"1"],"T");;
evaluation failed list_mk_imp
#list_mk_imp (["T";"F"],"1");;
evaluation failed list_mk_imp
#list_mk_imp ([],"1");;
"1" : term
\end{verbatim}
}
\SEEALSO
strip_imp, mk_imp.
\ENDDOC
\DOC{list\_mk\_pair}
\TYPE {\small\verb%list_mk_pair : (term list -> term)%}\egroup
\SYNOPSIS
Constructs a tuple from a list of terms.
\DESCRIBE
{\small\verb%list_mk_pair(["t1";...;"tn"])%} returns {\small\verb%"(t1,...,tn)"%}.
\FAILURE
Fails with {\small\verb%list_mk_pair%} if the list is empty.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_pair ["1";"T";"2"];;
"1,T,2" : term
#list_mk_pair ["1"];;
"1" : term
\end{verbatim}
}
\SEEALSO
strip_pair, mk_pair.
\ENDDOC
\DOC{LIST\_MP}
\TYPE {\small\verb%LIST_MP : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Performs a chain of Modus Ponens inferences.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- t1, ..., An |- tn%} and a theorem which is a
chain of implications with the successive antecedents the same as the
conclusions of the theorems in the list (up to alpha-conversion),
{\small\verb%A |- t1 ==> ... ==> tn ==> t%}, the {\small\verb%LIST_MP%} inference rule performs a chain
of {\small\verb%MP%} inferences to deduce {\small\verb%A u A1 u ... u An |- t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 ... An |- tn A |- t1 ==> ... ==> tn ==> t
--------------------------------------------------------- LIST_MP
A u A1 u ... u An |- t
\end{verbatim}
}
\FAILURE
Fails unless the theorem is a chain of implications whose consequents are the
same as the conclusions of the list of theorems (up to alpha-conversion), in
sequence.
\SEEALSO
EQ_MP, MATCH_MP, MATCH_MP_TAC, MP, MP_TAC.
\ENDDOC
\DOC{list\_of\_binders}
\TYPE {\small\verb%list_of_binders : term list%}\egroup
\SYNOPSIS
List of binders in the current theory.
\DESCRIBE
For implementation reasons, a list containing the binders in the current theory
is maintained in the assignable ML variable {\small\verb%list_of_binders%}. This variable
is not for general use, and users should never make assignments to it.
\FAILURE
Evaluating the assignable variable {\small\verb%list_of_binders%} never fails.
\ENDDOC
\DOC{load\_axiom}
\TYPE {\small\verb%load_axiom : (string -> string -> void)%}\egroup
\SYNOPSIS
Loads in a given axiom from a given theory.
\DESCRIBE
If {\small\verb%thy%} is the name of an ancestor theory, and {\small\verb%ax%} one of its axioms, then
{\par\samepage\setseps\small
\begin{verbatim}
load_axiom `thy` `ax`
\end{verbatim}
}
\noindent attempts to load the corresponding axiom, that is, to perform
dynamically the following toplevel binding:
{\par\samepage\setseps\small
\begin{verbatim}
let ax = axiom `thy` `ax`;;
\end{verbatim}
}
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%ax%} is not one of its
axioms.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#load_axiom `ind` `INFINITY_AX`;;
() : void
INFINITY_AX = |- ?f. ONE_ONE f /\ ~ONTO f
#INFINITY_AX;;
|- ?f. ONE_ONE f /\ ~ONTO f
\end{verbatim}
}
\USES
Useful for autoloading.
\SEEALSO
axioms, let_after, let_before, load_axioms.
\ENDDOC
\DOC{load\_axioms}
\TYPE {\small\verb%load_axioms : (string -> void list)%}\egroup
\SYNOPSIS
Loads in all the axioms from a given theory.
\DESCRIBE
If {\small\verb%thy%} is the name of an ancestor theory, then the call
{\par\samepage\setseps\small
\begin{verbatim}
load_axioms `thy`
\end{verbatim}
}
\noindent attempts to load in all the axioms from that theory, that is, for
each axiom {\small\verb%ax%}, to perform dynamically the following toplevel binding:
{\par\samepage\setseps\small
\begin{verbatim}
let ax = axiom `thy` `ax`;;
\end{verbatim}
}
\FAILURE
Fails unless {\small\verb%thy%} is an ancestor theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#load_axioms `bool`;;
[(); (); (); (); ()] : void list
SELECT_AX = |- !P x. P x ==> P($@ P)
ETA_AX = |- !t. (\x. t x) = t
IMP_ANTISYM_AX = |- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)
BOOL_CASES_AX = |- !t. (t = T) \/ (t = F)
ARB_THM = |- $= = $=
\end{verbatim}
}
\SEEALSO
axioms, let_after, let_before, load_axiom.
\ENDDOC
\DOC{load\_definition}
\TYPE {\small\verb%load_definition : (string -> string -> void)%}\egroup
\SYNOPSIS
Loads in a given definition from a given theory.
\DESCRIBE
If {\small\verb%thy%} is the name of an ancestor theory, and {\small\verb%def%} one of its definitions,
then
{\par\samepage\setseps\small
\begin{verbatim}
load_definition `thy` `def`
\end{verbatim}
}
\noindent attempts to load the corresponding definition, that is, to perform
dynamically the following toplevel binding:
{\par\samepage\setseps\small
\begin{verbatim}
let def = definition `thy` `def`;;
\end{verbatim}
}
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%def%} is not one of its
definitions.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#load_definition `bool` `FORALL_DEF`;;
() : void
FORALL_DEF = |- $! = (\P. P = (\x. T))
#FORALL_DEF;;
|- $! = (\P. P = (\x. T))
\end{verbatim}
}
\USES
Useful for autoloading.
\SEEALSO
definitions, let_after, let_before, load_definitions.
\ENDDOC
\DOC{load\_definitions}
\TYPE {\small\verb%load_definitions : (string -> void list)%}\egroup
\SYNOPSIS
Loads in all the definitions from a given theory.
\DESCRIBE
If {\small\verb%thy%} is the name of an ancestor theory, then the call
{\par\samepage\setseps\small
\begin{verbatim}
load_definitions `thy`
\end{verbatim}
}
\noindent attempts to load in all the definitions of that theory, that is, for
each definition {\small\verb%def%}, to perform dynamically the following toplevel binding:
{\par\samepage\setseps\small
\begin{verbatim}
let def = definition `thy` `def`;;
\end{verbatim}
}
\FAILURE
Fails unless {\small\verb%thy%} is an ancestor theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#load_definitions `combin`;;
[(); (); (); ()] : void list
I_DEF = |- I = S K K
S_DEF = |- S = (\f g x. f x(g x))
K_DEF = |- K = (\x y. x)
o_DEF = |- !f g. f o g = (\x. f(g x))
\end{verbatim}
}
\SEEALSO
definitions, let_after, let_before, load_definition.
\ENDDOC
\DOC{load}
\TYPE {\small\verb%load : ((string # bool) -> void)%}\egroup
\SYNOPSIS
Loads ML phrases from the named file.
\DESCRIBE
A call {\small\verb%load(`file`,flag)%} will load ML phrases from the file described by
{\small\verb%file%}. If the boolean value {\small\verb%flag%} is true, then toplevel printing of the
system responses will occur, otherwise just a dot is printed for each toplevel
phrase. The name {\small\verb%file%} is expanded into a real filename using the same
mechanism as {\small\verb%find_ml_file%}.
\FAILURE
Fails if the appropriate file cannot be found on the search path, or if an
error occurs in the ML which is being loaded.
\COMMENTS
It is usual to use either {\small\verb%loadf%} or {\small\verb%loadt%} rather than this function, which
perform the same action with one or the other setting of the flag.
\SEEALSO
find_ml_file, loadf, loadt, search_path, set_search_path.
\ENDDOC
\DOC{loadf}
\TYPE {\small\verb%loadf : (string -> void)%}\egroup
\SYNOPSIS
Loads an ML file with the verbose flag set to {\small\verb%false%}.
\DESCRIBE
The function {\small\verb%loadf%} takes a string indicating the ML file name as
argument and loads it in the same manner as {\small\verb%load%}, except that the
verbose flag is always set to false.
\FAILURE
{\small\verb%loadf%} will fail if the file named by the argument does not exist in
the search path. It will fail in the same manner if the file is not a
valid ML file. Failure in the ML file will terminate loading.
\EXAMPLE
If we have a ML file called {\small\verb%foo.ml%} which contains the line
{\par\samepage\setseps\small
\begin{verbatim}
let x=2+2;;
\end{verbatim}
}
\noindent this can be loaded as follows:
{\par\samepage\setseps\small
\begin{verbatim}
#loadf `foo.ml`;;
\end{verbatim}
}
\noindent and the system would respond with:
{\par\samepage\setseps\small
\begin{verbatim}
.() : void
\end{verbatim}
}
\SEEALSO
load, loadf.
\ENDDOC
\DOC{load\_library}
\TYPE {\small\verb%load_library : (string -> void)%}\egroup
\SYNOPSIS
Load a library.
\DESCRIBE
The function {\small\verb%load_library%} can either be used to load an entire library or to
load only a part of a library. Loading an entire library called `{\small\verb%name%}' is
done by evaluating
{\par\samepage\setseps\small
\begin{verbatim}
load_library `name`;;
\end{verbatim}
}
\noindent This will attempt to load the library called {\small\verb%name%} unless it is
already loaded, in which case a message is printed. The loading of a library
{\small\verb%name%} is done by searching for the library's load file `{\small\verb%name/name.ml%}' using
the internal library search path and then loading this file. For example, if
the library search path contains the pathnames to a local library and to the
system library:
{\par\samepage\setseps\small
\begin{verbatim}
[`~/lib/`; `/usr/lib/hol/Library/`]
\end{verbatim}
}
\noindent then {\small\verb%load_library%} will load the ML file
{\par\samepage\setseps\small
\begin{verbatim}
~/lib/name/name.ml
\end{verbatim}
}
\noindent if this exists in the local library. Otherwise, the file
{\par\samepage\setseps\small
\begin{verbatim}
/usr/lib/hol/Library/name/name.ml
\end{verbatim}
}
\noindent will be loaded from the system library.
A named part of a library is loaded by evaluating:
{\par\samepage\setseps\small
\begin{verbatim}
load_library `name:partname`;;
\end{verbatim}
}
\noindent where {\small\verb%name%} is the name of the library, and {\small\verb%partname%} is the name
of a segment of this library. In this case, {\small\verb%load_library%} searches along the
library search path for the load file {\small\verb%name/partname.ml%}. Note that this can
be used to load an arbitrary ML file from the library. Users should not,
however, rely on this feature, but should access libraries only in the ways the
officially supported and documented in library manuals.
The results of evaluation during the loading of a library are displayed if the
flag {\small\verb%print_lib%} is {\small\verb%true%}. Otherwise, the results of evaluation are not
printed but abbreviated by a series of dots, each of which represents the
evaluation of one ML phrase.
\FAILURE
Fails if the library load file cannot be found or if the ML code being loaded
itself fails for any reason.
\COMMENTS
More detail about the organization of libraries, in particular how to create
your own, can be found in DESCRIPTION, which also gives a list of all the
libraries currently in the standard HOL distribution.
\SEEALSO
libraries, library_pathname, library_search_path, set_library_search_path.
\ENDDOC
\DOC{loadt}
\TYPE {\small\verb%loadt : (string -> void)%}\egroup
\SYNOPSIS
{\small\verb%loadt%} loads an ML file with the verbose flag set to {\small\verb%true%}.
\DESCRIBE
The function {\small\verb%loadt%} takes a string indicating the ML file name as
argument and loads it in the same manner as {\small\verb%load%}, except that the
verbose flag is always set to {\small\verb%true%}.
\FAILURE
{\small\verb%loadt%} will fail if the file named by the argument does not exist in
the search path. It will fail in the same manner if the file is not a
valid ML file. Failure in the ML file will also terminate loading.
\EXAMPLE
If we have an ML file called {\small\verb%foo.ml%} which contains the line
{\par\samepage\setseps\small
\begin{verbatim}
let x=2+2;;
\end{verbatim}
}
\noindent this can be loaded as follows:
{\par\samepage\setseps\small
\begin{verbatim}
#loadt `foo.ml`;;
\end{verbatim}
}
\noindent and the system would respond with:
{\par\samepage\setseps\small
\begin{verbatim}
x = 4 : int
File foo.ml loaded
() : void
\end{verbatim}
}
\SEEALSO
load, loadf.
\ENDDOC
\DOC{load\_theorem}
\TYPE {\small\verb%load_theorem : (string -> string -> void)%}\egroup
\SYNOPSIS
Loads in a given theorem from a given theory.
\DESCRIBE
If {\small\verb%thy%} is the name of an ancestor theory, and {\small\verb%th%} one of its axioms, then
{\par\samepage\setseps\small
\begin{verbatim}
load_theorem `thy` `th`
\end{verbatim}
}
\noindent will attempt to load the corresponding theorem, that is, to perform
dynamically the following toplevel binding:
{\par\samepage\setseps\small
\begin{verbatim}
let th = theorem `thy` `th`;;
\end{verbatim}
}
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%th%} is not one of its
theorems.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#load_theorem `bool` `PAIR`;;
() : void
PAIR = |- !x. FST x,SND x = x
#PAIR;;
|- !x. FST x,SND x = x
\end{verbatim}
}
\USES
Useful for autoloading.
\SEEALSO
theorems, let_after, let_before, load_theorems.
\ENDDOC
\DOC{load\_theorems}
\TYPE {\small\verb%load_theorems : (string -> void list)%}\egroup
\SYNOPSIS
Loads in all the theorems from a given theory.
\DESCRIBE
If {\small\verb%thy%} is the name of an ancestor theory, then the call
{\par\samepage\setseps\small
\begin{verbatim}
load_theorems `thy`
\end{verbatim}
}
\noindent attempts to load in all the theorems from that theory, that is, for
each axiom {\small\verb%th%}, to perform dynamically the following toplevel binding:
{\par\samepage\setseps\small
\begin{verbatim}
let th = theorem `thy` `th`;;
\end{verbatim}
}
\FAILURE
Fails unless {\small\verb%thy%} is an ancestor theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#load_theorems `bool`;;
[(); (); (); (); ()] : void list
PAIR_EQ = |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b)
SND = |- !x y. SND(x,y) = y
FST = |- !x y. FST(x,y) = x
PAIR = |- !x. FST x,SND x = x
PAIR_EXISTS = |- ?p. IS_PAIR p
\end{verbatim}
}
\SEEALSO
let_after, let_before, load_theorem, theorems.
\ENDDOC
\DOC{load\_theory}
\TYPE {\small\verb%load_theory : (string -> void)%}\egroup
\SYNOPSIS
Loads an existing theory into the system.
\DESCRIBE
A call {\small\verb%load_theory `thy`%} loads the existing theory {\small\verb%thy%} into the system
and makes it the current theory. The message `{\small\verb%Theory thy loaded%}' is printed.
The theory is entered in proof mode. Whilst in this mode only theorems may be
added to the theory segment.
\FAILURE
A call to {\small\verb%load_theory `thy`%} will fail if theory {\small\verb%thy%} does not appear on
the current search path. It will fail if theory {\small\verb%thy%} is not a descendant of
the current theory. It will fail if an ancestor of theory {\small\verb%thy%} has been
extended with either new types or constants which clash with names in theory
{\small\verb%thy%}. It will also fail if any of the theory files of the theory {\small\verb%thy%}
have been damaged. On failure, the system recovers cleanly, unloading any
theory segments it had loaded before the failure was detected. It will diverge
if the theory hierarchy within theory {\small\verb%thy%} contains loops, so that a theory
segment is its own ancestor.
\SEEALSO
extend_theory, new_parent, new_theory, print_theory, search_path.
\ENDDOC
\DOC{lookup\_form\_rep}
\TYPE {\small\verb%lookup_form_rep : ((* list # form) -> * list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{lookup\_term}
\TYPE {\small\verb%lookup_term : (* term_net -> term -> * list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{lookup\_term\_rep}
\TYPE {\small\verb%lookup_term_rep : ((* list # term) -> * list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{lsp}
\TYPE {\small\verb%lsp : (void -> void)%}\egroup
\SYNOPSIS
Breaks out of top-level ML to Lisp.
\DESCRIBE
{\small\verb%lsp%} breaks out of top-level ML to Lisp in such a fashion that one finds
oneself in the particular Lisp's break-level debugger. ML execution may
be continued safely by issuing the appropriate continuation command to
the Lisp in question. In Franz, this is a {\small\verb%Control-D%}, in Allegro CL it
is {\small\verb%:continue%}, in Lucid CL it is {\small\verb%(q)%}, and in AKCL it is {\small\verb%:r%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#lsp();;
Break nil
<1>: ^D
[Return to top level]
_ _ __ _ __ __
|___ |__| | | | |__| |__|
| | | |__| |__ |__| |__|
Version 1.12 (Sun3/Franz), built on Feb 23 1991
#
\end{verbatim}
}
\COMMENTS
{\small\verb%lsp%} is not meant for general use, and should be treated with great
care. If one is not wary, it is entirely possible to corrupt HOL by
using it.
\SEEALSO
dropout, lisp.
\ENDDOC
\DOC{MAP2\_CONV}
\TYPE {\small\verb%MAP2_CONV : conv -> conv%}\egroup
\SYNOPSIS
Compute the result of mapping a binary function down two lists.
\DESCRIBE
The function {\small\verb%MAP2_CONV%} is a conversion for computing the result
of mapping a binary function {\small\verb%f:ty1->ty2->ty3%} down two lists
{\small\verb%"[l11;...;l1n]"%} whose elements are of type {\small\verb%ty1%} and
{\small\verb%"[l21;...;l2n]"%} whose elements are of type {\small\verb%ty2%}. The lengths of
the two lists must be identical. The first
argument to {\small\verb%MAP2_CONV%} is expected to be a conversion
that computes the result of applying the function {\small\verb%f%} to a pair of
corresponding elements of these lists. When applied to a term
{\small\verb%"f l1i l2i"%}, this conversion should return a theorem of the form
{\small\verb%|- (f l1i l2i) = ri%}, where {\small\verb%ri%} is the result of applying the function
{\small\verb%f%} to the elements {\small\verb%l1i%} and {\small\verb%l2i%}.
\noindent Given an appropriate {\small\verb%conv%}, the conversion {\small\verb%MAP2_CONV conv%} takes a
term of the form {\small\verb%"MAP2 f [l11;...;dl2tn] [l21;...;l2n]"%} and returns
the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- MAP2 f [l11;...;l1n] [l21;...;l2n] = [r1;...;rn]
\end{verbatim}
}
\noindent where {\small\verb%conv "f l1i l2i"%} returns {\small\verb%|- (f l1i l2i) = ri%} for
{\small\verb%i%} from {\small\verb%1%} to {\small\verb%n%}.
\EXAMPLE
The following is a very simple example in which the corresponding
elements from the two lists are summed to form the resulting list:
{\par\samepage\setseps\small
\begin{verbatim}
#MAP2_CONV ADD_CONV "MAP2 $+ [1;2;3] [1;2;3]";;
|- MAP2 $+ [1;2;3] [1;2;3] = [2;4;6]
\end{verbatim}
}
\FAILURE
{\small\verb%MAP2_CONV conv%} fails if applied to a term not of the form
described above. An application of {\small\verb%MAP2_CONV conv%} to a term
{\small\verb%"MAP2 f [l11;...;l1n] [l21;...;l2n]"%} fails unless for all {\small\verb%i%} where {\small\verb%1<=i<=n%}
evaluating {\small\verb%conv "f l1i l2i"%} returns {\small\verb%|- (f l1i l2i) = ri%} for some {\small\verb%ri%}.
\SEEALSO
MAP_CONV
\ENDDOC
\DOC{map2}
\TYPE {\small\verb%map2 : (((* # **) -> ***) -> (* list # ** list) -> *** list)%}\egroup
\SYNOPSIS
Maps a binary function over two lists to create one new list.
\DESCRIBE
{\small\verb%map2 f ([x1;...;xn],[y1;...;yn])%} returns {\small\verb%[f(x1,y1);...;f(xn,yn)]%}.
\FAILURE
Fails with {\small\verb%map2%} if the two lists are of different lengths.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#map2 $+ ([1;2;3],[3;2;1]);;
[4; 4; 4] : int list
\end{verbatim}
}
\SEEALSO
map, uncurry.
\ENDDOC
\DOC{MAP\_CONV}
\TYPE {\small\verb%MAP_CONV : conv -> conv%}\egroup
\SYNOPSIS
Compute the result of mapping a function down a list.
\DESCRIBE
The function {\small\verb%MAP_CONV%} is a parameterized conversion for computing the result
of mapping a function {\small\verb%f:ty1->ty2%} down a list {\small\verb%"[t1;...;tn]"%} of elements of
type {\small\verb%ty1%}. The first argument to {\small\verb%MAP_CONV%} is expected to be a conversion
that computes the result of applying the function {\small\verb%f%} to an element of this
list. When applied to a term {\small\verb%"f ti"%}, this conversion should return a theorem
of the form {\small\verb%|- (f ti) = ri%}, where {\small\verb%ri%} is the result of applying the function
{\small\verb%f%} to the element {\small\verb%ti%}.
\noindent Given an appropriate {\small\verb%conv%}, the conversion {\small\verb%MAP_CONV conv%} takes a
term of the form {\small\verb%"[MAP f [t1;...;tn]"%} to the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- MAP f [t1;...;tn] = [r1;...;rn]
\end{verbatim}
}
\noindent where {\small\verb%conv "f ti"%} returns {\small\verb%|- (f ti) = ri%} for {\small\verb%i%} from {\small\verb%1%} to {\small\verb%n%}.
\EXAMPLE
The following is a very simple example in which no computation is done for
applications of the function being mapped down a list:
{\par\samepage\setseps\small
\begin{verbatim}
#MAP_CONV NO_CONV "MAP SUC [1;2;1;4]";;
|- MAP SUC[1;2;1;4] = [SUC 1;SUC 2;SUC 1;SUC 4]
\end{verbatim}
}
\noindent The result just contains applications of {\small\verb%SUC%}, since the supplied
conversion {\small\verb%ALL_CONV%} does no evaulation.
We now construct a conversion that maps {\small\verb%SUC n%} for any numeral {\small\verb%n%} to the
numeral standing for the successor of {\small\verb%n%}:
{\par\samepage\setseps\small
\begin{verbatim}
#let SUC_CONV tm =
let n = int_of_string(fst(dest_const(rand tm))) in
let sucn = mk_const(string_of_int(n+1), ":num") in
SYM (num_CONV sucn);;
SUC_CONV = - : conv
\end{verbatim}
}
\noindent The result is a conversion that inverts {\small\verb%num_CONV%}:
{\par\samepage\setseps\small
\begin{verbatim}
#num_CONV "4";;
|- 4 = SUC 3
#SUC_CONV "SUC 3";;
|- SUC 3 = 4
\end{verbatim}
}
\noindent The conversion {\small\verb%SUC_CONV%} can then be used to compute the
result of mapping the successor function down a list of numerals:
{\par\samepage\setseps\small
\begin{verbatim}
#MAP_CONV SUC_CONV "MAP SUC [1;2;1;4]";;
|- MAP SUC[1;2;1;4] = [2;3;2;5]
\end{verbatim}
}
\FAILURE
{\small\verb%MAP_CONV conv%} fails if applied to a term not of the form
{\small\verb%"MAP f [t1;...;tn]"%}. An application of {\small\verb%MAP_CONV conv%} to a term
{\small\verb%"MAP f [t1;...;tn]"%} fails unless for all {\small\verb%ti%} in the list {\small\verb%[t1;...;tn]%},
evaluating {\small\verb%conv "f ti"%} returns {\small\verb%|- (f ti) = ri%} for some {\small\verb%ri%}.
\ENDDOC
\DOC{map}
\TYPE {\small\verb%map : ((* -> **) -> * list -> ** list)%}\egroup
\SYNOPSIS
Applies a function to every element of a list.
\DESCRIBE
{\small\verb%map f [x1;...;xn]%} returns {\small\verb%[(f x1);...;(f xn)]%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#map (\x. x * 2) [];;
[] : int list
#map (\x. x * 2) [1;2;3];;
[2; 4; 6] : int list
\end{verbatim}
}
\ENDDOC
\DOC{MAP\_EVERY}
\TYPE {\small\verb%MAP_EVERY : ((* -> tactic) -> * list -> tactic)%}\egroup
\SYNOPSIS
Sequentially applies all tactics given by mapping a function over a list.
\DESCRIBE
When applied to a tactic-producing function {\small\verb%f%} and an operand list
{\small\verb%[x1;...;xn]%}, the elements of which have the same type as {\small\verb%f%}'s domain type,
{\small\verb%MAP_EVERY%} maps the function {\small\verb%f%} over the list, producing a list of
tactics, then applies these tactics in sequence as in the case of {\small\verb%EVERY%}.
The effect is:
{\par\samepage\setseps\small
\begin{verbatim}
MAP_EVERY f [x1;...;xn] = (f x1) THEN ... THEN (f xn)
\end{verbatim}
}
\noindent If the operand list is empty, then {\small\verb%MAP_EVERY%} has no effect.
\FAILURE
The application of {\small\verb%MAP_EVERY%} to a function and operand list fails iff
the function fails when applied to any element in the list. The
resulting tactic fails iff any of the resulting tactics fails.
\EXAMPLE
A convenient way of doing case analysis over several boolean variables is:
{\par\samepage\setseps\small
\begin{verbatim}
MAP_EVERY BOOL_CASES_TAC ["var1:bool";...;"varn:bool"]
\end{verbatim}
}
\SEEALSO
EVERY, FIRST, MAP_FIRST, THEN.
\ENDDOC
\DOC{mapfilter}
\TYPE {\small\verb%mapfilter : ((* -> **) -> * list -> ** list)%}\egroup
\SYNOPSIS
Applies a function to every element of a list, returning a list of results
for those elements for which application succeeds.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#mapfilter hd [[1;2;3];[4;5];[];[6;7;8];[]];;
[1; 4; 6] : int list
\end{verbatim}
}
\SEEALSO
filter, map.
\ENDDOC
\DOC{MAP\_FIRST}
\TYPE {\small\verb%MAP_FIRST : ((* -> tactic) -> * list -> tactic)%}\egroup
\SYNOPSIS
Applies first tactic that succeeds in a list given by mapping a function over a
list.
\DESCRIBE
When applied to a tactic-producing function {\small\verb%f%} and an operand list
{\small\verb%[x1;...;xn]%}, the elements of which have the same type as {\small\verb%f%}'s domain
type, {\small\verb%MAP_FIRST%} maps the function {\small\verb%f%} over the list, producing a list of
tactics, then tries applying these tactics to the goal till one succeeds.
If {\small\verb%f(xm)%} is the first to succeed, then the overall effect is the same
as applying {\small\verb%f(xm)%}. Thus:
{\par\samepage\setseps\small
\begin{verbatim}
MAP_FIRST f [x1;...;xn] = (f x1) ORELSE ... ORELSE (f xn)
\end{verbatim}
}
\FAILURE
The application of {\small\verb%MAP_FIRST%} to a function and tactic list fails iff
the function does when applied to any of the elements of the list. The
resulting tactic fails iff all the resulting tactics fail when
applied to the goal.
\SEEALSO
EVERY, FIRST, MAP_EVERY, ORELSE.
\ENDDOC
\DOC{maptok}
\TYPE {\small\verb%maptok : ((string -> *) -> string -> * list)%}\egroup
\SYNOPSIS
Maps a function over the constituent words of a string.
\DESCRIBE
{\small\verb%maptok f s%} first splits the string {\small\verb%s%} into a list of substrings, and then
maps the function {\small\verb%f%} over that list. Splitting of the string occurs at each
sequence of blanks and carriage returns (white space). This white space does
not appear in the list of substrings. Leading and trailing white space in the
input string is also thrown away.
\FAILURE
Fails if one of the applications of {\small\verb%f%} to a substring fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#maptok explode ` the cat sat `;;
[[`t`; `h`; `e`]; [`c`; `a`; `t`]; [`s`; `a`; `t`]] : string list list
\end{verbatim}
}
\USES
Useful when wanting to map a function over a list of constant strings.
Instead of using {\small\verb%map f [`string1`;...;`stringn`]%} one can use:
{\par\samepage\setseps\small
\begin{verbatim}
(maptok f `string1 ... stringn`)
\end{verbatim}
}
\SEEALSO
words, word_separators, words2, map.
\ENDDOC
\DOC{MATCH\_ACCEPT\_TAC}
\TYPE {\small\verb%MATCH_ACCEPT_TAC : thm_tactic%}\egroup
\SYNOPSIS
Solves a goal which is an instance of the supplied theorem.
\DESCRIBE
When given a theorem {\small\verb%A' |- t%} and a goal {\small\verb%A ?- t'%} where {\small\verb%t%} can be matched
to {\small\verb%t'%} by instantiating variables which are either free or
universally quantified at the outer level, including appropriate type
instantiation, {\small\verb%MATCH_ACCEPT_TAC%} completely solves the goal.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t'
========= MATCH_ACCEPT_TAC (A' |- t)
\end{verbatim}
}
\noindent Unless {\small\verb%A'%} is a subset of {\small\verb%A%}, this is an invalid tactic.
\FAILURE
Fails unless the theorem has a conclusion which is instantiable to match that
of the goal.
\EXAMPLE
The following example shows variable and type instantiation at work. We can use
the polymorphic list theorem {\small\verb%HD%}:
{\par\samepage\setseps\small
\begin{verbatim}
HD = |- !h t. HD(CONS h t) = h
\end{verbatim}
}
\noindent to solve the goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- HD [1;2] = 1
\end{verbatim}
}
\noindent simply by:
{\par\samepage\setseps\small
\begin{verbatim}
MATCH_ACCEPT_TAC HD
\end{verbatim}
}
\SEEALSO
ACCEPT_TAC.
\ENDDOC
\DOC{match}
\TYPE {\small\verb%match : (term -> term -> ((term # term) list # (type # type) list))%}\egroup
\SYNOPSIS
Finds instantiations to match one term to another.
\DESCRIBE
When applied to two terms, with no outer quantifiers in the first, {\small\verb%match%}
attempts to find type and term instantiations for the first term (only) to make
it match the second. If it succeeds, it returns the instantiations in the form
of a pair containing a list of term replacements and a list of type
instantiations. If the first term represents the conclusion of a theorem, the
returned instantiations are of the appropriate form to be passed to
{\small\verb%INST_TY_TERM%}.
\FAILURE
Fails if the term cannot be matched by one-way instantiation.
\EXAMPLE
The following shows how {\small\verb%match%} could be used to match the conclusion of a
theorem to a term.
{\par\samepage\setseps\small
\begin{verbatim}
#let th = REFL "x:*";;
th = |- x = x
#match (concl th) "1 = 1";;
([("1", "x")], [(":num", ":*")])
: ((term # term) list # (type # type) list)
#INST_TY_TERM it th;;
|- 1 = 1
\end{verbatim}
}
\COMMENTS
Note that there is no guarantee that the returned instantiations will be
possible for {\small\verb%INST_TY_TERM%} to achieve, because some of the variables (term or
type) which need to be instantiated may be free in the assumptions, eg:
{\par\samepage\setseps\small
\begin{verbatim}
#top_print print_all_thm;;
- : (thm -> void)
#let th = ASSUME "x:* = x";;
th = x = x |- x = x
#match (concl th) "1 = 1";;
([("1", "x")], [(":num", ":*")])
: ((term # term) list # (type # type) list)
#INST_TY_TERM it th;;
evaluation failed INST_TYPE: type variable free in assumptions
\end{verbatim}
}
\noindent In fact, for instantiating a theorem, {\small\verb%PART_MATCH%} is usually easier.
\SEEALSO
INST_TY_TERM, PART_MATCH.
\ENDDOC
\DOC{MATCH\_MP}
\TYPE {\small\verb%MATCH_MP : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Modus Ponens inference rule with automatic matching.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- !x1...xn. t1 ==> t2%} and {\small\verb%A2 |- t1'%}, the
inference rule {\small\verb%MATCH_MP%} matches {\small\verb%t1%} to {\small\verb%t1'%} by instantiating free or
universally quantified variables in the first theorem (only), and returns a
theorem {\small\verb%A1 u A2 |- !xa..xk. t2'%}, where {\small\verb%t2'%} is a correspondingly
instantiated version of {\small\verb%t2%}. Polymorphic types are also instantiated if
necessary.
Variables free in the consequent but not the antecedent of the first argument
theorem will be replaced by variants if this is necessary to maintain the full
generality of the theorem, and any which were universally quantified over in
the first argument theorem will be universally quantified over in the result,
and in the same order.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- !x1..xn. t1 ==> t2 A2 |- t1'
-------------------------------------- MATCH_MP
A1 u A2 |- !xa..xk. t2'
\end{verbatim}
}
\FAILURE
Fails unless the first theorem is a (possibly repeatedly universally
quantified) implication whose antecedent can be instantiated to match
the conclusion of the second theorem, without instantiating any variables
which are free in {\small\verb%A1%}, the first theorem's assumption list.
\EXAMPLE
In this example, automatic renaming occurs to maintain the most general form of
the theorem, and the variant corresponding to {\small\verb%z%} is universally quantified
over, since it was universally quantified over in the first argument theorem.
{\par\samepage\setseps\small
\begin{verbatim}
#let ith =
# (GENL ["x:num"; "z:num"] o DISCH_ALL o AP_TERM "$+ (w + z)")
# (ASSUME "x:num = y");;
ith = |- !x z. (x = y) ==> ((w + z) + x = (w + z) + y)
#let th = ASSUME "w:num = z";;
th = w = z |- w = z
#MATCH_MP5 ith th;;
w = z |- !z'. (w' + z') + w = (w' + z') + z
\end{verbatim}
}
\SEEALSO
EQ_MP, MATCH_MP_TAC, MP, MP_TAC.
\ENDDOC
\DOC{MATCH\_MP\_TAC}
\TYPE {\small\verb%MATCH_MP_TAC : thm_tactic%}\egroup
\SYNOPSIS
Reduces the goal using a supplied implication, with matching.
\DESCRIBE
When applied to a theorem of the form
{\par\samepage\setseps\small
\begin{verbatim}
A' |- !x1...xn. s ==> !y1...ym. t
\end{verbatim}
}
\noindent {\small\verb%MATCH_MP_TAC%} produces a tactic that reduces a goal whose conclusion
{\small\verb%t'%} is a substitution and/or type instance of {\small\verb%t%} to the corresponding
instance of {\small\verb%s%}. Any variables free in {\small\verb%s%} but not in {\small\verb%t%} will be existentially
quantified in the resulting subgoal:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !v1...vi. t'
====================== MATCH_MP_TAC (A' |- !x1...xn. s ==> !y1...tm. t)
A ?- ?z1...zp. s'
\end{verbatim}
}
\noindent where {\small\verb%z1%}, ..., {\small\verb%zp%} are (type instances of) those variables among
{\small\verb%x1%}, ..., {\small\verb%xn%} that do not occur free in {\small\verb%t%}. Note that this is not a valid
tactic unless {\small\verb%A'%} is a subset of {\small\verb%A%}.
\FAILURE
Fails unless the theorem is an (optionally universally quantified) implication
whose consequent can be instantiated to match the goal. The generalized
variables {\small\verb%v1%}, ..., {\small\verb%vi%} must occur in {\small\verb%s'%} in order for the conclusion {\small\verb%t%} of
the supplied theorem to match {\small\verb%t'%}.
\SEEALSO
EQ_MP, MATCH_MP, MP, MP_TAC.
\ENDDOC
\DOC{max\_print\_depth}
\TYPE {\small\verb%max_print_depth : (int -> int)%}\egroup
\SYNOPSIS
Sets depth of block nesting.
\DESCRIBE
The function {\small\verb%max_print_depth%} is used to define the maximum depth of
nesting that the pretty printer will allow. If the number of blocks
is greater than the the value set by {\small\verb%max_print_depth%} then
the blocks are truncated and this is indicated by the holophrast {\small\verb%&%}.
The function always returns the previous maximum depth setting.
\FAILURE
Never fails.
\EXAMPLE
\noindent If the maximum depth setting is the default (500) and we want to
change this to 20 the command will be:
{\par\samepage\setseps\small
\begin{verbatim}
#max_print_depth 20;;
\end{verbatim}
}
\noindent The system will then return the following:
{\par\samepage\setseps\small
\begin{verbatim}
500 : int
\end{verbatim}
}
\SEEALSO
print_begin, print_ibegin, print_end, set_margin, print_break
\ENDDOC
\DOC{mem}
\TYPE {\small\verb%mem : (* -> * list -> bool)%}\egroup
\SYNOPSIS
Tests whether a list contains a certain member.
\DESCRIBE
{\small\verb%mem x [x1;...;xn]%} returns {\small\verb%true%} if some {\small\verb%xi%} in the list is equal to {\small\verb%x%}.
Otherwise it returns {\small\verb%false%}.
\FAILURE
Never fails.
\SEEALSO
find, tryfind, exists, forall, assoc, rev_assoc.
\ENDDOC
\DOC{merge\_nets\_rep}
\TYPE {\small\verb%merge_nets_rep : ((* list # * list) -> * list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{merge\_term\_nets}
\TYPE {\small\verb%merge_term_nets : (* term_net -> * term_net -> * term_net)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{message}
\TYPE {\small\verb%message : (string -> void)%}\egroup
\SYNOPSIS
Prints a message to the terminal.
\DESCRIBE
{\small\verb%message s%} returns {\small\verb%():void%} with the side-effect of printing the string {\small\verb%s%}
to the terminal followed by a carriage return. String quotes are not printed
around the string. The text is queued until the pretty-printer decides where
line breaks are needed, or until the queue is explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#message `This is an example`;;
This is an example
() : void
\end{verbatim}
}
\SEEALSO
print_string, print_tok, print_begin, print_end, print_newline.
\ENDDOC
\DOC{mk\_abs}
\TYPE {\small\verb%mk_abs : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs an abstraction.
\DESCRIBE
{\small\verb%mk_abs "var","t"%} returns the abstraction {\small\verb%"\var. t"%}.
\FAILURE
Fails with {\small\verb%mk_abs%} if first term is not a variable.
\SEEALSO
dest_abs, is_abs, list_mk_abs, mk_var, mk_const, mk_comb.
\ENDDOC
\DOC{MK\_ABS}
\TYPE {\small\verb%MK_ABS : (thm -> thm)%}\egroup
\SYNOPSIS
Abstracts both sides of an equation.
\DESCRIBE
When applied to a theorem {\small\verb%A |- !x. t1 = t2%}, whose conclusion is a
universally quantified equation, {\small\verb%MK_ABS%} returns the theorem
{\small\verb%A |- \x. t1 = \x. t2%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x. t1 = t2
-------------------------- MK_ABS
A |- (\x. t1) = (\x. t2)
\end{verbatim}
}
\FAILURE
Fails unless the theorem is a (singly) universally quantified equation.
\SEEALSO
ABS, HALF_MK_ABS, MK_COMB, MK_EXISTS.
\ENDDOC
\DOC{mk\_comb}
\TYPE {\small\verb%mk_comb : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a combination (function application).
\DESCRIBE
{\small\verb%mk_comb "t1","t2"%} returns the combination {\small\verb%"t1 t2"%}.
\FAILURE
Fails with {\small\verb%mk_comb%} unless {\small\verb%t1%} is a function with domain type {\small\verb%t2%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#mk_comb("$~","T");;
"~T" : term
#mk_comb("T","T");;
evaluation failed mk_comb
\end{verbatim}
}
\SEEALSO
dest_comb, is_comb, list_mk_comb, mk_var, mk_const, mk_abs.
\ENDDOC
\DOC{MK\_COMB}
\TYPE {\small\verb%MK_COMB : ((thm # thm) -> thm)%}\egroup
\SYNOPSIS
Proves equality of combinations constructed from equal
functions and operands.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- f = g%} and {\small\verb%A2 |- x = y%}, the inference
rule {\small\verb%MK_COMB%} returns the theorem {\small\verb%A1 u A2 |- f x = g y%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- f = g A2 |- x = y
--------------------------- MK_COMB
A1 u A2 |- f x = g y
\end{verbatim}
}
\FAILURE
Fails unless both theorems are equational and {\small\verb%f%} and {\small\verb%g%} are
functions whose domain types are the same as the types of {\small\verb%x%} and {\small\verb%y%}
respectively.
\SEEALSO
AP_TERM, AP_THM.
\ENDDOC
\DOC{mk\_cond}
\TYPE {\small\verb%mk_cond : ((term # term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a conditional term.
\DESCRIBE
{\small\verb%mk_cond("t","t1","t2")%} returns {\small\verb%"t => t1 | t2"%}.
\FAILURE
Fails with {\small\verb%mk_cond%} if {\small\verb%t%} is not of type {\small\verb%":bool"%} or if {\small\verb%t1%} and {\small\verb%t2%} are
of different types.
\SEEALSO
dest_cond, is_cond.
\ENDDOC
\DOC{mk\_conj}
\TYPE {\small\verb%mk_conj : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a conjunction.
\DESCRIBE
{\small\verb%mk_conj("t1","t2")%} returns {\small\verb%"t1 /\ t2"%}.
\FAILURE
Fails with {\small\verb%mk_conj%} if either {\small\verb%t1%} or {\small\verb%t2%} are not of type {\small\verb%":bool"%}.
\SEEALSO
dest_conj, is_conj, list_mk_conj.
\ENDDOC
\DOC{mk\_cons}
\TYPE {\small\verb%mk_cons : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a {\small\verb%CONS%} pair.
\DESCRIBE
{\small\verb%mk_cons("t","[t1;...;tn]")%} returns {\small\verb%"[t;t1;...;tn]"%}.
\FAILURE
Fails with {\small\verb%mk_cons%} if second term is not a list or if the first term is not
of the same type as the elements of the list.
\SEEALSO
dest_cons, is_cons, mk_list, dest_list, is_list.
\ENDDOC
\DOC{mk\_const}
\TYPE {\small\verb%mk_const : ((string # type) -> term)%}\egroup
\SYNOPSIS
Constructs a constant.
\DESCRIBE
{\small\verb%mk_const(`const`,":ty")%} returns the constant {\small\verb%"const:ty"%}.
\FAILURE
Fails with {\small\verb%mk_const: ...%} if the string supplied is not the name of a known
constant, or if it is known but the type supplied is not the correct type for
the constant.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#mk_const (`T`,":bool");;
"T" : term
#mk_const (`T`,":num");;
evaluation failed mk_const: wrong type for T supplied
#mk_const (`test`,":bool");;
evaluation failed mk_const: test not a constant
\end{verbatim}
}
\SEEALSO
dest_const, is_const, mk_var, mk_comb, mk_abs.
\ENDDOC
\DOC{mk\_conv\_net}
\TYPE {\small\verb%mk_conv_net : (thm list -> conv term_net)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{mk\_definition}
\TYPE {\small\verb%mk_definition : (term -> term)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{mk\_disj}
\TYPE {\small\verb%mk_disj : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a disjunction.
\DESCRIBE
{\small\verb%mk_disj("t1","t2")%} returns {\small\verb%"t1 \/ t2"%}.
\FAILURE
Fails with {\small\verb%mk_disj%} if either {\small\verb%t1%} or {\small\verb%t2%} are not of type {\small\verb%":bool"%}.
\SEEALSO
dest_disj, is_disj, list_mk_disj.
\ENDDOC
\DOC{mk\_eq}
\TYPE {\small\verb%mk_eq : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs an equation.
\DESCRIBE
{\small\verb%mk_eq("t1","t2")%} returns {\small\verb%"t1 = t2"%}.
\FAILURE
Fails with {\small\verb%mk_eq%} if {\small\verb%t1%} and {\small\verb%t2%} have different types.
\SEEALSO
dest_eq, is_eq.
\ENDDOC
\DOC{mk\_exists}
\TYPE {\small\verb%mk_exists : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs an existential quantification.
\DESCRIBE
{\small\verb%mk_exists("var","t")%} returns {\small\verb%"?var. t"%}.
\FAILURE
Fails with {\small\verb%mk_exists%} if first term is not a variable or if {\small\verb%t%} is not of
type {\small\verb%":bool"%}.
\SEEALSO
dest_exists, is_exists, list_mk_exists.
\ENDDOC
\DOC{MK\_EXISTS}
\TYPE {\small\verb%MK_EXISTS : (thm -> thm)%}\egroup
\SYNOPSIS
Existentially quantifies both sides of a universally quantified
equational theorem.
\DESCRIBE
When applied to a theorem {\small\verb%A |- !x. t1 = t2%}, the inference rule {\small\verb%MK_EXISTS%}
returns the theorem {\small\verb%A |- (?x. t1) = (?x. t2)%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x. t1 = t2
-------------------------- MK_EXISTS
A |- (?x. t1) = (?x. t2)
\end{verbatim}
}
\FAILURE
Fails unless the theorem is a singly universally quantified equation.
\SEEALSO
AP_TERM, EXISTS_EQ, GEN, LIST_MK_EXISTS, MK_ABS.
\ENDDOC
\DOC{mk\_forall}
\TYPE {\small\verb%mk_forall : ((term # term) -> term)%}\egroup
\SYNOPSIS
Term constructor for universal quantification.
\DESCRIBE
{\small\verb%mk_forall("var","t")%} returns {\small\verb%"!var. t"%}.
\FAILURE
Fails with {\small\verb%mk_forall%} if first term is not a variable or if {\small\verb%t%} is not of
type {\small\verb%":bool"%}.
\SEEALSO
dest_forall, is_forall, list_mk_forall.
\ENDDOC
\DOC{mk\_form}
\TYPE {\small\verb%mk_form : (term -> form)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{mk\_imp}
\TYPE {\small\verb%mk_imp : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs an implication.
\DESCRIBE
{\small\verb%mk_imp("t1","t2")%} returns {\small\verb%"t1 ==> t2"%}.
\FAILURE
Fails with {\small\verb%mk_imp%} if either {\small\verb%t1%} or {\small\verb%t2%} are not of type {\small\verb%":bool"%}.
\SEEALSO
dest_imp, is_imp, list_mk_imp.
\ENDDOC
\DOC{mk\_let}
\TYPE {\small\verb%mk_let : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a {\small\verb%let%} term.
\DESCRIBE
{\small\verb%mk_let("f","x")%} returns {\small\verb%"LET f x"%}. If {\small\verb%f%} is of the form {\small\verb%"\y. t"%} then
the result will be pretty-printed as {\small\verb%"let y=x in t"%}.
\FAILURE
Fails with {\small\verb%mk_let%} if the types of {\small\verb%f%} and {\small\verb%x%} are such that {\small\verb%"LET f x"%} is
not well-typed. {\small\verb%"LET"%} has most general type:
{\par\samepage\setseps\small
\begin{verbatim}
":(* -> **) -> * -> **"
\end{verbatim}
}
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#mk_let("$= 1","2");;
"LET($= 1)2" : term
#mk_let("\x. x = 1","2");;
"let x = 2 in (x = 1)" : term
\end{verbatim}
}
\SEEALSO
dest_let, is_let.
\ENDDOC
\DOC{mk\_list}
\TYPE {\small\verb%mk_list : ((term list # type) -> term)%}\egroup
\SYNOPSIS
Constructs object-level list from list of terms.
\DESCRIBE
{\small\verb%mk_list(["t1";...;"tn"],":ty")%} returns {\small\verb%"[t1;...;tn]:(ty)list"%}.
The type argument is required so that empty lists can be constructed.
\FAILURE
Fails with {\small\verb%mk_list%} if any term in the list is not of the type specified as
the second argument.
\SEEALSO
dest_list, is_list, mk_cons, dest_cons, is_cons.
\ENDDOC
\DOC{mk\_neg}
\TYPE {\small\verb%mk_neg : (term -> term)%}\egroup
\SYNOPSIS
Constructs a negation.
\DESCRIBE
{\small\verb%mk_neg "t"%} returns {\small\verb%"~t"%}.
\FAILURE
Fails with {\small\verb%mk_neg%} unless {\small\verb%t%} is of type {\small\verb%bool%}.
\SEEALSO
dest_neg, is_neg.
\ENDDOC
\DOC{mk\_pabs}
\TYPE {\small\verb%mk_pabs : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a paired abstraction.
\DESCRIBE
{\small\verb%mk_pabs "(v1,..(..)..,vn)","t"%} returns the abstraction
{\small\verb%"\(v1,..(..)..,vn). t"%}.
\FAILURE
Fails unless the first term is an arbitrarily nested pair composed from
variables.
\SEEALSO
dest_pabs, is_pabs, mk_abs.
\ENDDOC
\DOC{mk\_pair}
\TYPE {\small\verb%mk_pair : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs object-level pair from a pair of terms.
\DESCRIBE
{\small\verb%mk_pair("t1","t2")%} returns {\small\verb%"(t1,t2)"%}.
\FAILURE
Never fails.
\SEEALSO
dest_pair, is_pair, list_mk_pair.
\ENDDOC
\DOC{mk\_pp\_thm}
\TYPE {\small\verb%mk_pp_thm : ((form list # form) -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{mk\_pred}
\TYPE {\small\verb%mk_pred : ((string # term) -> term)%}\egroup
\SYNOPSIS
Makes an application of a predicate.
\DESCRIBE
When applied to the name of a constant predicate, that is a constant of type
{\small\verb%":* -> bool"%} for some type `{\small\verb%*%}', and an operand term, {\small\verb%mk_pred%} constructs
an application of the predicate to the operand.
\FAILURE
Fails if there is no constant with the appropriate name and type.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#mk_pred(`~`,"T");;
"~T" : term
\end{verbatim}
}
\SEEALSO
mk_comb, mk_const, new_predicate.
\ENDDOC
\DOC{mk\_primed\_var}
\TYPE {\small\verb%mk_primed_var : ((string # type) -> term)%}\egroup
\SYNOPSIS
Primes a variable name sufficiently to make it distinct from all constants.
\DESCRIBE
When applied to a string {\small\verb%`v`%} and a type {\small\verb%":ty"%}, the function {\small\verb%mk_primed_var%}
constructs a variable whose name consists of {\small\verb%v%} followed by however many
primes are necessary to make it distinct from any constants in the current
theory.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `wombat`;;
() : void
#mk_primed_var(`x`,":bool");;
"x" : term
#new_constant(`x`,":num");;
() : void
#mk_primed_var(`x`,":bool");;
"x'" : term
\end{verbatim}
}
\SEEALSO
genvar, variant.
\ENDDOC
\DOC{mk\_select}
\TYPE {\small\verb%mk_select : ((term # term) -> term)%}\egroup
\SYNOPSIS
Constructs a choice-term.
\DESCRIBE
{\small\verb%mk_select("var","t")%} returns {\small\verb%"@var. t"%}.
\FAILURE
Fails with {\small\verb%mk_select%} if first term is not a variable or if {\small\verb%t%} is not of
type {\small\verb%":bool"%}.
\SEEALSO
dest_select, is_select.
\ENDDOC
\DOC{mk\_thm}
\TYPE {\small\verb%mk_thm : (((term list # term) -> thm))%}\egroup
\SYNOPSIS
Creates an arbitrary theorem (dangerous!)
\DESCRIBE
The function {\small\verb%mk_thm%} can be used to construct an arbitrary theorem. It is
applied to a pair consisting of the desired assumption list (possibly empty)
and conclusion. All the terms therein should be of type {\small\verb%bool%}.
{\par\samepage\setseps\small
\begin{verbatim}
mk_thm(["a1";...;"an"],"c") = ({a1,...,an} |- c)
\end{verbatim}
}
\FAILURE
Fails unless all the terms provided for assumptions and conclusion are of type
{\small\verb%bool%}.
\EXAMPLE
The following shows how to create a simple contradiction:
{\par\samepage\setseps\small
\begin{verbatim}
#mk_thm([],"F");;
|- F
\end{verbatim}
}
\COMMENTS
Although {\small\verb%mk_thm%} can be useful for experimentation or temporarily plugging
gaps, its use should be avoided if at all possible in important proofs, because
it can be used to create theorems leading to contradictions. The example above
is a trivial case, but it is all too easy to create a contradiction by
asserting `obviously sound' theorems.
All theorems which are likely to be needed can be derived using only HOL's
inbuilt 5 axioms and 8 primitive inference rules, which are provably sound (see
the DESCRIPTION). Basing all proofs, normally via derived rules and tactics, on
just these axioms and inference rules gives proofs which are (apart from bugs
in HOL or the underlying system) completely secure. This is one of the great
strengths of HOL, and it is foolish to sacrifice it to save a little work.
Note that the system shows the type of {\small\verb%mk_thm%} as {\small\verb%(goal -> thm)%}.
\SEEALSO
new_axiom.
\ENDDOC
\DOC{mk\_type}
\TYPE {\small\verb%mk_type : ((string # type list) -> type)%}\egroup
\SYNOPSIS
Constructs a type (other than a variable type).
\DESCRIBE
{\small\verb%mk_type(`op`,[":ty1";...;":tyn"])%} returns {\small\verb%":(ty1,...,tyn)op"%} where {\small\verb%op%}
is the name of a known {\small\verb%n%}-ary type constructor.
\FAILURE
Fails with {\small\verb%mk_type%} if the string is not the name of a known type, or if the
type is known but the length of the list of argument types is not equal to
the arity of the type constructor.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#mk_type (`bool`,[]);;
":bool" : type
#mk_type (`list`,[":bool"]);;
":(bool)list" : type
#mk_type (`fun`,[":num";":bool"]);;
":num -> bool" : type
\end{verbatim}
}
\SEEALSO
dest_type, mk_vartype.
\ENDDOC
\DOC{mk\_var}
\TYPE {\small\verb%mk_var : ((string # type) -> term)%}\egroup
\SYNOPSIS
Constructs a variable of given name and type.
\DESCRIBE
{\small\verb%mk_var(`var`,":ty")%} returns the variable {\small\verb%"var:ty"%}.
\FAILURE
Never fails.
\COMMENTS
{\small\verb%mk_var%} can be used to construct variables with names which are not
acceptable to the term parser. In particular, a variable with the name of a
known constant can be constructed using {\small\verb%mk_var%}.
\SEEALSO
dest_var, is_var, mk_const, mk_comb, mk_abs.
\ENDDOC
\DOC{mk\_vartype}
\TYPE {\small\verb%mk_vartype : (string -> type)%}\egroup
\SYNOPSIS
Constructs a type variable of the given name.
\DESCRIBE
{\small\verb%mk_vartype(`*...`)%} returns {\small\verb%":*..."%}.
\FAILURE
Fails with {\small\verb%mk_vartype%} if the string does not begin with {\small\verb%`*`%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#mk_vartype `*test`;;
":*test" : type
#mk_vartype `test`;;
evaluation failed mk_vartype
\end{verbatim}
}
\COMMENTS
{\small\verb%mk_vartype%} can be used to create type variables with names which will not
parse, i.e. they cannot be entered by quotation.
\SEEALSO
dest_vartype, is_vartype, mk_type.
\ENDDOC
\DOC{ml\_curried\_infix}
\TYPE {\small\verb%ml_curried_infix : (string -> void)%}\egroup
\SYNOPSIS
Declares an ML identifier to have infix status (for curried functions).
\DESCRIBE
{\small\verb%ml_curried_infix `string`%} declares to the ML parser that {\small\verb%string%} has infix
status. The identifier {\small\verb%string%} should be bound to a curried function.
\FAILURE
Only ordinary identifiers and certain single character, non-digit, non-layout
strings can be used as infixes. An attempt to infix other strings may fail,
or it may succeed but have unpredictable effects on the parser.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ml_curried_infix `plus`;;
() : void
#let x plus y = x + y;;
plus = - : (int -> int -> int)
#1 plus 2;;
3 : int
\end{verbatim}
}
\SEEALSO
ml_paired_infix, is_ml_curried_infix, is_ml_paired_infix, is_ml_infix.
\ENDDOC
\DOC{ml\_dir\_pathname}
\TYPE {\small\verb%ml_dir_pathname : string%}\egroup
\SYNOPSIS
Absolute pathname to the HOL ML sources.
\DESCRIBE
For implementation reasons, the ML variable {\small\verb%ml_dir_pathname%} is bound when
the system if built to a string giving the absolute pathname of the directory
containing the HOL ML sources. This value is not for general use.
\FAILURE
Evaluating {\small\verb%ml_dir_pathname%} never fails.
\SEEALSO
lisp_dir_pathname.
\ENDDOC
\DOC{ML\_eval}
\TYPE {\small\verb%ML_eval : (string -> void)%}\egroup
\SYNOPSIS
Passes a string to the ML interpreter.
\DESCRIBE
When applied to a string, {\small\verb%ML_eval%} will pass it to the ML interpreter, which,
after evaluating other pending phrases, will interpret it as if it had been
typed at toplevel.
\FAILURE
The call itself never fails, but of course the subsequent interpretation may do.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ML_eval(`let greeting = \`Hi there!\` in tty_write greeting;;
#`);;
() : void
Hi there!() : void
\end{verbatim}
}
\SEEALSO
inject_input, let_after, let_before.
\ENDDOC
\DOC{ml\_paired\_infix}
\TYPE {\small\verb%ml_paired_infix : (string -> void)%}\egroup
\SYNOPSIS
Declares an ML identifier to have infix status
(for functions that take a pair as argument).
\DESCRIBE
{\small\verb%ml_paired_infix `string`%} declares to the ML parser that {\small\verb%string%} has infix
status. {\small\verb%string%} should be bound to a function that takes a pair as its
argument.
\FAILURE
Only ordinary identifiers and certain single character, non-digit, non-layout
strings can be used as infixes. An attempt to infix other strings may fail,
or it may succeed but have unpredictable effects on the parser.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#ml_paired_infix `plus`;;
() : void
#let x plus y = x + y;;
plus = - : ((int # int) -> int)
#1 plus 2;;
3 : int
\end{verbatim}
}
\SEEALSO
ml_curried_infix, is_ml_paired_infix, is_ml_curried_infix, is_ml_infix.
\ENDDOC
\DOC{MP}
\TYPE {\small\verb%MP : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Implements the Modus Ponens inference rule.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- t1 ==> t2%} and {\small\verb%A2 |- t1%},
the inference rule {\small\verb%MP%} returns the theorem {\small\verb%A1 u A2 |- t2%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 ==> t2 A2 |- t1
---------------------------- MP
A1 u A2 |- t2
\end{verbatim}
}
\FAILURE
Fails unless the first theorem is an implication whose antecedent is the
same as the conclusion of the second theorem (up to alpha-conversion).
\SEEALSO
EQ_MP, LIST_MP, MATCH_MP, MATCH_MP_TAC, MP_TAC, NOT_MP.
\ENDDOC
\DOC{MP\_TAC}
\TYPE {\small\verb%MP_TAC : thm_tactic%}\egroup
\SYNOPSIS
Reduces a goal to implication from a known theorem.
\DESCRIBE
When applied to the theorem {\small\verb%A' |- s%} and the goal {\small\verb%A ?- t%}, the tactic
{\small\verb%MP_TAC%} reduces the goal to {\small\verb%A ?- s ==> t%}. Unless {\small\verb%A'%} is a subset of
{\small\verb%A%}, this is an invalid tactic.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============== MP_TAC (A' |- s)
A ?- s ==> t
\end{verbatim}
}
\FAILURE
Never fails.
\SEEALSO
MATCH_MP_TAC, MP, UNDISCH_TAC.
\ENDDOC
\DOC{NEG\_DISCH}
\TYPE {\small\verb%NEG_DISCH : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Discharges an assumption, transforming {\small\verb%|- s ==> F%} into {\small\verb%|- ~s%}.
\DESCRIBE
When applied to a term {\small\verb%s%} and a theorem {\small\verb%A |- t%}, the inference
rule {\small\verb%NEG_DISCH%} returns the theorem {\small\verb%A - {s} |- s ==> t%}, or if {\small\verb%t%}
is just {\small\verb%F%}, returns the theorem {\small\verb%A - {s} |- ~s%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- F
-------------------- NEG_DISCH [special case]
A - {s} |- ~s
A |- t
-------------------- NEG_DISCH [general case]
A - {s} |- s ==> t
\end{verbatim}
}
\FAILURE
Fails unless the supplied term has type {\small\verb%bool%}.
\SEEALSO
DISCH, NOT_ELIM, NOT_INTRO.
\ENDDOC
\DOC{new\_alphanum}
\TYPE {\small\verb%new_alphanum : (string -> void)%}\egroup
\SYNOPSIS
Defines a character to be alphanumeric.
\DESCRIBE
When given a string, which should be of length 1, {\small\verb%new_alphanum%} extends
the scope of the definition of `alphanumeric' as used by {\small\verb%is_alphanum%}.
(If the supplied string is null ({\small\verb%``%}) then {\small\verb%new_alphanum%} has no effect.)
The term `alphanumeric' initially means one of the following:
{\small\verb%a..z A..Z 0..9 _ '%}. A call to {\small\verb%new_alphanum%} can affect ML lexical analysis
dynamically, because the function {\small\verb%is_alphanum%} is called by the lexical
analyzer to check for characters beyond the first in an identifier.
\EXAMPLE
Suppose we set a variable {\small\verb%y%} as follows:
{\par\samepage\setseps\small
\begin{verbatim}
#let y = 2;;
y = 2 : int
\end{verbatim}
}
\noindent then {\small\verb%y-1%} is a numeric expression:
{\par\samepage\setseps\small
\begin{verbatim}
#let x = y-1;;
x = 1 : int
\end{verbatim}
}
\noindent but after defining {\small\verb%-%} to be alphanumeric:
{\par\samepage\setseps\small
\begin{verbatim}
#new_alphanum `-`;;
() : void
\end{verbatim}
}
\noindent {\small\verb%y-1%} counts as a single token (which is undefined).
{\par\samepage\setseps\small
\begin{verbatim}
#let x = y-1;;
unbound or non-assignable variable y-1
\end{verbatim}
}
\FAILURE
Fails if the string has length greater than 1.
\SEEALSO
ascii, ascii_code, is_alphanum, is_letter, new_alphanum.
\ENDDOC
\DOC{new\_axiom}
\TYPE {\small\verb%new_axiom : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Sets up a new axiom in the current theory.
\DESCRIBE
If {\small\verb%tm%} is a term of type {\small\verb%bool%}, a call {\small\verb%new_axiom(`name`,"tm")%} creates a
theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- !x1..xn. tm
\end{verbatim}
}
\noindent and stores it away in the theory file. Note that all free variables
in {\small\verb%tm%} are generalized automatically before the axiom is set up.
\FAILURE
Fails if HOL is not in draft mode, or there is already an axiom or definition
of that name in the current theory, or it the given term does not have type
{\small\verb%bool%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `gurk`;;
() : void
#new_axiom(`untrue`,"x = 1");;
|- !x. x = 1
\end{verbatim}
}
\COMMENTS
For most purposes, it is unnecessary to declare new axioms: all of classical
mathematics can be derived by definitional extension alone. Proceeding by
definition is not only more elegant, but also guarantees the consistency of the
deductions made. However, there are certain entities which cannot be modelled
in simple type theory without further axioms, such as higher transfinite
ordinals.
\SEEALSO
mk_thm, new_definition.
\ENDDOC
\DOC{new\_binder\_definition}
\TYPE {\small\verb%new_binder_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Defines a new constant, giving it the syntactic status of a binder.
\DESCRIBE
The function {\small\verb%new_binder_definition%} provides a facility for making
definitional extensions to the current theory by introducing a constant
definition. It takes a pair of arguments, consisting of the name under which
the resulting theorem will be saved in the current theory segment and a term
giving the desired definition. The value returned by {\small\verb%new_binder_definition%}
is a theorem which states the definition requested by the user.
Let {\small\verb%v1%}, ..., {\small\verb%vn%} be syntactically distinct tuples constructed from the
variables {\small\verb%x1,...,xm%}. A binder is defined by evaluating
{\par\samepage\setseps\small
\begin{verbatim}
new_binder_definition (`name`, "b v1 ... vn = t")
\end{verbatim}
}
\noindent where {\small\verb%b%} is not already a constant, {\small\verb%b%} does not occur in {\small\verb%t%}, all
the free variables that occur in {\small\verb%t%} are a subset of {\small\verb%x1,...,xn%}, and the type
of {\small\verb%b%} has the form `{\small\verb%(ty1->ty2)->ty3%}'. This declares {\small\verb%b%} to be a new
constant with the syntactic status of a binder in the current theory, and with
the definitional theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- !x1...xn. b v1 ... vn = t
\end{verbatim}
}
\noindent as its specification. This constant specification for {\small\verb%b%} is saved
in the current theory under the name {\small\verb%name%} and is returned as a theorem.
The equation supplied to {\small\verb%new_binder_definition%} may optionally have any of its
free variables universally quantified at the outermost level. The constant {\small\verb%b%}
has binder status only after the definition has been made.
\FAILURE
{\small\verb%new_binder_definition%} fails if called when HOL is not in draft mode. It also
fails if there is already an axiom, definition or specification with the given
name in the current theory segment, if {\small\verb%`b`%} is already a constant in the
current theory or is not an allowed name for a constant, if {\small\verb%t%} contains free
variables that are not in any one of the variable structures {\small\verb%v1%}, ..., {\small\verb%vn%} or
if any variable occurs more than once in {\small\verb%v1, ..., v2%}. Failure also occurs if
the type of {\small\verb%b%} is not of the form appropriate for a binder, namely a type of
teh form `{\small\verb%(ty1->ty2)->ty3%}'. Finally, failure occurs if there is a type
variable in {\small\verb%v1%}, ..., {\small\verb%vn%} or {\small\verb%t%} that does not occur in the type of {\small\verb%b%}.
\EXAMPLE
The unique-existence quantifier {\small\verb%?!%} is defined as follows.
{\par\samepage\setseps\small
\begin{verbatim}
#new_binder_definition
(`EXISTS_UNIQUE_DEF`,
"$?! = \P:(*->bool). ($? P) /\ (!x y. ((P x) /\ (P y)) ==> (x=y))");;
|- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y)))
\end{verbatim}
}
\COMMENTS
It is a common practice among HOL users to write a {\small\verb%$%} before the constant
being defined as a binder to indicate that it will have a special syntactic
status after the definition is made:
{\par\samepage\setseps\small
\begin{verbatim}
new_binder_definition(`name`, "$b = ... ");;
\end{verbatim}
}
\noindent This use of {\small\verb%$%} is not necessary; but after the definition
has been made {\small\verb%$%} must, of course, be used if the syntactic status of {\small\verb%b%}
needs to be suppressed.
\SEEALSO
new_definition, new_gen_definition, new_infix_definition,
new_infix_list_rec_definition, new_prim_rec_definition,
new_list_rec_definition, new_prim_rec_definition.
\ENDDOC
\DOC{new\_binder}
\TYPE {\small\verb%new_binder : ((string # type) -> void)%}\egroup
\SYNOPSIS
Sets up a new binder in the current theory.
\DESCRIBE
A call {\small\verb%new_binder(`bnd`,":ty")%} declares a new binder {\small\verb%bnd%} in the current
theory. The type must be of the form {\small\verb%(* -> **) -> ***%}, because being a binder,
{\small\verb%bnd%} will apply to an abstraction; for example {\small\verb%"!x:bool. (x=T) \/ (x=F)"%} is
actually a prettyprinting of {\small\verb%"$! (\x. (x=T) \/ (x=F))"%}.
\FAILURE
Fails if HOL is not in draft mode, or there is already a constant of some sort
of that name in the current theory, or if the type does not correspond to the
above pattern.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `anorak`;;
() : void
#new_binder(`!!`,":(bool->bool)->bool");;
() : void
#"!!x. T";;
"!! x. T" : term
\end{verbatim}
}
\SEEALSO
binders, is_binder.
\ENDDOC
\DOC{new\_constant}
\TYPE {\small\verb%new_constant : ((string # type) -> void)%}\egroup
\SYNOPSIS
Declares a new constant in the current theory.
\DESCRIBE
A call {\small\verb%new_constant(`c`,":ty")%} makes {\small\verb%c%} a constant in the current theory.
Note that it does not specify its value. The constant may have a polymorphic
type, which can be used in arbitrary instantiations.
\FAILURE
Fails if HOL is not in draft mode, or if the name is not a valid constant
name, or there is already a constant of that name in the current theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `zonk`;;
() : void
#new_constant(`graham's_number`,":num");;
() : void
\end{verbatim}
}
\SEEALSO
constants, infixes, is_constant, is_infix, new_infix, new_definition,
new_infix_definition.
\ENDDOC
\DOC{new\_definition}
\TYPE {\small\verb%new_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Declare a new constant and install a definitional axiom in the current theory.
\DESCRIBE
The function {\small\verb%new_definition%} provides a facility for definitional
extensions to the current theory. It takes a pair argument consisting
of the name under which the resulting definition will be saved
in the current theory segment, and a term giving the desired definition. The
value returned by {\small\verb%new_definition%} is a theorem which states the definition
requested by the user.
Let {\small\verb%v_1%},...,{\small\verb%v_n%} be tuples of distinct variables, containing the variables
{\small\verb%x_1,...,x_m%}. Evaluating {\small\verb%new_definition (`name`, "c v_1 ... v_n = t")%},
where {\small\verb%c%} is not already a constant, declares the sequent {\small\verb%({},"\v_1 ...
v_n. t")%} to be a definition in the current theory, and declares {\small\verb%c%} to be
a new constant in the current theory with this definition as its specification.
This constant specification is returned as a theorem with the form
{\par\samepage\setseps\small
\begin{verbatim}
|- !x_1 ... x_m. c v_1 ... v_n = t
\end{verbatim}
}
\noindent and is saved in the current theory under
(the name) {\small\verb%name%}. Optionally, the definitional term argument
may have any of its variables universally quantified.
\FAILURE
{\small\verb%new_definition%} fails if called when HOL is not in draft mode. It also
fails if there is already an axiom, definition or specification of the given
name in the current theory segment; if {\small\verb%`c`%} is already a constant in the
current theory or is not an allowed name for a constant; if {\small\verb%t%} contains free
variables that are not in any of the variable structures {\small\verb%v_1%}, ..., {\small\verb%v_n%}
(this is equivalent to requiring {\small\verb%\v_1 ... v_n. t%} to be a closed term); or if
any variable occurs more than once in {\small\verb%v_1, ..., v_n%}. Finally, failure occurs
if there is a type variable in {\small\verb%v_1%}, ..., {\small\verb%v_n%} or {\small\verb%t%} that does not occur in
the type of {\small\verb%c%}.
\EXAMPLE
A NAND relation can be defined as follows.
{\par\samepage\setseps\small
\begin{verbatim}
#new_definition
(`NAND2`, "NAND2 (in_1,in_2) out = !t:num. out t = ~(in_1 t /\ in_2 t)");;
|- !in_1 in_2 out.
NAND2 (in_1,in_2)out = (!t. out t = ~(in_1 t /\ in_2 t))
\end{verbatim}
}
\SEEALSO
new_binder_definition, new_gen_definition, new_infix_definition,
new_infix_list_rec_definition, new_prim_rec_definition,
new_list_rec_definition, new_prim_rec_definition, new_recursive_definition,
new_specification.
\ENDDOC
\DOC{new\_flag}
\TYPE {\small\verb%new_flag : ((string # bool) -> void)%}\egroup
\SYNOPSIS
Creates a new settable flag.
\DESCRIBE
A call {\small\verb%new_flag(`flagname`,init)%} declares a new settable flag called
{\small\verb%flagname%}, with an initial setting of {\small\verb%init%} (either {\small\verb%true%} or {\small\verb%false%}).
Like a system flag, it can be read and written to with {\small\verb%get_flag_value%} and
{\small\verb%set_flag_value%} respectively, and will be listed along with the others by
{\small\verb%flags()%}.
\FAILURE
Fails if there is already a flag of the given name.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_flag(`parser hacked`,false);;
() : void
#get_flag_value `parser hacked`;;
false : bool
\end{verbatim}
}
\SEEALSO
flags, get_flag_value, set_flag_value.
\ENDDOC
\DOC{new\_gen\_definition}
\TYPE {\small\verb%new_gen_definition : (string -> (string # term) -> thm)%}\egroup
\SYNOPSIS
Defines a new constant, infix constant, or binder constant.
\DESCRIBE
The function {\small\verb%new_gen_definition%} provides a facility for definitional
extensions to the current theory. It takes two arguments. The first is a flag
which can have one of three values: {\small\verb%`constant`%}, {\small\verb%`infix`%}, or {\small\verb%`binder`%},
indicating the status of the object being defined. The second argument is a
pair consisting of the name under which the resulting definition will be saved
in the current theory segment, and a term giving the desired definition. The
value returned by {\small\verb%new_gen_definition%} is a theorem which states the definition
requested by the user.
Let {\small\verb%v_1%},...,{\small\verb%v_n%} be tuples of distinct variables, containing the variables
{\small\verb%x_1,...,x_m%}. Evaluating {\small\verb%new_gen_definition flag (`name`, "c v_1 ... v_n =
t")%}, where {\small\verb%c%} is not already a constant, declares the sequent {\small\verb%({},"\v_1
... v_n. t")%} to be a definition in the current theory, and declares {\small\verb%c%} to be
a new constant in the current theory with this definition as its specification.
This constant specification is returned as a theorem, generally of the form {\small\verb%|-
!x_1 ... x_m. c v_1 ... v_n = t%} , and is saved in the current theory under
(the name) {\small\verb%name%}. If {\small\verb%flag%} is {\small\verb%`infix`%} or {\small\verb%`binder`%}, the constant is given
infix or binder status accordingly. Optionally, the definitional term argument
may have any of its variables universally quantified.
\FAILURE
{\small\verb%new_gen_definition%} fails if called when HOL is not in draft mode. It also
fails if there is already an axiom, definition or specification of the given
name in the current theory segment; if {\small\verb%c%} is already a constant in the
current theory or is not an allowed name for a constant; if {\small\verb%t%} contains free
variables that are not in any of the variable structures {\small\verb%v_1%}, ..., {\small\verb%v_n%}
(this is equivalent to requiring {\small\verb%\v_1 ... v_n. t%} to be a closed term); or if
any variable occurs more than once in {\small\verb%v_1, ..., v_n%}. Failure also occurs if
{\small\verb%flag%} is not one of {\small\verb%`constant`%}, {\small\verb%`infix`%} or {\small\verb%`binder`%} or if the type of {\small\verb%c%}
is not suitable for a constant with the syntactic status specified by {\small\verb%flag%}.
Finally, failure occurs if there is a type variable in {\small\verb%v_1%}, ..., {\small\verb%v_n%} or {\small\verb%t%}
that does not occur in the type of {\small\verb%c%}.
\USES
Used to define the special purpose functions {\small\verb%new_definition%},
{\small\verb%new_infix_definition%}, and {\small\verb%new_binder_definition%}, which are used for
defining objects with a particular status.
\SEEALSO
DEF_EXISTS_RULE, new_binder_definition, new_definition, new_infix_definition,
new_specification.
\ENDDOC
\DOC{new\_infix\_definition}
\TYPE {\small\verb%new_infix_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Declares a new infix constant and installs a definitional axiom in the current
theory.
\DESCRIBE
The function {\small\verb%new_infix_definition%} provides a facility for definitional
extensions to the current theory. It takes a pair argument consisting
of the name under which the resulting definition will be saved
in the current theory segment, and a term giving the desired definition. The
value returned by {\small\verb%new_infix_definition%} is a theorem which states the
definition requested by the user.
Let {\small\verb%v_1%} and {\small\verb%v_2%} be tuples of distinct variables, containing the variables
{\small\verb%x_1,...,x_m%}. Evaluating {\small\verb%new_infix_definition (`name`, "ix v_1 v_2 = t")%},
where {\small\verb%ix%} is not already a constant, declares the sequent {\small\verb%({},"\v_1 v_2.
t")%} to be a definition in the current theory, and declares {\small\verb%ix%} to be
a new constant in the current theory with this definition as its specification.
This constant specification is returned as a theorem with the form
{\par\samepage\setseps\small
\begin{verbatim}
|- !x_1 ... x_m. v_1 ix v_2 = t
\end{verbatim}
}
\noindent and is saved in the current theory under
(the name) {\small\verb%name%}. Optionally, the definitional term argument
may have any of its variables universally quantified.
The constant {\small\verb%ix%} has infix status only after the infix
declaration has been processed. It is therefore necessary to use
the constant in normal prefix position when making the definition.
\FAILURE
{\small\verb%new_infix_definition%} fails if called when HOL is not in draft mode. It also
fails if there is already an axiom, definition or specification of the given
name in the current theory segment; if {\small\verb%`ix`%} is already a constant in the
current theory or is not an allowed name for a constant; if {\small\verb%t%} contains free
variables that are not in either of the variable structures {\small\verb%v_1%} and {\small\verb%v_2%}
(this is equivalent to requiring {\small\verb%\v_1 v_2. t%} to be a closed term); or if any
variable occurs more than once in {\small\verb%v_1, v_2%}. Failure also occurs if the type
of {\small\verb%ix%} is not of the form {\small\verb%:ty_1->ty_2->ty_3%}. Finally, failure occurs if
there is a type variable in {\small\verb%v_1%}, ..., {\small\verb%v_n%} or {\small\verb%t%} that does not occur in the
type of {\small\verb%ix%}.
\EXAMPLE
The nand function can be defined as follows.
{\par\samepage\setseps\small
\begin{verbatim}
#new_infix_definition
(`nand`, "$nand in_1 in_2 = ~(in_1 /\ in_2)");;
|- !in_1 in_2. in_1 nand in_2 = ~(in_1 /\ in_2)
\end{verbatim}
}
\COMMENTS
It is a common practice among HOL users to write a {\small\verb%$%} before
the constant being defined as an infix to indicate that after the
definition is made, it will have a special syntactic status; ie. to
write:
{\par\samepage\setseps\small
\begin{verbatim}
new_infix_definition(`ix_DEF`, "$ix m n = ... ")
\end{verbatim}
}
\noindent This use of {\small\verb%$%} is not necessary; but after the definition
has been made {\small\verb%$%} must, of course, be used if the syntactic status
needs to be suppressed.
\SEEALSO
new_binder_definition, new_definition, new_gen_definition,
new_infix_list_rec_definition, new_prim_rec_definition, new_list_rec_definition,
new_prim_rec_definition.
\ENDDOC
\DOC{new\_infix}
\TYPE {\small\verb%new_infix : ((string # type) -> void)%}\egroup
\SYNOPSIS
Declares a new infix constant in the current theory.
\DESCRIBE
A call {\small\verb%new_infix(`i`,":ty")%} makes {\small\verb%i%} an infix
constant in the current theory. Note that it does not specifiy its value.
The constant may have a polymorphic type, which may be arbitrarily
instantiated. Like any other infix or binder, its special parse status may be
suppressed by preceding it with a dollar sign.
\FAILURE
Fails if HOL is not in draft mode, or if the name is not a valid constant
name, or there is already a constant of that name in the current theory.
\EXAMPLE
The following shows the use of the curried form as well as the infix:
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `groke`;;
() : void
#new_infix(`orelse`,":bool->bool->bool");;
() : void
#"T orelse F";;
"T orelse F" : term
#"$orelse T F";;
"T orelse F" : term
\end{verbatim}
}
\SEEALSO
constants, infixes, is_constant, is_infix, new_constant, new_definition,
new_infix_definition.
\ENDDOC
\DOC{new\_infix\_list\_rec\_definition}
\TYPE {\small\verb%new_infix_list_rec_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Defines an infix primitive recursive function over the type of lists.
\DESCRIBE
The function {\small\verb%new_infix_list_rec_definition%} provides the facility for defining
primitive recursive functions with infix status on the type of lists. It
takes a pair argument, consisting of the name under which the resulting
definition will be saved in the current theory segment, and a term giving the
desired definition. The value returned by {\small\verb%new_infix_list_rec_definition%} is
a theorem which states the definition requested by the user. This theorem is
derived by formal proof from an instance of the theorem {\small\verb%list_Axiom%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t)
\end{verbatim}
}
\noindent Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
new_infix_list_rec_definition
(`fun_DEF`,
"(fun [] x = f_1[x]) /\
(fun (CONS h t) x = f_2[fun t x', h, t, x])");;
\end{verbatim}
}
\noindent where all the free variables in the term {\small\verb%x'%} are
contained in {\small\verb%{h, t, x}%}, automatically proves the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?fun. !x. fun x = f_1[x] /\
!x. fun (CONS h t) x = f_2[fun t x', h, t, x]
\end{verbatim}
}
\noindent and then declares a new constant {\small\verb%fun%} with this property as its
specification. This constant specification is returned as a theorem by
{\small\verb%new_infix_list_rec_definition%} and is saved with name {\small\verb%fun_DEF%} in the
current theory segment.
The ML function {\small\verb%new_infix_list_rec_definition%} is, in fact, slightly
more general than is indicated above. In particular, a curried
primitive recursive function can be defined by primitive recursion on
either one of its arguments using this ML function. The ML function
{\small\verb%new_infix_list_rec_definition%} also allows the user to partially
specify the value of a function defined (possibly recursively) on
lists by giving its value for only one of {\small\verb%[]%} or {\small\verb%CONS h t%}.
\FAILURE
Failure occurs if: HOL cannot prove there is a function satisfying the
specification (i.e. if the term supplied to {\small\verb%new_infix_list_rec_definition%}
is not a well-formed primitive recursive definition), or if
any other condition for making a constant specification is violated
(see the failure conditions for {\small\verb%new_specification%}).
\EXAMPLE
An infix append function on polymorphic lists can be defined by
{\par\samepage\setseps\small
\begin{verbatim}
new_infix_list_rec_definition
(`app_i`, "($app_i [] l = l) /\
($app_i (CONS (h:*) t) l = CONS h ($app_i t l))");;
\end{verbatim}
}
\noindent The {\small\verb%$%}'s are there (as documentation) to indicate that the constant
{\small\verb%app_i%} is being declared to be an infix. Evaluating this ML expression will
create the following constant specification in the current theory segment:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!l. [] app_i l = l) /\ (!h t l. (CONS h t) app_i l = CONS h(t app_i l))
\end{verbatim}
}
\SEEALSO
new_definition, new_infix_definition, new_infix_prim_rec_definition,
new_list_rec_definition, new_prim_rec_definition, new_recursive_definition,
new_type_definition, new_specification, list_Axiom.
\ENDDOC
\DOC{new\_infix\_prim\_rec\_definition}
\TYPE {\small\verb%new_infix_prim_rec_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Defines an infix primitive recursive function over the type {\small\verb%num%}.
\DESCRIBE
The function {\small\verb%new_infix_prim_rec_definition%} provides the facility for defining
primitive recursive functions with infix status on the type {\small\verb%num%}. It takes a
pair argument, consisting of the name under which the resulting definition will
be saved in the current theory segment, and a term giving the desired
definition. The value returned by {\small\verb%new_infix_prim_rec_definition%} is a theorem
which states the definition requested by the user. This theorem is derived by
formal proof from an instance of the theorem {\small\verb%num_Axiom%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n)
\end{verbatim}
}
\noindent Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
new_infix_prim_rec_definition
(`fun_DEF`,
"(fun 0 x = f_1[x]) /\
(fun (SUC n) x = f_2[fun n x', n, x])");;
\end{verbatim}
}
\noindent where all the free variables in the term {\small\verb%x'%} are
contained in {\small\verb%{n, x}%}, automatically proves the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?fun. !x. fun 0 x = f_1[x] /\
!x. fun (SUC n) x = f_2[fun n x', n, x]
\end{verbatim}
}
\noindent and then declares a new constant {\small\verb%fun%} with this property and infix
status as its specification. This constant specification is returned as a
theorem and is saved with name {\small\verb%fun_DEF%} in the current theory segment.
The ML function {\small\verb%new_infix_prim_rec_definition%} is, in fact, slightly more
general than is indicated above. In particular, a curried primitive recursive
function can be defined by primitive recursion on either one of its arguments
using this ML function. The ML function {\small\verb%new_infix_prim_rec_definition%} also
allows the user to partially specify the value of a function defined (possibly
recursively) on the natural numbers by giving its value for only one of {\small\verb%0%} or
{\small\verb%SUC n%}.
\FAILURE
Failure occurs if HOL cannot prove there is a function satisfying the
specification (ie. if the term supplied to {\small\verb%new_prim_rec_definition%} is not a
well-formed primitive recursive definition); if the type of {\small\verb%fun%} is not of the
form {\small\verb%ty_1->ty_2->ty_3%}, or if any other condition for making a constant
specification is violated (see the failure conditions for {\small\verb%new_specification%}).
\EXAMPLE
Here is the recursive definition of the constant {\small\verb%+%} used by the system:
{\par\samepage\setseps\small
\begin{verbatim}
new_infix_prim_rec_definition
(`ADD`,
"($+ 0 n = n) /\
($+ (SUC m) n = SUC($+ m n))")
\end{verbatim}
}
\noindent The {\small\verb%$%}'s are there (as documentation) to indicate that the constant
{\small\verb%+%} is being declared to be an infix. Evaluating this ML expression will
create the following constant specification in the current theory segment:
{\par\samepage\setseps\small
\begin{verbatim}
ADD = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n))
\end{verbatim}
}
\SEEALSO
new_definition, new_infix_definition, new_infix_list_rec_definition,
new_prim_rec_definition, new_list_rec_definition, new_recursive_definition,
new_type_definition, new_specification, num_Axiom.
\ENDDOC
\DOC{new\_letter}
\TYPE {\small\verb%new_letter : (string -> void)%}\egroup
\SYNOPSIS
Defines a character to be a letter.
\DESCRIBE
When given a string, which should be of length 1, {\small\verb%new_letter%} extends
the scope of the definition of `letter' as used by {\small\verb%is_letter%}.
(If the supplied string is null ({\small\verb%``%}) {\small\verb%new_letter%} has no effect.)
The definition of a `letter' by default includes (only)
{\small\verb%a..z A..Z%}. A call to {\small\verb%new_letter%} can affect ML lexical analysis dynamically,
because the function {\small\verb%is_letter%} is called by the lexical analyzer to check for
the start of an identifier.
\EXAMPLE
In the default state, {\small\verb%-1%} is parsed as the application of {\small\verb%-%} to {\small\verb%1%}:
{\par\samepage\setseps\small
\begin{verbatim}
#let x = -1 ;;
x = -1 : int
\end{verbatim}
}
\noindent but if we make {\small\verb%-%} into a letter:
{\par\samepage\setseps\small
\begin{verbatim}
#new_letter(`-`);;
() : void
\end{verbatim}
}
\noindent then {\small\verb%-1%} parses as an (undefined) identifier.
{\par\samepage\setseps\small
\begin{verbatim}
#let x = -1;;
unbound or non-assignable variable -1
\end{verbatim}
}
\FAILURE
Fails if the string has length greater than 1.
\SEEALSO
ascii, ascii_code, is_alphanum, is_letter, new_alphanum.
\ENDDOC
\DOC{new\_list\_rec\_definition}
\TYPE {\small\verb%new_list_rec_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Defines a primitive recursive function over the type of lists.
\DESCRIBE
The function {\small\verb%new_list_rec_definition%} provides the facility for defining
primitive recursive functions on the type of lists. It takes a pair argument,
consisting of the name under which the resulting definition will be saved in
the current theory segment, and a term giving the desired definition. The
value returned by {\small\verb%new_list_rec_definition%} is a theorem which states the
definition requested by the user. This theorem is derived by formal proof from
an instance of the theorem {\small\verb%list_Axiom%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- !x f. ?! fn. (fn[] = x) /\ (!h t. fn(CONS h t) = f(fn t)h t)
\end{verbatim}
}
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
new_list_rec_definition
(`fun_DEF`,
"(fun x_1 ... [] ... x_i = f_1[x_1, ..., x_i]) /\
(fun x_1 ... (CONS h t) ... x_i =
f_2[fun t_1 ... t ... t_i, x_1, ..., h, t, ..., x_i])");;
\end{verbatim}
}
\noindent where all the free variables in the terms {\small\verb%t_1%}, ..., {\small\verb%t_i%} are
contained in {\small\verb%{h,t,x_1,...,x_i}%}, automatically proves the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?fun. !x_1 ... x_i. fun x_1 ... [] ... x_i = f_1[x_1, ..., x_i] /\
!x_1 ... x_i. fun (CONS h t) x_1 ... x_i =
f_2[fun t_1 ... t ... t_i, x_1, ..., h, t, ...,x_i]
\end{verbatim}
}
\noindent and then declares a new constant {\small\verb%fun%} with this property as its
specification. This constant specification is returned as a theorem by
{\small\verb%new_list_rec_definition%} and is saved with name {\small\verb%fun_DEF%} in the
current theory segment.
The ML function {\small\verb%new_list_rec_definition%} also allows the user to
partially specify the value of a function defined (possibly recursively) on
lists by giving its value for only one of {\small\verb%[]%} or {\small\verb%CONS h t%}. See the
examples below.
\FAILURE
Failure occurs if HOL cannot prove there is a function satisfying the
specification (ie. if the term supplied to ml{\small\verb%new_list_rec_definition%}
is not a well-formed primitive recursive definition), or if
any other condition for making a constant specification is violated
(see the failure conditions for {\small\verb%new_specification%}).
\EXAMPLE
The HOL system defines a length function, {\small\verb%LENGTH%}, on lists by the
primitive recursive definition on lists shown below:
{\par\samepage\setseps\small
\begin{verbatim}
new_list_rec_definition
(`LENGTH`,
"(LENGTH NIL = 0) /\
(!h:*. !t. LENGTH (CONS h t) = SUC (LENGTH t))")
\end{verbatim}
}
\noindent When this ML expression is evaluated, HOL uses {\small\verb%list_Axiom%}
to prove existence of a function that satisfies the given primitive
recursive definition, introduces a constant to name this function
using a constant specification, and stores the resulting theorem:
{\par\samepage\setseps\small
\begin{verbatim}
LENGTH |- (LENGTH[] = 0) /\ (!h t. LENGTH(CONS h t) = SUC(LENGTH t))
\end{verbatim}
}
\noindent in the current theory segment (in this case, the theory {\small\verb%list%}).
Using {\small\verb%new_list_rec_definition%}, the predicate {\small\verb%NULL%} and the
selectors {\small\verb%HD%} and {\small\verb%TL%} are defined
in the theory {\small\verb%list%} by the
specifications:
{\par\samepage\setseps\small
\begin{verbatim}
NULL |- NULL[] /\ (!h t. ~NULL(CONS h t))
HD |- !(h:*) t. HD(CONS h t) = h
TL |- !(h:*) t. TL(CONS h t) = t
\end{verbatim}
}
\SEEALSO
new_definition, new_infix_definition, new_infix_list_rec_definition,
new_infix_prim_rec_definition, new_prim_rec_definition,
new_recursive_definition, new_type_definition, new_specification, list_Axiom.
\ENDDOC
\DOC{new\_open\_axiom}
\TYPE {\small\verb%new_open_axiom : ((string # term) -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{new\_parent}
\TYPE {\small\verb%new_parent : (string -> void)%}\egroup
\SYNOPSIS
Extends the current theory with a new parent theory.
\DESCRIBE
Executing {\small\verb%new_parent `thy`%} extends the current theory by making the existing
theory named {\small\verb%thy%} a parent of the current theory segment. The extended theory
contains the theory segments of both constituent theories. The theory {\small\verb%thy%} is
loaded into the system. The message `{\small\verb%Theory thy loaded%}' is printed. The
effect of the call may not be written to the theory file of the segment until
{\small\verb%close_theory%} is invoked. If HOL is quitted before this, the effect may not
persist to future HOL sessions.
\FAILURE
Executing {\small\verb%new_parent `thy`%} will fail if the system is not in draft mode. It
will fail if {\small\verb%thy%} is not a theory on the current search path. It will fail if
there is a type in theory {\small\verb%thy%} with the same name as a type in the current
theory. It will fail if there is a constant in theory {\small\verb%thy%} with the same name
as a constant in the current theory. It will fail if an ancestor of theory
{\small\verb%thy%} has been extended with either new types or constants which clash with
names in theory {\small\verb%thy%}. It will also fail if any of the theory files of theory
{\small\verb%thy%} have been damaged. On failure, the system recovers cleanly, unloading any
theory segments it had loaded before the failure was detected.
\SEEALSO
close_theory, extend_theory, new_theory, print_theory, search_path.
\ENDDOC
\DOC{new\_predicate}
\TYPE {\small\verb%new_predicate : ((string # type) -> void)%}\egroup
\SYNOPSIS
Creates a new predicate constant.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
new_predicate(`P`,":ty")
\end{verbatim}
}
\noindent will declare a new predicate called {\small\verb%P%} on type {\small\verb%ty%}, that is, a
constant {\small\verb%P%} of type {\small\verb%ty->bool%}.
\FAILURE
Fails if HOL is not in draft mode, or if there is already a constant of the
corresponding name in the current theory segment.
\SEEALSO
mk_const, mk_pred.
\ENDDOC
\DOC{new\_prim\_rec\_definition}
\TYPE {\small\verb%new_prim_rec_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
Define a primitive recursive function over the type {\small\verb%:num%}.
\DESCRIBE
The function {\small\verb%new_prim_rec_definition%} provides the facility for defining
primitive recursive functions on the type {\small\verb%num%}. It takes a pair argument,
consisting of the name under which the resulting definition will be saved in
the current theory segment, and a term giving the desired definition. The
value returned by {\small\verb%new_prim_rec_definition%} is a theorem which states the
definition requested by the user. This theorem is derived by formal proof from
an instance of the theorem {\small\verb%num_Axiom%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- !e f. ?! fn. (fn 0 = e) /\ (!n. fn(SUC n) = f(fn n)n)
\end{verbatim}
}
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
new_prim_rec_definition
(`fun_DEF`,
"(fun x_1 ... 0 ... x_i = f_1[x_1, ..., x_i]) /\
(fun x_1 ... (SUC n) ... x_i =
f_2[fun t_1 ... n ... t_i, x_1, ..., n, ..., x_i])");;
\end{verbatim}
}
\noindent where all the free variables in the terms {\small\verb%t_1%}, ..., {\small\verb%t_i%} are
contained in {\small\verb%{n, x_1, ..., x_i}%}, automatically proves the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?fun. !x_1 ... x_i. fun x_1 ... 0 ... x_i = f_1[x_1, ..., x_i] /\
!x_1 ... x_i. fun (SUC n) x_1 ... x_i =
f_2[fun t_1 ... n ... t_i, x_1, ..., n, ...,x_i]
\end{verbatim}
}
\noindent and then declares a new constant {\small\verb%fun%} with this property as its
specification. This constant specification is returned as a theorem by
{\small\verb%new_prim_rec_definition%} and is saved with name {\small\verb%fun_DEF%} in the
current theory segment.
The ML function {\small\verb%new_prim_rec_definition%} also allows the user to
partially specify the value of a function defined (possibly recursively) on the
natural numbers by giving its value for only one of {\small\verb%0%} or {\small\verb%SUC n%}. See the
example below.
\FAILURE
Failure occurs if HOL cannot prove there is a function satisfying the
specification (ie. if the term supplied to {\small\verb%new_prim_rec_definition%}
is not a well-formed primitive recursive definition), or if
any other condition for making a constant specification is violated
(see the failure conditions for {\small\verb%new_specification%}).
\EXAMPLE
A curried addition function {\small\verb%plus:num->num->num%} can be defined by primitive
recursion on its first argument:
{\par\samepage\setseps\small
\begin{verbatim}
#let PLUS = new_prim_rec_definition
# (`PLUS`,
# "(plus 0 n = n) /\
# (plus (SUC m) n = SUC(plus m n))");;
PLUS = |- (!n. plus 0 n = n) /\ (!m n. plus(SUC m)n = SUC(plus m n))
\end{verbatim}
}
\noindent or by primitive recursion on its second argument:
{\par\samepage\setseps\small
\begin{verbatim}
#let PLUS = new_prim_rec_definition
# (`PLUS`,
# "(plus m 0 = m) /\
# (plus m (SUC n) = SUC(plus m n))");;
PLUS = |- (!m. plus m 0 = m) /\ (!m n. plus m(SUC n) = SUC(plus m n))
\end{verbatim}
}
\noindent A decrement function {\small\verb%DEC%}, whose value is specified for only
positive natural numbers, can be defined using {\small\verb%new_prim_rec_definition%}
as follows
{\par\samepage\setseps\small
\begin{verbatim}
#let DEC = new_prim_rec_definition
# (`DEC`, "DEC (SUC n) = n");;
DEC = |- !n. DEC(SUC n) = n
\end{verbatim}
}
\noindent This definition specifies the value of the function {\small\verb%DEC%} only for
positive natural numbers. In particular, the value of {\small\verb%DEC 0%} is left
unspecified, and the only non-trivial property that can be proved to hold of
the constant {\small\verb%DEC%} is the property stated by the theorem returned by the
call to {\small\verb%new_prim_rec_definition%} shown in the session above.
\SEEALSO
new_definition, new_infix_definition, new_infix_list_rec_definition,
new_infix_prim_rec_definition, new_list_rec_definition,
new_recursive_definition, new_type_definition, new_specification, num_Axiom.
\ENDDOC
\DOC{new\_recursive\_definition}
\TYPE {\small\verb%new_recursive_definition : (bool -> thm -> string -> conv)%}\egroup
\SYNOPSIS
Defines a primitive recursive function over a concrete recursive type.
\DESCRIBE
{\small\verb%new_recursive_definition%} provides the facility for defining primitive
recursive functions on arbitrary concrete recursive types. It takes four
arguments. The first is a boolean flag which indicates if the recursive
function to be defined will be an infix or not. The second is the primitive
recursion theorem for the concrete type in question; this must be a theorem
obtained from {\small\verb%define_type%}. The third argument is a name under which the
resulting definition will be saved in the current theory segment. And the
fourth argument is a term giving the desired primitive recursive function
definition. The value returned by {\small\verb%new_recursive_definition%} is a theorem
which states the primitive recursive definition requested by the user. This
theorem is derived by formal proof from an instance of the general primitive
recursion theorem given as the second argument.
A theorem {\small\verb%th%} of the form returned by {\small\verb%define_type%} is a primitive recursion
theorem for an automatically-defined concrete type {\small\verb%ty%}. Let {\small\verb%C1%}, ..., {\small\verb%Cn%}
be the constructors of this type, and let `{\small\verb%(Ci vs)%}' represent a (curried)
application of the {\small\verb%i%}th constructor to a sequence of variables. Then a
curried primitive recursive function {\small\verb%fn%} over {\small\verb%ty%} can be specified by a
conjunction of (optionally universally-quantified) clauses of the form:
{\par\samepage\setseps\small
\begin{verbatim}
fn v1 ... (C1 vs1) ... vm = body1 /\
fn v1 ... (C2 vs2) ... vm = body2 /\
.
.
fn v1 ... (Cn vsn) ... vm = bodyn
\end{verbatim}
}
\noindent where the variables {\small\verb%v1%}, ..., {\small\verb%vm%}, {\small\verb%vs%} are distinct in each
clause, and where in the {\small\verb%i%}th clause {\small\verb%fn%} appears (free) in {\small\verb%bodyi%} only
as part of an application of the form:
{\par\samepage\setseps\small
\begin{verbatim}
"fn t1 ... v ... tm"
\end{verbatim}
}
\noindent in which the variable {\small\verb%v%} of type {\small\verb%ty%} also occurs among the
variables {\small\verb%vsi%}.
If {\small\verb%<definition>%} is a conjunction of clauses, as described above, then
evaluating:
{\par\samepage\setseps\small
\begin{verbatim}
new_recursive_definition flag th `name` tm "<definition>";;
\end{verbatim}
}
\noindent automatically proves the existence of a function {\small\verb%fn%} that satisfies
the defining equations supplied as the fourth argument, and then declares a new
constant in the current theory with this definition as its specification. This
constant specification is returned as a theorem and is saved in the current
theory segment under the name {\small\verb%name%}. If {\small\verb%flag%} is {\small\verb%true%}, the constant is
given infix status.
{\small\verb%new_recursive_definition%} also allows the supplied definition to omit clauses
for any number of constructors. If a defining equation for the {\small\verb%i%}th
constructor is omitted, then the value of {\small\verb%fn%} at that constructor:
{\par\samepage\setseps\small
\begin{verbatim}
fn v1 ... (Ci vsi) ... vn
\end{verbatim}
}
\noindent is left unspecified ({\small\verb%fn%}, however, is still a total function).
\FAILURE
A call to {\small\verb%new_recursive_definition%} fails if the supplied theorem is not a
primitive recursion theorem of the form returned by {\small\verb%define_type%}; if the term
argument supplied is not a well-formed primitive recursive definition; or if
any other condition for making a constant specification is violated (see the
failure conditions for {\small\verb%new_specification%}).
\EXAMPLE
Given the following primitive recursion theorem for labelled binary trees:
{\par\samepage\setseps\small
\begin{verbatim}
|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)
\end{verbatim}
}
\noindent {\small\verb%new_recursive_definition%} can be used to define primitive recursive
functions over binary trees. Suppose the value of {\small\verb%th%} is this theorem. Then
a recursive function {\small\verb%Leaves%}, which computes the number of leaves in a
binary tree, can be defined recursively as shown below:
{\par\samepage\setseps\small
\begin{verbatim}
#let Leaves =
# new_recursive_definition false th `Leaves`
# "(Leaves (LEAF (x:*)) = 1) /\
# (Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))";;
Leaves =
|- (!x. Leaves(LEAF x) = 1) /\
(!t1 t2. Leaves(NODE t1 t2) = (Leaves t1) + (Leaves t2))
\end{verbatim}
}
\noindent The result is a theorem which states that the constant {\small\verb%Leaves%}
satisfies the primitive-recursive defining equations supplied by the user.
The function defined using {\small\verb%new_recursive_definition%} need not, in fact, be
recursive. Here is the definition of a predicate {\small\verb%IsLeaf%}, which is true of
binary trees which are leaves, but is false of the internal nodes in a binary
tree:
{\par\samepage\setseps\small
\begin{verbatim}
#let IsLeaf =
# new_recursive_definition false th `IsLeaf`
# "(IsLeaf (NODE t1 t2) = F) /\ (IsLeaf (LEAF (x:*)) = T)";;
IsLeaf = |- (!t1 t2. IsLeaf(NODE t1 t2) = F) /\ (!x. IsLeaf(LEAF x) = T)
\end{verbatim}
}
\noindent Note that the equations defining a (recursive or non-recursive)
function on binary trees by cases can be given in either order. Here, the
{\small\verb%NODE%} case is given first, and the {\small\verb%LEAF%} case second. The reverse order was
used in the above definition of {\small\verb%Leaves%}.
{\small\verb%new_recursive_definition%} also allows the user to partially specify the value
of a function defined on a concrete type, by allowing defining equations for
some of the constructors to be omitted. Here, for example, is the definition
of a function {\small\verb%Label%} which extracts the label from a leaf node. The value of
{\small\verb%Label%} applied to an internal node is left unspecified:
{\par\samepage\setseps\small
\begin{verbatim}
#let Label =
# new_recursive_definition false th `Label`
# "Label (LEAF (x:*)) = x";;
Label = |- !x. Label(LEAF x) = x
\end{verbatim}
}
\noindent Curried functions can also be defined, and the recursion can be on
any argument. The next definition defines an infix (curried) function {\small\verb%<<%}
which expresses the idea that one tree is a proper subtree of another.
{\par\samepage\setseps\small
\begin{verbatim}
#let Subtree =
# new_recursive_definition true th `Subtree`
# "(<< (t:(*)btree) (LEAF (x:*)) = F) /\
# (<< t (NODE t1 t2) = ((t=t1)\/(t=t2)\/(<< t t1)\/(<< t t2)))";;
Subtree =
|- (!t x. t << (LEAF x) = F) /\
(!t t1 t2.
t << (NODE t1 t2) = (t = t1) \/ (t = t2) \/ t << t1 \/ t << t2)
\end{verbatim}
}
\noindent Note that the first argument is {\small\verb%true%}, to indicate that the function
being defined is to have infix status, and that the constant {\small\verb%<<%} is an infix
after the definition has been made. Furthermore, the function {\small\verb%<<%} is
recursive on its second argument.
\SEEALSO
define_type, prove_rec_fn_exists.
\ENDDOC
\DOC{new\_special\_symbol}
\TYPE {\small\verb%new_special_symbol : (string -> void)%}\egroup
\SYNOPSIS
Adds new string to the list of special symbols.
\DESCRIBE
An identifier, at the ML or object level, is either alphanumeric, e.g. {\small\verb%true%}
or {\small\verb%T%}, or consists of a special symbol which starts with a non-alphanumeric
character, e.g. {\small\verb%==>%} or {\small\verb%+%}. It is a consequence of the non-backtracking
implementation of lexical analysis that any (non-null) initial segment of a
special symbol is also a special symbol, so from the above we know that {\small\verb%==%}
and {\small\verb%=%} are. The function {\small\verb%new_special_symbol%} makes the given string and its
non-null initial segments into special symbols, provided the string does not
start with an alphanumeric character (according to {\small\verb%is_alphanum%}).
\FAILURE
Fails if the string provided starts with an alphanumeric character. The test is
performed using the function {\small\verb%is_alphanum%}, so this may include some unexpected
characters if {\small\verb%new_alphanum%} has been used.
\EXAMPLE
The call:
{\par\samepage\setseps\small
\begin{verbatim}
new_special_symbol `.EQ.`;;
\end{verbatim}
}
\noindent makes the following three strings special symbols:
{\par\samepage\setseps\small
\begin{verbatim}
.E .EQ .EQ.
\end{verbatim}
}
\SEEALSO
is_alphanum, new_alphanum, special_symbols.
\ENDDOC
\DOC{new\_specification}
\TYPE {\small\verb%new_specification : (string -> (string # string) list -> thm -> thm)%}\egroup
\SYNOPSIS
Introduces a constant or constants satisfying a given property.
\DESCRIBE
The ML function {\small\verb%new_specification%} implements the primitive rule of
constant specification for the HOL logic.
Evaluating:
{\par\samepage\setseps\small
\begin{verbatim}
new_specification `name` [f1,`c1`;...;fn,`cn`] |- ?x1...xn. t
\end{verbatim}
}
\noindent simultaneously introduces new constants named {\small\verb%c1%}, ..., {\small\verb%cn%}
satisfying the property:
{\par\samepage\setseps\small
\begin{verbatim}
|- t[c1,...,cn/x1,...,xn]
\end{verbatim}
}
\noindent This theorem is stored, with name {\small\verb%name%}, as a definition in the
current theory segment. It is also returned by the call to {\small\verb%new_specification%}
The strings {\small\verb%f1%}, ..., {\small\verb%fn%} are flags which determine whether the new constants
are infixes or binders or neither. If {\small\verb%fi%} is {\small\verb%`constant`%} then {\small\verb%ci%} is
declared an ordinary constant, if it is {\small\verb%`infix`%} then {\small\verb%ci%} is declared an
infix, and if it is {\small\verb%`binder`%} then {\small\verb%ci%} is declared a binder. A flag of any
other value causes failure.
\FAILURE
{\small\verb%new_specification%} fails if called when HOL is not in draft mode. It also
fails if there is already an axiom, definition or specification of the given
name in the current theory segment; if the theorem argument has assumptions or
free variables; if the supplied constant names {\small\verb%`c1`%}, ..., {\small\verb%`cn`%} are not
distinct; if any one of {\small\verb%`c1`%}, ..., {\small\verb%`cn`%} is already a constant in the
current theory or is not an allowed name for a constant. Failure also occurs
if any of {\small\verb%f1%}, ..., {\small\verb%fn%} is not either {\small\verb%`constant`%}, {\small\verb%`infix`%} or {\small\verb%`binder`%}
or if the type of {\small\verb%ci%} is not suitable for a constant with the syntactic status
specified by the flag {\small\verb%fi%}. Finally, failure occurs if some {\small\verb%ci%} does not
contain all the type variables that occur in the term {\small\verb%?x1...xn. t%}.
\USES
{\small\verb%new_specification%} can be used to introduce constants that satisfy a given
property without having to make explicit equational constant definitions for
them. For example, the built-in constants {\small\verb%MOD%} and {\small\verb%DIV%} are defined in the
system by first proving the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
th |- ?MOD DIV.
!n. (0 < n) ==>
!k. ((k = (((DIV k n) * n) + (MOD k n))) /\ ((MOD k n) < n))
\end{verbatim}
}
\noindent and then making the constant specification:
{\par\samepage\setseps\small
\begin{verbatim}
#new_specification `DIVISION` [`infix`,`MOD`;`infix`,`DIV`] th;;
|- !n. (0 < n) ==>
!k. ((k = (((DIV k n) * n) + (MOD k n))) /\ ((MOD k n) < n))
\end{verbatim}
}
\noindent This introduces the constants {\small\verb%MOD%} and {\small\verb%DIV%} with the defining
property shown above.
\SEEALSO
new_definition, new_binder_definition, new_gen_definition,
new_infix_definition.
\ENDDOC
\DOC{new\_stack}
\TYPE {\small\verb%new_stack : (goal -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{new\_syntax\_block}
\TYPE {\small\verb%new_syntax_block : ((string # string # string) -> void)%}\egroup
\SYNOPSIS
Declares a new syntax block.
\DESCRIBE
A syntax block starts with keyword and ends with a terminator and is
associated with a function of strings. When such a block is
encountered in the input stream, all the characters between the start
keyword and the terminator are made into a string to which the
associated function is applied.
The ML function {\small\verb%new_syntax_block%} declares a new syntax block. The
first argument is the start keyword of the block, the second argument
is the terminator and the third argument is the name of a function
having a type which is an instance of {\small\verb%string->*%}. The effect of
{\par\samepage\setseps\small
\begin{verbatim}
new_syntax_block(`XXX`, `YYY`, `Fun`);;
\end{verbatim}
}
\noindent is that if
{\par\samepage\setseps\small
\begin{verbatim}
XXX
...
YYY
\end{verbatim}
}
\noindent occurs in the input, then it is as though
{\par\samepage\setseps\small
\begin{verbatim}
Fun `
...
`
\end{verbatim}
}
\noindent were input.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let foo s = print_string `Hello: `; print_string s; print_newline();;
foo = - : (string -> void)
#new_syntax_block(`FOO`,`OOF`, `foo`);;
() : void
#FOO 123OO44OOF;;
Hello: 123OO44
() : void
#FOO
#splat
#OOF;;
Hello: splat
() : void
\end{verbatim}
}
\USES
Interfacing parsers to HOL.
\ENDDOC
\DOC{new\_theory}
\TYPE {\small\verb%new_theory : (string -> void)%}\egroup
\SYNOPSIS
Creates a new theory by extending the current theory with a new theory segment.
\DESCRIBE
A theory consists of a hierarchy of named parts called theory segments. The
theory segment at the top of the hierarchy tree in each theory is said to be
current. All theory segments have a theory of the same name associated with
them consisting of the theory segment itself and all its ancestors.
Each axiom,
definition, specification and theorem belongs to a particular theory segment.
Calling {\small\verb%new_theory `thy`%} creates a new theory segment and associated theory
having name {\small\verb%thy%}. The theory segment which was current before the call becomes
a parent of the new theory segment. The new theory therefore consists of the
current theory extended with the new theory segment. The new theory segment
replaces its parent as the current theory segment. The call switches the system
into draft mode. This allows new axioms, constants, types, constant
specifications, infix constants, binders and parents to be added to the theory
segment. Inconsistencies will be introduced into the theory if inconsistent
axioms are asserted. New theorems can also be added as when in proof mode. The
theory file in which the data of the new theory segment is ultimately stored
will have name {\small\verb%thy.th%} in the directory from which HOL was called. The theory
segment might not be written to this file until the session is finished with a
call to {\small\verb%close_theory%}. If HOL is quitted without closing the session with
{\small\verb%close_theory%}, parts of the theory segment created during the session may be
lost. If the system is in draft mode when a call to {\small\verb%new_theory%} is made, the
previous session is closed; all changes made in it will be written to the
associated theory file.
\FAILURE
The call {\small\verb%new_theory `thy`%} will fail if there already exists a file {\small\verb%thy.th%}
in the current search path. It will also fail if the name {\small\verb%thy.th%} is
unsuitable for a filename. Since it could involve writing to the file system,
if a write fails for any reason {\small\verb%new_theory%} will fail.
\USES
Hierarchically extending the current theory.
By splitting a theory into theory segments using {\small\verb%new_theory%}, the work
required if definitions, etc., need to be changed is minimized. Only the
associated segment and its descendants need be redefined.
\SEEALSO
close_theory, current_theory, extend_theory, load_theory, new_axiom,
new_binder, new_constant, new_definition, new_infix, new_parent,
new_specification, new_type, print_theory, save_thm, search_path.
\ENDDOC
\DOC{new\_type\_abbrev}
\TYPE {\small\verb%new_type_abbrev : ((string # type) -> void)%}\egroup
\SYNOPSIS
Sets up a new type abbreviation.
\DESCRIBE
A call {\small\verb%new_type_abbrev(`ab`,":ty")%} creates and stores in the current theory
segment a new type abbreviation {\small\verb%ab%} for the type {\small\verb%ty%}. In future, {\small\verb%":ab"%} may
be used rather than the perhaps complicated expresion {\small\verb%":ty"%}.
\FAILURE
Fails if HOL is not in draft mode.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `gonk`;;
() : void
#new_type_abbrev(`bt`,":bool#bool#bool");;
() : void
#let tm = "x:bt" and ty = ":bt";;
tm = "x" : term
ty = ":bool # (bool # bool)" : type
#type_of tm = ty;;
true : bool
\end{verbatim}
}
\COMMENTS
A similar mechanism can be implemented using antiquotation, for example:
{\par\samepage\setseps\small
\begin{verbatim}
#let bt = ":bool#bool#bool";;
bt = ":bool # (bool # bool)" : type
#let tm = "x:^bt" and ty = ":^bt";;
tm = "x" : term
ty = ":bool # (bool # bool)" : type
#type_of tm = ty;;
true : bool
\end{verbatim}
}
\noindent although this does have the disadvantage of not being stored in the
theory file.
\SEEALSO
types, type_abbrevs, new_type.
\ENDDOC
\DOC{new\_type\_definition}
\TYPE {\small\verb%new_type_definition : ((string # term # thm) -> thm)%}\egroup
\SYNOPSIS
Defines a new type constant or type operator.
\DESCRIBE
The ML function {\small\verb%new_type_definition%} implements the primitive HOL rule of
definition for introducing new type constants or type operators into the logic.
If {\small\verb%"t"%} is a closed term of type {\small\verb%ty->bool%} containing {\small\verb%n%} distinct type
variables, then evaluating:
{\par\samepage\setseps\small
\begin{verbatim}
new_type_definition(`op`, "t", |- ?x. t x)
\end{verbatim}
}
\noindent results in {\small\verb%op%} being declared as a new {\small\verb%n%}-ary type operator in the
current theory and returns a definitional axiom of the following form
characterizing that new type operator:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?rep:(*1,...,*n)op->ty. TYPE_DEFINITION t rep
\end{verbatim}
}
\noindent which is stored as a definition in the current theory segment
under the automatically-generated name {\small\verb%`op_TY_DEF`%}. The constant
{\small\verb%TYPE_DEFINITION%} in this axiomatic characterization of {\small\verb%op%} is defined by:
{\par\samepage\setseps\small
\begin{verbatim}
|- TYPE_DEFINITION (P:*->bool) (rep:**->*) =
(!x' x''. (rep x' = rep x'') ==> (x' = x'')) /\
(!x. P x = (?x'. x = rep x'))
\end{verbatim}
}
\noindent Thus {\small\verb%|- ?rep. TYPE_DEFINITION P rep%} asserts that there is a
bijection between the newly defined type {\small\verb%(*1,...,*n)op%} and the set of values
of type {\small\verb%ty%} that satisfy {\small\verb%P%}.
\FAILURE
Executing {\small\verb%new_type_definition(`op`,"t",th)%} fails if {\small\verb%"t"%} contains free
(term) variables, if {\small\verb%op%} is already the name of a type or type operator in the
current theory, if {\small\verb%"t"%} does not have a type of the form {\small\verb%ty->bool%} or {\small\verb%th%} is
not a theorem without assumptions of the form {\small\verb%|- ?x. t x%}, if there already
exists a constant definition, constant specification, type definition or axiom
named {\small\verb%op_TY_DEF%} in the current theory segment, or if HOL is not in draft
mode.
\SEEALSO
define_new_type_bijections, prove_abs_fn_one_one, prove_abs_fn_onto,
prove_rep_fn_one_one, prove_rep_fn_onto.
\ENDDOC
\DOC{new\_type}
\TYPE {\small\verb%new_type : (int -> string -> void)%}\egroup
\SYNOPSIS
Declares a new type or type constructor.
\DESCRIBE
A call {\small\verb%new_type n `t`%} declares a new {\small\verb%n%}-ary type constructor called {\small\verb%t%} in
the current theory segment. If {\small\verb%n%} is zero, this is just a new base type.
\FAILURE
Fails if HOL is not in draft mode, or if the name is not a valid type
name, or there is already a type operator of that name in the current theory.
\EXAMPLE
A version of ZF set theory might declare a new type {\small\verb%set%} and start using it as
follows:
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `ZF`;;
() : void
#new_type 0 `set`;;
() : void
#new_infix(`mem`,":set->set->bool");;
() : void
#new_axiom(`ext`,"(!z. z mem x = z mem y) ==> (x = y)");;
|- !x y. (!z. z mem x = z mem y) ==> (x = y)
\end{verbatim}
}
\SEEALSO
types, type_abbrevs, new_type_abbrev.
\ENDDOC
\DOC{nil\_term\_net}
\TYPE {\small\verb%nil_term_net : * term_net%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{NO\_CONV}
\TYPE {\small\verb%NO_CONV : conv%}\egroup
\SYNOPSIS
Conversion that always fails.
\FAILURE
{\small\verb%NO_CONV%} always fails.
\SEEALSO
ALL_CONV.
\ENDDOC
\DOC{NO\_TAC}
\TYPE {\small\verb%NO_TAC : tactic%}\egroup
\SYNOPSIS
Tactic which always fails.
\DESCRIBE
Whatever goal it is applied to, {\small\verb%NO_TAC%} always fails
with string {\small\verb%`NO_TAC`%}.
\FAILURE
Always fails.
\SEEALSO
ALL_TAC, ALL_THEN, FAIL_TAC, NO_THEN.
\ENDDOC
\DOC{not}
\TYPE {\small\verb%$not : (bool -> bool)%}\egroup
\SYNOPSIS
Built-in ML logical negation.
\DESCRIBE
When given a boolean value, {\small\verb%not%} returns its negation. Although it is a prefix
function, it needs to be preceded by {\small\verb%$%} to suppress its special parse status.
\FAILURE
Never fails.
\ENDDOC
\DOC{NOT\_ELIM}
\TYPE {\small\verb%NOT_ELIM : (thm -> thm)%}\egroup
\SYNOPSIS
Transforms {\small\verb%|- ~t%} into {\small\verb%|- t ==> F%}.
\DESCRIBE
When applied to a theorem {\small\verb%A |- ~t%}, the inference rule {\small\verb%NOT_ELIM%} returns the
theorem {\small\verb%A |- t ==> F%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- ~t
-------------- NOT_ELIM
A |- t ==> F
\end{verbatim}
}
\FAILURE
Fails unless the theorem has a negated conclusion.
\SEEALSO
IMP_ELIM, NOT_INTRO.
\ENDDOC
\DOC{NOT\_EQ\_SYM}
\TYPE {\small\verb%NOT_EQ_SYM : (thm -> thm)%}\egroup
\SYNOPSIS
Swaps left-hand and right-hand sides of a negated equation.
\DESCRIBE
When applied to a theorem {\small\verb%A |- ~(t1 = t2)%}, the inference rule {\small\verb%NOT_EQ_SYM%}
returns the theorem {\small\verb%A |- ~(t2 = t1)%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- ~(t1 = t2)
----------------- NOT_EQ_SYM
A |- ~(t2 = t1)
\end{verbatim}
}
\FAILURE
Fails unless the theorem's conclusion is a negated equation.
\SEEALSO
DEPTH_CONV, REFL, SYM.
\ENDDOC
\DOC{NOT\_EXISTS\_CONV}
\TYPE {\small\verb%NOT_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves negation inwards through an existential quantification.
\DESCRIBE
When applied to a term of the form {\small\verb%~(?x.P)%}, the conversion
{\small\verb%NOT_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ~(?x.P) = !x.~P
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%~(?x.P)%}.
\SEEALSO
EXISTS_NOT_CONV, FORALL_NOT_CONV, NOT_FORALL_CONV.
\ENDDOC
\DOC{NOT\_FORALL\_CONV}
\TYPE {\small\verb%NOT_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves negation inwards through a universal quantification.
\DESCRIBE
When applied to a term of the form {\small\verb%~(!x.P)%}, the conversion
{\small\verb%NOT_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- ~(!x.P) = ?x.~P
\end{verbatim}
}
\noindent It is irrelevant whether {\small\verb%x%} occurs free in {\small\verb%P%}.
\FAILURE
Fails if applied to a term not of the form {\small\verb%~(!x.P)%}.
\SEEALSO
EXISTS_NOT_CONV, FORALL_NOT_CONV, NOT_EXISTS_CONV.
\ENDDOC
\DOC{NO\_THEN}
\TYPE {\small\verb%NO_THEN : thm_tactical%}\egroup
\SYNOPSIS
Theorem-tactical which always fails.
\DESCRIBE
When applied to a theorem-tactic and a theorem, the theorem-tactical
{\small\verb%NO_THEN%} always fails with string {\small\verb%`NO_THEN`%}.
\FAILURE
Always fails when applied to a theorem-tactic and a theorem (note that it
never gets as far as being applied to a goal!)
\USES
Writing compound tactics or tacticals.
\SEEALSO
ALL_TAC, ALL_THEN, FAIL_TAC, NO_TAC.
\ENDDOC
\DOC{NOT\_INTRO}
\TYPE {\small\verb%NOT_INTRO : (thm -> thm)%}\egroup
\SYNOPSIS
Transforms {\small\verb%|- t ==> F%} into {\small\verb%|- ~t%}.
\DESCRIBE
When applied to a theorem {\small\verb%A |- t ==> F%}, the inference rule {\small\verb%NOT_INTRO%}
returns the theorem {\small\verb%A |- ~t%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t ==> F
-------------- NOT_INTRO
A |- ~t
\end{verbatim}
}
\FAILURE
Fails unless the theorem has an implicative conclusion with {\small\verb%F%}
as the consequent.
\SEEALSO
IMP_ELIM, NOT_ELIM.
\ENDDOC
\DOC{NOT\_MP}
\TYPE {\small\verb%NOT_MP : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Implements the Modus Ponens inference rule and
takes negation as an implication.
\DESCRIBE
When applied to theorems {\small\verb%A1 |- t1 ==> t2%} and {\small\verb%A2 |- t1%},
the inference rule {\small\verb%NOT_MP%} returns the theorem {\small\verb%A1 u A2 |- t2%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 ==> t2 A2 |- t1
---------------------------- NOT_MP
A1 u A2 |- t2
\end{verbatim}
}
\noindent This is the same as the primitive inference rule {\small\verb%MP%}.
However, the first theorem can also be a negation. In such case,
{\small\verb%NOT_MP%} automatically transforms it to an implication with {\small\verb%F%} as
conclusion.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- ~ t A2 |- t
----------------------- NOT_MP
A1 u A2 |- F
\end{verbatim}
}
\FAILURE
Fails unless the first theorem is an implication whose antecedent is the
same as the conclusion of the second theorem (up to alpha-conversion),
or it is a negation.
\COMMENTS
The rule {\small\verb%MP%} used to behave as what is described in this page due to
some historical reasons. Now, {\small\verb%MP%} is the true primitive rule
implementing Modus Ponens. {\small\verb%NOT_MP%} is introduced to implement the old
{\small\verb%MP%}. The use of {\small\verb%NOT_MP%} is discouraged. If the input theorem is
expected to be a negation, use {\small\verb%(MP o NOT_ELIM)%}.
\SEEALSO
MP, EQ_MP, LIST_MP, MATCH_MP, MATCH_MP_TAC, MP_TAC.
\ENDDOC
\DOC{n\_strip\_quant}
\TYPE {\small\verb%n_strip_quant : ((* -> (** # *)) -> int -> * -> (** list # *))%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{null}
\TYPE {\small\verb%null : (* list -> bool)%}\egroup
\SYNOPSIS
Tests for empty list.
\DESCRIBE
Returns {\small\verb%true%} for an empty list. Otherwise it returns {\small\verb%false%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#null [];;
true : bool
#null [1;2;3];;
false : bool
\end{verbatim}
}
\ENDDOC
\DOC{num\_CONV}
\TYPE {\small\verb%num_CONV : conv%}\egroup
\SYNOPSIS
Provides definitional axiom for a nonzero numeral.
\DESCRIBE
{\small\verb%num_CONV%} is an axiom-scheme from which one may obtain a defining equation for
any natural number constant not equal to {\small\verb%0%} (i.e. {\small\verb%1%}, {\small\verb%2%}, {\small\verb%3%},...). If
{\small\verb%"n"%} is such a constant, then {\small\verb%num_CONV "n"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- n = SUC m
\end{verbatim}
}
\noindent where {\small\verb%m%} is the numeral that denotes the predecessor of the
number denoted by {\small\verb%n%}.
\FAILURE
{\small\verb%num_CONV tm%} fails if {\small\verb%tm%} is {\small\verb%"0"%} or if not {\small\verb%tm%} is not a numeral constant.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#num_CONV "3";;
|- 3 = SUC 2
\end{verbatim}
}
\ENDDOC
\DOC{num\_EQ\_CONV}
\TYPE {\small\verb%num_EQ_CONV : conv%}\egroup
\SYNOPSIS
Proves equality or inequality of two natural number constants.
\DESCRIBE
If {\small\verb%n%} and {\small\verb%m%} are two distinct numeral constants (e.g. {\small\verb%0%}, {\small\verb%1%}, {\small\verb%2%},
{\small\verb%3%},...), then {\small\verb%num_EQ_CONV "n = m"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (n = m) = F
\end{verbatim}
}
\noindent If {\small\verb%n%} and {\small\verb%m%} are successors of numeral constants (e.g. {\small\verb%SUC 0%},
{\small\verb%SUC 1%}, {\small\verb%SUC(SUC 1)%} etc.), then {\small\verb%num_EQ_CONV "n = m"%} returns one of:
{\par\samepage\setseps\small
\begin{verbatim}
|- (n = m) = T or |- (n = m) = F
\end{verbatim}
}
\noindent depending on whether the natural numbers represented by {\small\verb%n%} and {\small\verb%m%}
are equal or not equal, respectively. Finally, for any term {\small\verb%"n"%} of type
{\small\verb%num%}, evaluating {\small\verb%num_EQ_CONV "n = n"%} returns {\small\verb%|- (n = n) = T%}.
\FAILURE
{\small\verb%num_EQ_CONV tm%} fails if {\small\verb%tm%} is not of the form {\small\verb%"n = m"%}, where {\small\verb%n%} and {\small\verb%m%}
are either numerals or repeated applications of {\small\verb%SUC%} to numerals unless {\small\verb%n%}
and {\small\verb%m%} are syntactically identical terms of type {\small\verb%num%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#num_EQ_CONV "1 = SUC 2";;
|- (1 = SUC 2) = F
#num_EQ_CONV "SUC 1 = 2";;
|- (SUC 1 = 2) = T
\end{verbatim}
}
\ENDDOC
\DOC{o}
\TYPE {\small\verb%$o : (((* -> **) # (*** -> *)) -> *** -> **)%}\egroup
\SYNOPSIS
Composes two functions: {\small\verb%(f o g) x%} = {\small\verb%f (g x)%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, Co, I, K, KI, oo, S, W.
\ENDDOC
\DOC{ONCE\_ASM\_REWRITE\_RULE}
\TYPE {\small\verb%ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem once including built-in rewrites and the theorem's
assumptions.
\DESCRIBE
{\small\verb%ONCE_ASM_REWRITE_RULE%} applies all possible rewrites in one step
over the subterms in the conclusion of the theorem, but stops after
rewriting at most once at each subterm. This strategy is specified as
for {\small\verb%ONCE_DEPTH_CONV%}. For more details see {\small\verb%ASM_REWRITE_RULE%}, which
does search recursively (to any depth) for matching subterms. The
general strategy for rewriting theorems is described under
{\small\verb%GEN_REWRITE_RULE%}.
\FAILURE
Never fails.
\USES
This tactic is used when rewriting with the hypotheses of a theorem
(as well as a given list of theorems and {\small\verb%basic_rewrites%}), when more
than one pass is not required or would result in divergence.
\SEEALSO
ASM_REWRITE_RULE, FILTER_ASM_REWRITE_RULE,
FILTER_ONCE_ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_DEPTH_CONV,
ONCE_REWRITE_RULE, PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{ONCE\_ASM\_REWRITE\_TAC}
\TYPE {\small\verb%ONCE_ASM_REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal once including built-in rewrites and the goal's assumptions.
\DESCRIBE
{\small\verb%ONCE_ASM_REWRITE_TAC%} behaves in the same way as {\small\verb%ASM_REWRITE_TAC%},
but makes one pass only through the term of the goal. The order in
which the given theorems are applied is an implementation matter and
the user should not depend on any ordering. See {\small\verb%GEN_REWRITE_TAC%} for
more information on rewriting a goal in HOL.
\FAILURE
{\small\verb%ONCE_ASM_REWRITE_TAC%} does not fail and, unlike {\small\verb%ASM_REWRITE_TAC%},
does not diverge. The resulting tactic may not be valid, if the
rewrites performed add new assumptions to the theorem eventually
proved.
\EXAMPLE
The use of {\small\verb%ONCE_ASM_REWRITE_TAC%} to control the amount of rewriting
performed is illustrated below:
{\par\samepage\setseps\small
\begin{verbatim}
#ONCE_ASM_REWRITE_TAC []
# (["(a:*) = b"; "(b:*) = c"], "P (a:*): bool") ;;
([(["a = b"; "b = c"], "P b")], -) : subgoals
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#(ONCE_ASM_REWRITE_TAC [] THEN ONCE_ASM_REWRITE_TAC [])
# (["(a:*) = b"; "(b:*) = c"], "P (a:*): bool") ;;
([(["a = b"; "b = c"], "P c")], -) : subgoals
\end{verbatim}
}
\USES
{\small\verb%ONCE_ASM_REWRITE_TAC%} can be applied once or iterated as required to
give the effect of {\small\verb%ASM_REWRITE_TAC%}, either to avoid divergence or to
save inference steps.
\SEEALSO
basic_rewrites, ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC,
ONCE_REWRITE_TAC, PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.
\ENDDOC
\DOC{ONCE\_DEPTH\_CONV}
\TYPE {\small\verb%ONCE_DEPTH_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion once to the first suitable sub-term(s) encountered in
top-down order.
\DESCRIBE
{\small\verb%ONCE_DEPTH_CONV c tm%} applies the conversion {\small\verb%c%} once to the first subterm or
subterms encountered in a top-down `parallel' search of the term {\small\verb%tm%} for which
{\small\verb%c%} succeeds. If the conversion {\small\verb%c%} fails on all subterms of {\small\verb%tm%}, the theorem
returned is {\small\verb%|- tm = tm%}.
\FAILURE
Never fails.
\EXAMPLE
The following example shows how {\small\verb%ONCE_DEPTH_CONV%} applies a conversion to only
the first suitable subterm(s) found in a top-down search:
{\par\samepage\setseps\small
\begin{verbatim}
#ONCE_DEPTH_CONV BETA_CONV "(\x. (\y. y + x) 1) 2";;
|- (\x. (\y. y + x)1)2 = (\y. y + 2)1
\end{verbatim}
}
\noindent Here, there are two beta-redexes in the input term. One of these
occurs within the other, so {\small\verb%BETA_CONV%} is applied only to the outermost one.
Note that the supplied conversion is applied by {\small\verb%ONCE_DEPTH_CONV%} to all
independent subterms at which it succeeds. That is, the conversion is applied
to every suitable subterm not contained in some other subterm for which the
conversions also succeeds, as illustrated by the following example:
{\par\samepage\setseps\small
\begin{verbatim}
#ONCE_DEPTH_CONV num_CONV "(\x. (\y. y + x) 1) 2";;
|- (\x. (\y. y + x)1)2 = (\x. (\y. y + x)(SUC 0))(SUC 1)
\end{verbatim}
}
\noindent Here {\small\verb%num_CONV%} is applied to both {\small\verb%1%} and {\small\verb%2%}, since neither term
occurs within a larger subterm for which the conversion {\small\verb%num_CONV%} succeeds.
\USES
{\small\verb%ONCE_DEPTH_CONV%} is frequently used when there is only one subterm to which
the desired conversion applies. This can be much faster than using other
functions that attempt to apply a conversion to all subterms of a term (e.g.
{\small\verb%DEPTH_CONV%}). If, for example, the current goal in a goal-directed proof
contains only one beta-redex, and one wishes to apply {\small\verb%BETA_CONV%} to it, then
the tactic
{\par\samepage\setseps\small
\begin{verbatim}
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV)
\end{verbatim}
}
\noindent may, depending on where the beta-redex occurs, be much faster than
{\par\samepage\setseps\small
\begin{verbatim}
CONV_TAC (TOP_DEPTH_CONV BETA_CONV)
\end{verbatim}
}
{\small\verb%ONCE_DEPTH_CONV c%} may also be used when the supplied conversion {\small\verb%c%} never
fails, in which case using a conversion such as {\small\verb%DEPTH_CONV c%}, which
applies {\small\verb%c%} repeatedly would never terminate.
\COMMENTS
The implementation of this function uses failure to avoid rebuilding
unchanged subterms. That is to say, during execution the failure string
{\small\verb%`QCONV`%} may be generated and later trapped. The behaviour of the function
is dependent on this use of failure. So, if the conversion given as argument
happens to generate a failure with string {\small\verb%`QCONV`%}, the operation of
{\small\verb%ONCE_DEPTH_CONV%} will be unpredictable.
\SEEALSO
DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV, ONCE_REW_DEPTH_CONV.
\ENDDOC
\DOC{ONCE\_REW\_DEPTH\_CONV}
\TYPE {\small\verb%ONCE_REW_DEPTH_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion once to the first suitable sub-term(s) encountered in
top-down order. For use in rewriting.
\DESCRIBE
{\small\verb%ONCE_REW_DEPTH_CONV c tm%} applies the conversion {\small\verb%c%} once to the first
subterm or subterms encountered in a top-down `parallel' search of the term
{\small\verb%tm%} for which {\small\verb%c%} succeeds. If the conversion {\small\verb%c%} fails on all subterms of
{\small\verb%tm%}, the theorem returned is {\small\verb%|- tm = tm%}.
{\small\verb%ONCE_REW_DEPTH_CONV%} is a special version of {\small\verb%ONCE_DEPTH_CONV%} for use by the
rewriting conversions, rules and tactics. It differs from {\small\verb%ONCE_DEPTH_CONV%} as
follows: If converting an abstraction fails due to the presence of the bound
variable in the hypotheses of the theorem generated by converting the body,
{\small\verb%ONCE_REW_DEPTH_CONV%} retries the conversion having renamed the bound variable
of the abstraction. If successful the renaming is reversed.
\FAILURE
Never fails.
\EXAMPLE
The following example illustrates the difference between the functions
{\small\verb%ONCE_REW_DEPTH_CONV%} and {\small\verb%ONCE_DEPTH_CONV%}. It is not intended to illustrate
the full range of behaviour of the former. Both {\small\verb%ONCE_REW_DEPTH_CONV%} and
{\small\verb%ONCE_DEPTH_CONV%} successfully apply the theorem {\small\verb%ADD_0%} inside an abstraction:
{\par\samepage\setseps\small
\begin{verbatim}
#ONCE_REW_DEPTH_CONV (REWR_CONV ADD_0) "\n. n + 0";;
|- (\n. n + 0) = (\n. n)
#ONCE_DEPTH_CONV (REWR_CONV ADD_0) "\n. n + 0";;
|- (\n. n + 0) = (\n. n)
\end{verbatim}
}
\noindent However, if a hypothesis containing a free occurrence of the bound
variable is added to the rewrite rule, it interferes with the operation of
{\small\verb%ONCE_DEPTH_CONV%} but not that of {\small\verb%ONCE_REW_DEPTH_CONV%}:
{\par\samepage\setseps\small
\begin{verbatim}
#let th = ADD_ASSUM "n = 0" ADD_0;;
th = n = 0 |- !m. m + 0 = m
#ONCE_REW_DEPTH_CONV (REWR_CONV th) "\n. n + 0";;
n = 0 |- (\n. n + 0) = (\n. n)
#ONCE_DEPTH_CONV (REWR_CONV th) "\n. n + 0";;
|- (\n. n + 0) = (\n. n + 0)
\end{verbatim}
}
\COMMENTS
The implementation of this function uses failure to avoid rebuilding
unchanged subterms. That is to say, during execution the failure string
{\small\verb%`QCONV`%} may be generated and later trapped. The behaviour of the function
is dependent on this use of failure. So, if the conversion given as argument
happens to generate a failure with string {\small\verb%`QCONV`%}, the operation of
{\small\verb%ONCE_REW_DEPTH_CONV%} will be unpredictable.
\SEEALSO
REW_DEPTH_CONV, ONCE_DEPTH_CONV.
\ENDDOC
\DOC{ONCE\_REWRITE\_CONV}
\TYPE {\small\verb%ONCE_REWRITE_CONV : (thm list -> conv)%}\egroup
\SYNOPSIS
Rewrites a term, including built-in tautologies in the list of rewrites.
\DESCRIBE
{\small\verb%ONCE_REWRITE_CONV%} searches for matching subterms and applies
rewrites once at each subterm, in the manner specified for
{\small\verb%ONCE_DEPTH_CONV%}. The rewrites which are used are obtained from the
given list of theorems and the set of tautologies stored in
{\small\verb%basic_rewrites%}. See {\small\verb%GEN_REWRITE_CONV%} for the general method of
using theorems to rewrite a term.
\FAILURE
{\small\verb%ONCE_REWRITE_CONV%} does not fail; it does not diverge.
\USES
{\small\verb%ONCE_REWRITE_CONV%} can be used to rewrite a term when recursive
rewriting is not desired.
\SEEALSO
GEN_REWRITE_CONV, PURE_ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWRITE_CONV.
\ENDDOC
\DOC{ONCE\_REWRITE\_RULE}
\TYPE {\small\verb%ONCE_REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem, including built-in tautologies in the list of rewrites.
\DESCRIBE
{\small\verb%ONCE_REWRITE_RULE%} searches for matching subterms and applies
rewrites once at each subterm, in the manner specified for
{\small\verb%ONCE_DEPTH_CONV%}. The rewrites which are used are obtained from the
given list of theorems and the set of tautologies stored in
{\small\verb%basic_rewrites%}. See {\small\verb%GEN_REWRITE_RULE%} for the general method of
using theorems to rewrite an object theorem.
\FAILURE
{\small\verb%ONCE_REWRITE_RULE%} does not fail; it does not diverge.
\USES
{\small\verb%ONCE_REWRITE_RULE%} can be used to rewrite a theorem when recursive
rewriting is not desired.
\SEEALSO
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
PURE_ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{ONCE\_REWRITE\_TAC}
\TYPE {\small\verb%ONCE_REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal only once with {\small\verb%basic_rewrites%} and the supplied list
of theorems.
\DESCRIBE
A set of equational rewrites is generated from the theorems supplied
by the user and the set of basic tautologies, and these are used to
rewrite the goal at all subterms at which a match is found in one pass
over the term part of the goal. The result is returned without
recursively applying the rewrite theorems to it. The order in which
the given theorems are applied is an implementation matter and the user
should not depend on any ordering. More details about rewriting can be
found under {\small\verb%GEN_REWRITE_TAC%}.
\FAILURE
{\small\verb%ONCE_REWRITE_TAC%} does not fail and does not diverge. It results in
an invalid tactic if any of the applied rewrites introduces new
assumptions to the theorem eventually proved.
\EXAMPLE
Given a theorem list:
{\par\samepage\setseps\small
\begin{verbatim}
th1 = [ |- a = b; |- b = c; |- c = a]
\end{verbatim}
}
\noindent the tactic {\small\verb%ONCE_REWRITE_TAC thl%} can be iterated as
required without diverging:
{\par\samepage\setseps\small
\begin{verbatim}
#ONCE_REWRITE_TAC thl ([], "P a");;
([([], "P b")], -) : subgoals
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#(ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl) ([], "P a");;
([([], "P c")], -) : subgoals
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#(ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl THEN ONCE_REWRITE_TAC thl)
#([], "P a");;
([([], "P a")], -) : subgoals
\end{verbatim}
}
\USES
{\small\verb%ONCE_REWRITE_TAC%} can be used iteratively to rewrite when recursive
rewriting would diverge. It can also be used to save inference steps.
\SEEALSO
ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, PURE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.
\ENDDOC
\DOC{oo}
\TYPE {\small\verb%$oo : ((((* # **) -> ***) # (**** -> *) # (**** -> **)) -> **** -> ***)%}\egroup
\SYNOPSIS
Composes a function a pair of functions: {\small\verb%(f oo (g,h)) x%} = {\small\verb%f (g x,h x)%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, CB, Co, I, K, KI, o, S, W.
\ENDDOC
\DOC{openi}
\TYPE {\small\verb%openi : (string -> string)%}\egroup
\SYNOPSIS
Opens a named port for input from a named file.
\DESCRIBE
Given a string argument {\small\verb%`foo`%}, {\small\verb%openi%} returns a string (a port identifier)
that can be used by the function {\small\verb%read%} to read characters from the file {\small\verb%foo%}.
The port identifier is also used as an argument to the function {\small\verb%close%};
{\small\verb%close%} terminates input.
\FAILURE
Fails if the file cannot be found with the current search path or if
read permission on the named file
is disabled.
\SEEALSO
close, openw, read, write
\ENDDOC
\DOC{openw}
\TYPE {\small\verb%openw : (string -> string)%}\egroup
\SYNOPSIS
Opens a port for writing to a named file.
\DESCRIBE
Given a string argument {\small\verb%`foo`%}, {\small\verb%openw%} creates a new file {\small\verb%foo%}
(overwriting an existing file with the same name) and returns a string
(a port identifier) that can be used by {\small\verb%write%} to write characters to the
file. The port identifier is also used by {\small\verb%close%} to close the file.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let port = openw `foo`;;
port = `%foo` : string
#write (port, `contents of file foo\L`);;
() : void
#close port;;
() : void
#system `cat foo`;;
contents of file foo
0 : int
\end{verbatim}
}
\SEEALSO
close, openi, read, write
\ENDDOC
\DOC{ORELSEC}
\TYPE {\small\verb%$ORELSEC : (conv -> conv -> conv)%}\egroup
\SYNOPSIS
Applies the first of two conversions that succeeds.
\DESCRIBE
{\small\verb%(c1 ORELSEC c2) "t"%} returns the result of applying the conversion {\small\verb%c1%} to
the term {\small\verb%"t"%} if this succeeds. Otherwise {\small\verb%(c1 ORELSEC c2) "t"%} returns the
result of applying the conversion {\small\verb%c2%} to the term {\small\verb%"t"%}.
\FAILURE
{\small\verb%(c1 ORELSEC c2) "t"%} fails both {\small\verb%c1%} and {\small\verb%c2%} fail when applied to {\small\verb%"t"%}.
\SEEALSO
FIRST_CONV.
\ENDDOC
\DOC{ORELSE}
\TYPE {\small\verb%$ORELSE : (tactic -> tactic -> tactic)%}\egroup
\SYNOPSIS
Applies first tactic, and iff it fails, applies the second instead.
\DESCRIBE
If {\small\verb%T1%} and {\small\verb%T2%} are tactics, {\small\verb%T1 ORELSE T2%} is a tactic which applies {\small\verb%T1%} to
a goal, and iff it fails, applies {\small\verb%T2%} to the goal instead.
\FAILURE
The application of {\small\verb%ORELSE%} to a pair of tactics never fails.
The resulting tactic fails if both {\small\verb%T1%} and {\small\verb%T2%} fail when applied to the
relevant goal.
\SEEALSO
EVERY, FIRST, THEN.
\ENDDOC
\DOC{ORELSE\_TCL}
\TYPE {\small\verb%$ORELSE_TCL : (thm_tactical -> thm_tactical -> thm_tactical)%}\egroup
\SYNOPSIS
Applies a theorem-tactical, and if it fails, tries a second.
\DESCRIBE
When applied to two theorem-tacticals, {\small\verb%ttl1%} and {\small\verb%ttl2%}, a theorem-tactic
{\small\verb%ttac%}, and a theorem {\small\verb%th%}, if {\small\verb%ttl1 ttac th%} succeeds, that gives the
result. If it fails, the result is {\small\verb%ttl2 ttac th%}, which may itself fail.
\FAILURE
{\small\verb%ORELSE_TCL%} fails if both the theorem-tacticals fail when applied to the
given theorem-tactic and theorem.
\SEEALSO
EVERY_TCL, FIRST_TCL, THEN_TCL.
\ENDDOC
\DOC{OR\_EXISTS\_CONV}
\TYPE {\small\verb%OR_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification outwards through a disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(?x.P) \/ (?x.Q)%}, the conversion
{\small\verb%OR_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x.P) \/ (?x.Q) = (?x. P \/ Q)
\end{verbatim}
}
\FAILURE
Fails if applied to a term not of the form {\small\verb%(?x.P) \/ (?x.Q)%}.
\SEEALSO
EXISTS_OR_CONV, LEFT_OR_EXISTS_CONV, RIGHT_OR_EXISTS_CONV.
\ENDDOC
\DOC{OR\_FORALL\_CONV}
\TYPE {\small\verb%OR_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification outwards through a disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%(!x.P) \/ (!x.Q)%}, where {\small\verb%x%} is free
in neither {\small\verb%P%} nor {\small\verb%Q%}, {\small\verb%OR_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x. P) \/ (!x. Q) = (!x. P \/ Q)
\end{verbatim}
}
\FAILURE
{\small\verb%OR_FORALL_CONV%} fails if it is applied to a term not of the form
{\small\verb%(!x.P) \/ (!x.Q)%}, or if it is applied to a term {\small\verb%(!x.P) \/ (!x.Q)%}
in which the variable {\small\verb%x%} is free in either {\small\verb%P%} or {\small\verb%Q%}.
\SEEALSO
FORALL_OR_CONV, LEFT_OR_FORALL_CONV, RIGHT_OR_FORALL_CONV.
\ENDDOC
\DOC{outl}
\TYPE {\small\verb%outl : ((* + **) -> *)%}\egroup
\SYNOPSIS
Projects out of left summand.
\DESCRIBE
The function {\small\verb%outl%} is associated with the disjoint union
construction of types. It projects out of the left summand of the union.
\FAILURE
Fails if the operand is a right summand.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let x = inl 1
#and y = inr 2;;
x = inl 1 : (int + *)
y = inr 2 : (* + int)
#outl x;;
1 : int
#outl y;;
evaluation failed outl
\end{verbatim}
}
\SEEALSO
outr inl inr isl.
\ENDDOC
\DOC{outr}
\TYPE {\small\verb%outr : ((* + **) -> **)%}\egroup
\SYNOPSIS
Projects out of right summand.
\DESCRIBE
The function {\small\verb%outr%} is associated with the disjoint union construction of
types. It projects out of the right summand of the union.
\FAILURE
Fails if the operand is a left summand.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let x = inl 1
#and y = inr 2;;
x = inl 1 : (int + *)
y = inr 2 : (* + int)
#outr x;;
evaluation failed outr
#outr y;;
2 : int
\end{verbatim}
}
\SEEALSO
outl, inl, inr, isl
\ENDDOC
\DOC{pair}
\TYPE {\small\verb%pair : (* -> ** -> (* # **))%}\egroup
\SYNOPSIS
Makes two values into a pair.
\DESCRIBE
{\small\verb%pair x y%} returns {\small\verb%(x,y)%}.
\FAILURE
Never fails.
\SEEALSO
fst, snd, curry, uncurry.
\ENDDOC
\DOC{PAIRED\_BETA\_CONV}
\TYPE {\small\verb%PAIRED_BETA_CONV : conv%}\egroup
\SYNOPSIS
Performs generalized beta conversion for tupled beta-redexes.
\DESCRIBE
The conversion {\small\verb%PAIRED_BETA_CONV%} implements beta-reduction for certain
applications of tupled lambda abstractions called `tupled beta-redexes'.
Tupled lambda abstractions have the form {\small\verb%"\<vs>.tm"%}, where {\small\verb%<vs>%} is an
arbitrarily-nested tuple of variables called a `varstruct'. For the purposes of
{\small\verb%PAIRED_BETA_CONV%}, the syntax of varstructs is given by:
{\par\samepage\setseps\small
\begin{verbatim}
<vs> ::= (v1,v2) | (<vs>,v) | (v,<vs>) | (<vs>,<vs>)
\end{verbatim}
}
\noindent where {\small\verb%v%}, {\small\verb%v1%}, and {\small\verb%v2%} range over variables. A tupled beta-redex
is an application of the form {\small\verb%"(\<vs>.tm) t"%}, where the term {\small\verb%"t"%} is a
nested tuple of values having the same structure as the varstruct {\small\verb%<vs>%}. For
example, the term:
{\par\samepage\setseps\small
\begin{verbatim}
"(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))"
\end{verbatim}
}
\noindent is a tupled beta-redex, but the term:
{\par\samepage\setseps\small
\begin{verbatim}
"(\((a,b),(c,d)). a + b + c + d) ((1,2),p)"
\end{verbatim}
}
\noindent is not, since {\small\verb%p%} is not a pair of terms.
Given a tupled beta-redex {\small\verb%"(\<vs>.tm) t"%}, the conversion {\small\verb%PAIRED_BETA_CONV%}
performs generalized beta-reduction and returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- (\<vs>.tm) t = t[t1,...,tn/v1,...,vn]
\end{verbatim}
}
\noindent where {\small\verb%ti%} is the subterm of the tuple {\small\verb%t%} that corresponds to
the variable {\small\verb%vi%} in the varstruct {\small\verb%<vs>%}. In the simplest case, the
varstruct {\small\verb%<vs>%} is flat, as in the term:
{\par\samepage\setseps\small
\begin{verbatim}
"(\(v1,...,vn).t) (t1,...,tn)"
\end{verbatim}
}
\noindent When applied to a term of this form, {\small\verb%PAIRED_BETA_CONV%} returns:
{\par\samepage\setseps\small
\begin{verbatim}
|- (\(v1, ... ,vn).t) (t1, ... ,tn) = t[t1,...,tn/v1,...,vn]
\end{verbatim}
}
\noindent As with ordinary beta-conversion, bound variables may be renamed to
prevent free variable capture. That is, the term {\small\verb%t[t1,...,tn/v1,...,vn]%} in
this theorem is the result of substituting {\small\verb%ti%} for {\small\verb%vi%} in parallel in {\small\verb%t%},
with suitable renaming of variables to prevent free variables in {\small\verb%t1%}, ...,
{\small\verb%tn%} becoming bound in the result.
\FAILURE
{\small\verb%PAIRED_BETA_CONV tm%} fails if {\small\verb%tm%} is not a tupled beta-redex, as described
above. Note that ordinary beta-redexes are specifically excluded:
{\small\verb%PAIRED_BETA_CONV%} fails when applied to {\small\verb%"(\v.t)u"%}. For these beta-redexes,
use {\small\verb%BETA_CONV%}.
\EXAMPLE
The following is a typical use of the conversion:
{\par\samepage\setseps\small
\begin{verbatim}
#PAIRED_BETA_CONV "(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))";;
|- (\((a,b),c,d). a + (b + (c + d)))((1,2),3,4) = 1 + (2 + (3 + 4))
\end{verbatim}
}
\noindent Note that the term to which the tupled lambda abstraction
is applied must have the same structure as the varstruct. For example,
the following succeeds:
{\par\samepage\setseps\small
\begin{verbatim}
#PAIRED_BETA_CONV "(\((a,b),p). a + b) ((1,2),(3+5,4))";;
|- (\((a,b),p). a + b)((1,2),3 + 5,4) = 1 + 2
\end{verbatim}
}
\noindent but the following call to {\small\verb%PAIRED_BETA_CONV%} fails:
{\par\samepage\setseps\small
\begin{verbatim}
#PAIRED_BETA_CONV "(\((a,b),(c,d)). a + b + c + d) ((1,2),p)";;
evaluation failed PAIRED_BETA_CONV
\end{verbatim}
}
\noindent because {\small\verb%p%} is not a pair.
\SEEALSO
BETA_CONV, BETA_RULE, BETA_TAC, LIST_BETA_CONV, RIGHT_BETA, RIGHT_LIST_BETA.
\ENDDOC
\DOC{paired\_delete\_thm}
\TYPE {\small\verb%paired_delete_thm : ((string # string) -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{PAIRED\_ETA\_CONV}
\TYPE {\small\verb%PAIRED_ETA_CONV : conv%}\egroup
\SYNOPSIS
Performs generalized eta conversion for tupled eta-redexes.
\DESCRIBE
The conversion {\small\verb%PAIRED_ETA_CONV%} generalizes {\small\verb%ETA_CONV%} to eta-redexes with
tupled abstractions.
{\par\samepage\setseps\small
\begin{verbatim}
PAIRED_ETA_CONV "\(v1..(..)..vn). f (v1..(..)..vn)"
= |- \(v1..(..)..vn). f (v1..(..)..vn) = f
\end{verbatim}
}
\FAILURE
Fails unless the given term is a paired eta-redex as illustrated above.
\COMMENTS
Note that this result cannot be achieved by ordinary eta-reduction because the
tupled abstraction is a surface syntax for a term which does not correspond to
a normal pattern for eta reduction. Disabling the relevant prettyprinting
reveals the true form of a paired eta redex:
{\par\samepage\setseps\small
\begin{verbatim}
#set_flag(`print_uncurry`,false);;
true : bool
#let tm = "\(x:num,y:num). FST (x,y)";;
tm = "UNCURRY(\x y. FST(x,y))" : term
\end{verbatim}
}
\EXAMPLE
The following is a typical use of the conversion:
{\par\samepage\setseps\small
\begin{verbatim}
let SELECT_PAIR_EQ = PROVE
("(@(x:*,y:**). (a,b) = (x,y)) = (a,b)",
CONV_TAC (ONCE_DEPTH_CONV PAIRED_ETA_CONV) THEN
ACCEPT_TAC (SYM (MATCH_MP SELECT_AX (REFL "(a:*,b:**)"))));;
\end{verbatim}
}
\SEEALSO
ETA_CONV.
\ENDDOC
\DOC{paired\_new\_type}
\TYPE {\small\verb%paired_new_type : ((int # string) -> void)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{paired\_theorem}
\TYPE {\small\verb%paired_theorem : ((string # string) -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{parents}
\TYPE {\small\verb%parents : (string -> string list)%}\egroup
\SYNOPSIS
Lists the parent theories of a named theory.
\DESCRIBE
The function {\small\verb%parents%} returns a list of strings that identify the
parent theories of a named theory. The function does not recursively
descend the theory hierarchy in search of the `leaf' theories.
The named theory must be the current theory or an ancestor of the
current theory.
\FAILURE
Fails if the named theory is not an ancestor of the current theory.
\EXAMPLE
Initially, the only parent is the main {\small\verb%HOL%} theory:
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `my-theory`;;
() : void
#parents `my-theory`;;
[`HOL`] : string list
#parents `HOL`;;
[`tydefs`; `sum`; `one`; `BASIC-HOL`] : string list
#parents `tydefs`;;
[`ltree`; `BASIC-HOL`] : string list
#parents `string`;;
evaluation failed parents -- string is not an ancestor
\end{verbatim}
}
\noindent However, loading the string library creates several
additional ancestor theories:
{\par\samepage\setseps\small
\begin{verbatim}
#load_library `string`;;
Loading library `string` ...
Updating search path
.Updating help search path
.Declaring theory string a new parent
Theory string loaded
......
Library `string` loaded.
() : void
#parents `string`;;
[`ascii`; `HOL`] : string list
#parents `my-theory`;;
[`string`; `HOL`] : string list
\end{verbatim}
}
\SEEALSO
ancestors, ancestry.
\ENDDOC
\DOC{parse\_as\_binder}
\TYPE {\small\verb%parse_as_binder : (string -> string)%}\egroup
\SYNOPSIS
Makes the quotation parser treat a name as a binder.
\DESCRIBE
The call {\small\verb%parse_as_binder `c`%} will make the quotation parser treat {\small\verb%c%} as a
binder, that is, allow the syntactic sugaring {\small\verb%"c x. y"%} as a shorthand for
{\small\verb%"c (\x. y)"%}. As with normal binders, e.g. the universal quantifier, the
special syntactic status may be suppressed by preceding {\small\verb%c%} with a dollar sign.
\FAILURE
Never fails, even if the string is not an identifier.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#new_theory `groof`;;
() : void
#new_definition(`test`,"!! = ($!:(bool->bool)->bool)");;
|- !! = $!
#"!!x.T";;
. cannot be a term
skipping: . T " ;; parse failed
#parse_as_binder `!!`;;
`!!` : string
#"!!x.T";;
"!! x. T" : term
#"$!! (\x. T)";;
"!! x. T" : term
\end{verbatim}
}
\COMMENTS
Special parse status is allotted automatically when a binder is declared, so
this function is unlikely to be needed.
\SEEALSO
activate_all_binders, activate_binders, binders, new_binder.
\ENDDOC
\DOC{partition}
\TYPE {\small\verb%partition : ((* -> bool) -> * list -> (* list # * list))%}\egroup
\SYNOPSIS
Separates a list into two lists using a predicate.
\DESCRIBE
{\small\verb%partition p l%} returns a pair of lists. The first list contains the elements
which satisfy {\small\verb%p%}. The second list contains all the other elements.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#partition (\x. x + x = x * x) [1;2;3;4;5];;
([2], [1; 3; 4; 5]) : (int list # int list)
\end{verbatim}
}
\SEEALSO
chop_list, remove, filter.
\ENDDOC
\DOC{PART\_MATCH}
\TYPE {\small\verb%PART_MATCH : ((term -> term) -> thm -> term -> thm)%}\egroup
\SYNOPSIS
Instantiates a theorem by matching part of it to a term.
\DESCRIBE
When applied to a `selector' function of type {\small\verb%term -> term%}, a theorem and a
term:
{\par\samepage\setseps\small
\begin{verbatim}
PART_MATCH fn (A |- !x1...xn. t) tm
\end{verbatim}
}
\noindent the function {\small\verb%PART_MATCH%} applies {\small\verb%fn%} to {\small\verb%t'%} (the result of
specializing universally quantified variables in the conclusion of the
theorem), and attempts to match the resulting term to the argument term
{\small\verb%tm%}. If it succeeds, the appropriately instantiated version of the
theorem is returned.
\FAILURE
Fails if the selector function {\small\verb%fn%} fails when applied to the instantiated
theorem, or if the match fails with the term it has provided.
\EXAMPLE
Suppose that we have the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
th = |- !x. x==>x
\end{verbatim}
}
\noindent then the following:
{\par\samepage\setseps\small
\begin{verbatim}
PART_MATCH (fst o dest_imp) th "T"
\end{verbatim}
}
\noindent results in the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- T ==> T
\end{verbatim}
}
\noindent because the selector function picks the antecedent of the
implication (the inbuilt specialization gets rid of the universal
quantifier), and matches it to {\small\verb%T%}.
\SEEALSO
INST_TYPE, INST_TY_TERM, match.
\ENDDOC
\DOC{p}
\TYPE {\small\verb%p : (int -> void)%}\egroup
\SYNOPSIS
Prints the top levels of the subgoal package goal stack.
\DESCRIBE
The function {\small\verb%p%} is part of the subgoal package. It is an abbreviation for the
function {\small\verb%print_state%}. For a description of the subgoal package, see
{\small\verb%set_goal%}.
\FAILURE
Never fails.
\USES
Examining the proof state during an interactive proof session.
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{POP\_ASSUM}
\TYPE {\small\verb%POP_ASSUM : (thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Applies tactic generated from the first element of a goal's assumption list.
\DESCRIBE
When applied to a theorem-tactic and a goal, {\small\verb%POP_ASSUM%} applies
the theorem-tactic to the {\small\verb%ASSUME%}d first element of the assumption list,
and applies the resulting tactic to the goal without the first
assumption in its assumption list:
{\par\samepage\setseps\small
\begin{verbatim}
POP_ASSUM f ({A1;...;An} ?- t) = f (A1 |- A1) ({A2;...;An} ?- t)
\end{verbatim}
}
\FAILURE
Fails if the assumption list of the goal is empty, or the theorem-tactic
fails when applied to the popped assumption, or if the resulting tactic
fails when applied to the goal (with depleted assumption list).
\COMMENTS
It is possible simply to use the theorem {\small\verb%ASSUME A1%} as required rather than
use {\small\verb%POP_ASSUM%}; this will also maintain {\small\verb%A1%} in the assumption list,
which is generally useful. In addition, this approach can equally well be
applied to assumptions other than the first.
There are admittedly times when {\small\verb%POP_ASSUM%} is convenient, but it is most
unwise to use it if there is more than one assumption in the assumption
list, since this introduces a dependency on the ordering, which is vulnerable
to changes in the HOL system.
Another point to consider is that if the relevant assumption has been obtained
by {\small\verb%DISCH_TAC%}, it is often cleaner to use {\small\verb%DISCH_THEN%} with a theorem-tactic.
For example, instead of:
{\par\samepage\setseps\small
\begin{verbatim}
DISCH_TAC THEN POP_ASSUM (\th. SUBST1_TAC (SYM th))
\end{verbatim}
}
\noindent one might use
{\par\samepage\setseps\small
\begin{verbatim}
DISCH_THEN (SUBST1_TAC o SYM)
\end{verbatim}
}
\EXAMPLE
The goal:
{\par\samepage\setseps\small
\begin{verbatim}
{4 = SUC x} ?- x = 3
\end{verbatim}
}
\noindent can be solved by:
{\par\samepage\setseps\small
\begin{verbatim}
POP_ASSUM (\th. REWRITE_TAC[REWRITE_RULE[num_CONV "4"; INV_SUC_EQ] th]))
\end{verbatim}
}
\USES
Making more delicate use of an assumption than rewriting or resolution
using it.
\SEEALSO
ASSUM_LIST, EVERY_ASSUM, IMP_RES_TAC, POP_ASSUM_LIST, REWRITE_TAC.
\ENDDOC
\DOC{POP\_ASSUM\_LIST}
\TYPE {\small\verb%POP_ASSUM_LIST : ((thm list -> tactic) -> tactic)%}\egroup
\SYNOPSIS
Generates a tactic from the assumptions, discards the assumptions and
applies the tactic.
\DESCRIBE
When applied to a function and a goal, {\small\verb%POP_ASSUM_LIST%} applies
the function to a list of theorems corresponding to the {\small\verb%ASSUME%}d
assumptions of the goal, then applies the resulting tactic to the goal
with an empty assumption list.
{\par\samepage\setseps\small
\begin{verbatim}
POP_ASSUM_LIST f ({A1;...;An} ?- t) = f [A1 |- A1; ... ; An |- An] (?- t)
\end{verbatim}
}
\FAILURE
Fails if the function fails when applied to the list of {\small\verb%ASSUME%}d assumptions,
or if the resulting tactic fails when applied to the goal with no
assumptions.
\COMMENTS
There is nothing magical about {\small\verb%POP_ASSUM_LIST%}: the same effect can be
achieved by using {\small\verb%ASSUME a%} explicitly wherever the assumption {\small\verb%a%} is
used. If {\small\verb%POP_ASSUM_LIST%} is used, it is unwise to select elements by
number from the {\small\verb%ASSUME%}d-assumption list, since this introduces a dependency
on ordering.
\EXAMPLE
Suppose we have a goal of the following form:
{\par\samepage\setseps\small
\begin{verbatim}
{a /\ b, c, (d /\ e) /\ f} ?- t
\end{verbatim}
}
\noindent Then we can split the conjunctions in the assumption list apart by
applying the tactic:
{\par\samepage\setseps\small
\begin{verbatim}
POP_ASSUM_LIST (MAP_EVERY STRIP_ASSUME_TAC)
\end{verbatim}
}
\noindent which results in the new goal:
{\par\samepage\setseps\small
\begin{verbatim}
{a, b, c, d, e, f} ?- t
\end{verbatim}
}
\USES
Making more delicate use of the assumption list than simply rewriting or
using resolution.
\SEEALSO
ASSUM_LIST, EVERY_ASSUM, IMP_RES_TAC, POP_ASSUM, REWRITE_TAC.
\ENDDOC
\DOC{pop\_proofs}
\TYPE {\small\verb%pop_proofs : (subgoals list -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{pop\_proofs\_print}
\TYPE {\small\verb%pop_proofs_print : (subgoals list -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{pp\_axiom}
\TYPE {\small\verb%pp_axiom : (string -> string -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{preterm\_abs}
\TYPE {\small\verb%preterm_abs : ((preterm # preterm) -> preterm)%}\egroup
\SYNOPSIS
Constructs abstraction preterm.
\DESCRIBE
{\small\verb%preterm_abs%} is analogous to the oft-used ML function {\small\verb%mk_abs%}. Since,
however, preterms are untypechecked terms, the restrictions imposed when
using {\small\verb%mk_abs%} are not encountered until the preterm is typechecked.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let x = preterm_typed(preterm_var `x`,":bool");;
x = preterm_typed((preterm_var `x`), ":bool") : preterm
#let y = preterm_const `T`;;
y = preterm_const `T` : preterm
#preterm_abs(x,y);;
preterm_abs((preterm_typed((preterm_var `x`), ":bool")),
preterm_const `T`)
: preterm
#preterm_to_term it;;
"\x. T" : term
#preterm_abs(y,x);;
preterm_abs((preterm_const `T`),
preterm_typed((preterm_var `x`), ":bool"))
: preterm
#preterm_to_term it;;
evaluation failed mk_abs
\end{verbatim}
}
\SEEALSO
mk_abs, preterm_antiquot, preterm_comb, preterm_const, preterm_typed,
preterm_var, preterm_to_term.
\ENDDOC
\DOC{preterm\_antiquot}
\TYPE {\small\verb%preterm_antiquot : (term -> preterm)%}\egroup
\SYNOPSIS
Constructs antiquoted preterm.
\DESCRIBE
{\small\verb%preterm_antiquot%} is analogous to the oft-used HOL strategy of antiquotation.
Since, however, preterms are untypechecked terms, the restrictions imposed
when using antiquotation are not encountered until the preterm is typechecked.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#preterm_antiquot "T";;
preterm_antiquot"T" : preterm
#preterm_comb(preterm_const `~`,it);;
preterm_comb((preterm_const `~`), preterm_antiquot"T") : preterm
#preterm_to_term it;;
"~T" : term
\end{verbatim}
}
\SEEALSO
preterm_abs, preterm_comb, preterm_const, preterm_typed, preterm_var,
preterm_to_term.
\ENDDOC
\DOC{preterm\_comb}
\TYPE {\small\verb%preterm_comb : ((preterm # preterm) -> preterm)%}\egroup
\SYNOPSIS
Constructs combination (function application) preterm.
\DESCRIBE
{\small\verb%preterm_comb%} is analogous to the oft-used ML function {\small\verb%mk_comb%}. Since,
however, preterms are untypechecked terms, the restrictions imposed when
using {\small\verb%mk_comb%} are not encountered until the preterm is typechecked.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#preterm_comb(preterm_comb(preterm_const `+`,preterm_var `x`),
preterm_const `1`);;
preterm_comb((preterm_comb((preterm_const `+`), preterm_var `x`)),
preterm_const `1`)
: preterm
#preterm_to_term it;;
"x + 1" : term
\end{verbatim}
}
\SEEALSO
mk_comb, preterm_abs, preterm_antiquot, preterm_const, preterm_typed,
preterm_var, preterm_to_term.
\ENDDOC
\DOC{preterm\_const}
\TYPE {\small\verb%preterm_const : (string -> preterm)%}\egroup
\SYNOPSIS
Constructs constant preterm.
\DESCRIBE
{\small\verb%preterm_const%} is analogous to the oft-used ML function {\small\verb%mk_var%}. Since,
however, preterms are untypechecked terms, the restrictions imposed when
using {\small\verb%mk_const%} (i.e. that the constant must be either implicitly or
explicitly associated with a specific type) are not encountered until the
preterm is typechecked.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#preterm_const `T`;;
preterm_const `T` : preterm
#preterm_to_term it;;
"T" : term
#type_of it;;
":bool" : type
\end{verbatim}
}
\SEEALSO
mk_const, preterm_abs, preterm_antiquot, preterm_comb, preterm_typed,
preterm_var, preterm_to_term.
\ENDDOC
\DOC{preterm\_to\_term}
\TYPE {\small\verb%preterm_to_term : (preterm -> term)%}\egroup
\SYNOPSIS
Converts a preterm to a HOL term.
\DESCRIBE
Preterms are untypechecked terms, and are included in the HOL system
to allow embedding of special purpose parsers, and to provide a way
of experimenting with other forms of type checking. {\small\verb%preterm_to_term%} is
the hook for pushing preterms through the standard HOL typechecker.
\FAILURE
Fails with the appropriate HOL error message.
\SEEALSO
preterm_abs, preterm_antiquot, preterm_comb, preterm_const, preterm_typed,
preterm_var.
\ENDDOC
\DOC{preterm\_typed}
\TYPE {\small\verb%preterm_typed : ((preterm # type) -> preterm)%}\egroup
\SYNOPSIS
Constructs a typed preterm.
\DESCRIBE
{\small\verb%preterm_typed%} allows type information to be associated with various
substructures of a given preterm. One can, therefore, construct improperly
typed preterms that will fail to typecheck when {\small\verb%preterm_to_term%} is
invoked.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#preterm_typed(preterm_const `T`,":bool");;
preterm_typed((preterm_const `T`), ":bool") : preterm
#preterm_to_term it;;
"T" : term
#preterm_typed(preterm_const `T`,":num");;
preterm_typed((preterm_const `T`), ":num") : preterm
#preterm_to_term it;;
evaluation failed types
\end{verbatim}
}
\SEEALSO
preterm_abs, preterm_antiquot, preterm_comb, preterm_const, preterm_var,
preterm_to_term.
\ENDDOC
\DOC{preterm\_var}
\TYPE {\small\verb%preterm_var : (string -> preterm)%}\egroup
\SYNOPSIS
Constructs variable preterm.
\DESCRIBE
{\small\verb%preterm_var%} is analogous to the oft-used ML function {\small\verb%mk_var%}. Since,
however, preterms are untypechecked terms, the restrictions imposed when
using {\small\verb%mk_var%} (i.e. that the variable must be either implicitly or
explicitly associated with a specific type) are not encountered until
the preterm is typechecked.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#preterm_var `x`;;
preterm_var `x` : preterm
#preterm_to_term it;;
Indeterminate types: "x:?"
evaluation failed types indeterminate
#preterm_typed(preterm_var `x`,":bool");;
preterm_typed((preterm_var `x`), ":bool") : preterm
#preterm_to_term it;;
"x" : term
\end{verbatim}
}
\SEEALSO
mk_var, preterm_abs, preterm_antiquot, preterm_comb, preterm_const,
preterm_typed, preterm_to_term.
\ENDDOC
\DOC{print\_all\_thm}
\TYPE {\small\verb%print_all_thm : (thm -> void)%}\egroup
\SYNOPSIS
Prints a theorem in full.
\DESCRIBE
The function {\small\verb%print_all_thm%} will cause the system to print a
theorem with its hypotheses.
\FAILURE
Never fails.
\EXAMPLE
As a simple example of the use of {\small\verb%print_all_thm%} we assume the
following two theorems:
{\par\samepage\setseps\small
\begin{verbatim}
#let a = ASSUME "A:bool";;
a = . |- A
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#let b = ASSUME "A ==> B";;
b = . |- A ==> B
\end{verbatim}
}
\noindent Using Modus Ponens (MP) as follows:
{\par\samepage\setseps\small
\begin{verbatim}
#let r = MP b a;;
\end{verbatim}
}
\noindent The system responds with:
{\par\samepage\setseps\small
\begin{verbatim}
r = .. |- B
\end{verbatim}
}
\noindent By using {\small\verb%print_all_thm%} as follows:
{\par\samepage\setseps\small
\begin{verbatim}
#print_all_thm r;;
\end{verbatim}
}
\noindent The system then pretty prints:
{\par\samepage\setseps\small
\begin{verbatim}
A ==> B, A |- B() : void
\end{verbatim}
}
\noindent This shows all the assumptions of the theorem in a comma separated
list.
\SEEALSO
print_thm.
\ENDDOC
\DOC{print\_begin}
\TYPE {\small\verb%print_begin : (int -> void)%}\egroup
\SYNOPSIS
Initiates a pretty printing block.
\DESCRIBE
The function {\small\verb%print_begin%} initiates a consistent printing block. Consistent
breaks cause uniform indentation at each break. This means that if a list is
printed and the total list is wider than the margin then the list will be
broken at every possible breaking point. The argument is the offset of the
block that {\small\verb%print_begin%} initiates. This offset is added to the indentation
of any lines broken inside. This offset is virtually never used and should
preferably be avoided.
\FAILURE
Never fails.
\EXAMPLE
\noindent The first step is to set the margin to be 13 characters wide:
{\par\samepage\setseps\small
\begin{verbatim}
#set_margin 13;;
\end{verbatim}
}
\noindent The second is to initialize the block using {\small\verb%print_begin%}:
{\par\samepage\setseps\small
\begin{verbatim}
#let example =
(print_newline();
print_begin 0;
print_string `first`;
print_break (1,2);
print_string `second`;
print_break (1,2);
print_string `third`;
print_end();
print_newline());;
\end{verbatim}
}
\noindent After initialization of the block three strings `first',`second'
and `third' are printed each with a break between them. The total
width of the three strings is more than 13 (margin) but the first two (`first'
and `second') combined with the space between them is less than 13. From the
result of consistent formatting shown below it is clear that if any wrapping
takes place everything will be wrapped. To clearly
see what consistent breaking means contrast the above with {\small\verb%print_ibegin%}
where the same example is used but with inconsistent formatting.
\noindent The output we obtain is the following:
{\par\samepage\setseps\small
\begin{verbatim}
first
second
third
example =
()
: void
\end{verbatim}
}
\SEEALSO
print_ibegin, print_break, print_end, max_print_depth, set_margin,
print_newline
\ENDDOC
\DOC{print\_bool}
\TYPE {\small\verb%print_bool : (bool -> void)%}\egroup
\SYNOPSIS
Prints the value of a boolean variable.
\FAILURE
Never fails.
\EXAMPLE
As a simple example, assign the value {\small\verb%true%} to a variable:
{\par\samepage\setseps\small
\begin{verbatim}
#let B = true;;
B = true : bool
\end{verbatim}
}
\noindent If we now want find the value of B we type:
{\par\samepage\setseps\small
\begin{verbatim}
#print_bool B;;
\end{verbatim}
}
\noindent and the system responds with:
{\par\samepage\setseps\small
\begin{verbatim}
true() : void
\end{verbatim}
}
\ENDDOC
\DOC{print\_break}
\TYPE {\small\verb%print_break : ((int # int) -> void)%}\egroup
\SYNOPSIS
Breaks a pretty printing block into parts.
\DESCRIBE
The function {\small\verb%print_break%} is used within the print formatting block
formed by either {\small\verb%print_begin%} or {\small\verb%print_ibegin%} and {\small\verb%print_end%}. It is used
to indicate points where breaks can occur within a list being printed. The
function takes two integer arguments, the first indicating the width
of the break and the second specifying an offset to be used if
wrapping has to be done.
\FAILURE
Never fails.
\EXAMPLE
We first set the margin to 13 by:
{\par\samepage\setseps\small
\begin{verbatim}
#set_margin 13;;
72 : int
\end{verbatim}
}
\noindent A simple formatting action is done in the ML segment given below:
{\par\samepage\setseps\small
\begin{verbatim}
#let example =
(print_begin 0;
print_string `first`;
print_break (1,2);
print_string `second`;
print_break (1,2);
print_end());;
\end{verbatim}
}
\noindent In this fragment of code {\small\verb%print_break%} is used to put a single
space between the strings. However if wrapping occurs, {\small\verb%print_break%}
indents the following line by two spaces. The result of this fragment is:
{\par\samepage\setseps\small
\begin{verbatim}
first second example =
()
: void
\end{verbatim}
}
\noindent If we now change the margin to 10 and execute the same fragment (not
given):
{\par\samepage\setseps\small
\begin{verbatim}
#set_margin 10;;
13 : int
\end{verbatim}
}
\noindent The result is wrapped with an indent of two character spaces from the
left.
{\par\samepage\setseps\small
\begin{verbatim}
first
second
example =
()
: void
\end{verbatim}
}
\noindent Wrapping took place due to the new margin setting.
\SEEALSO
print_begin, print_ibegin, print_end, print_newline
\ENDDOC
\DOC{print\_defined\_types}
\TYPE {\small\verb%print_defined_types : (void -> void)%}\egroup
\SYNOPSIS
Prints all currently defined ML types known to the system.
\DESCRIBE
The function prints all ML types defined by means of {\small\verb%lettype%}. It also
lists all abstract types in the system. The printing of {\small\verb%lettype%}
defined types can be suppressed by setting the flag {\small\verb%print_lettypes%} to
{\small\verb%false%}. The resulting suppression is only partial as only the outer
level of defined types is expanded.
\FAILURE
Never fails.
\ENDDOC
\DOC{print\_end}
\TYPE {\small\verb%print_end : (void -> void)%}\egroup
\SYNOPSIS
Closes a formatting block.
\DESCRIBE
This function closes a formatting block initialized
by {\small\verb%print_begin%} or {\small\verb%print_ibegin%}. It terminates the offset settings
that were defined within the block.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let example =
(print_begin 0;
print_string `first`;
print_break (0,2);
print_string `second`;
print_break (0,2);
print_end());;
\end{verbatim}
}
\noindent It is immediately clear how the function terminates the formatting
block.
\SEEALSO
print_begin, print_ibegin
\ENDDOC
\DOC{print\_goal}
\TYPE {\small\verb%print_goal : (goal -> void)%}\egroup
\SYNOPSIS
Prints a goal, including its assumptions.
\DESCRIBE
The function {\small\verb%print_goal%} takes a goal as argument and prints the goal
and its list of assumptions.
\FAILURE
Never fails.
\EXAMPLE
If we define a goal in the following manner:
{\par\samepage\setseps\small
\begin{verbatim}
#let goal = ([],"!a. a /\ T ==> a");;
goal = ([], "!a. a /\ T ==> a") : (* list # term)
\end{verbatim}
}
\noindent and then do:
{\par\samepage\setseps\small
\begin{verbatim}
#print_goal goal;;
\end{verbatim}
}
\noindent The system responds with:
{\par\samepage\setseps\small
\begin{verbatim}
"!a. a /\ T ==> a"
() : void
\end{verbatim}
}
\noindent If there were assumptions these would also have been printed.
\SEEALSO
print_thm
\ENDDOC
\DOC{print\_hyps}
\TYPE {\small\verb%print_hyps : (term list -> void)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{print\_ibegin}
\TYPE {\small\verb%print_ibegin : (int -> void)%}\egroup
\SYNOPSIS
Initiates a pretty printing block with inconsistent breaks.
\DESCRIBE
The function {\small\verb%print_ibegin%} initiates a inconsistent printing block.
Inconsistent breaks cause non-uniform
indentation at each break which is unlike the `all or nothing'
approach of consistent formatting (see {\small\verb%print_begin%}). The argument is the
offset of the block that {\small\verb%print_ibegin%} initiates. This offset is added to the
indentation of any lines broken inside. This offset is very seldom used.
\FAILURE
Never fails.
\EXAMPLE
\noindent Set the margin to be 13 characters wide:
{\par\samepage\setseps\small
\begin{verbatim}
#set_margin 13;;
13 : int
\end{verbatim}
}
\noindent Then initialize the block using {\small\verb%print_ibegin%}:
{\par\samepage\setseps\small
\begin{verbatim}
#let example =
(print_newline();
print_ibegin 0;
print_string `first`;
print_break (1,2);
print_string `second`;
print_break (1,2);
print_string `third`;
print_end();
print_newline());;
\end{verbatim}
}
\noindent After the initialization of the block the strings
`first', `second' and `third' are printed with breaks between them. The first
line does not break because we only
have 12 characters on the line {\small\verb%first second%}. When starting to print `third'
though wrapping has to take place.
\noindent The output we obtain is the following:
{\par\samepage\setseps\small
\begin{verbatim}
first second
third
example =
()
: void
\end{verbatim}
}
\SEEALSO
print_break, print_end, max_print_depth, print_begin
\ENDDOC
\DOC{print\_int}
\TYPE {\small\verb%print_int : (int -> void)%}\egroup
\SYNOPSIS
Prints an ML integer to the terminal.
\DESCRIBE
{\small\verb%print_int n%} returns {\small\verb%():void%} with the side-effect of printing the value
of {\small\verb%n%} to the terminal. The text is not terminated with a carriage return.
In fact, the text is queued until the pretty-printer decides where line breaks
are needed, or until the queue is explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_int 2;;
2() : void
#print_int (-10);;
-10() : void
\end{verbatim}
}
\SEEALSO
print_begin, print_end, print_newline.
\ENDDOC
\DOC{print\_list}
\TYPE {\small\verb%print_list : (bool -> string -> (* -> **) -> * list -> void)%}\egroup
\SYNOPSIS
Prints a list to the terminal in a specific format.
\DESCRIBE
{\small\verb%print_list incon name prfn l%} returns {\small\verb%():void%} with the side-effect of
printing the elements of {\small\verb%l%} to the terminal using the print function {\small\verb%prfn%}.
The string {\small\verb%name%} is also displayed and the flag {\small\verb%incon%} specifies whether
line breaking between elements of the list is to be inconsistent ({\small\verb%incon%} is
{\small\verb%true%}) or consistent ({\small\verb%incon%} is {\small\verb%false%}). If the list {\small\verb%l%} is empty, no text
is displayed. When {\small\verb%l%} is not empty, the elements of the list are printed in
reverse order.
The format of the output is illustrated in the example. {\small\verb%print_list%} is used
within the HOL system for printing theories. It is unlikely to be of use in
general.
\FAILURE
Fails if the print function {\small\verb%prfn%} fails on any of the arguments of the
list {\small\verb%l%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#set_margin 15;;
72 : int
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#print_list true `Test1:` print_int [1;2;3;4;5;6];;
Test1: --
6 5
4 3
2 1
() : void
\end{verbatim}
}
{\par\samepage\setseps\small
\begin{verbatim}
#print_list false `Test2:` print_int [1;2;3;4;5;6];;
Test2: --
6
5
4
3
2
1
() : void
\end{verbatim}
}
\SEEALSO
print_theory, print_begin, print_end, print_newline.
\ENDDOC
\DOC{print\_newline}
\TYPE {\small\verb%print_newline : (void -> void)%}\egroup
\SYNOPSIS
Prints a newline.
\DESCRIBE
The function {\small\verb%print_newline%} starts the text following it on the next
line. This is done irrespective of consistent or inconsistent
formatting and margin settings.
\FAILURE
Never fails.
\EXAMPLE
A simple example is:
{\par\samepage\setseps\small
\begin{verbatim}
#let example =
(print_string `first`;
print_newline();
print_string `second`;
print_newline());;
\end{verbatim}
}
\noindent The result is:
{\par\samepage\setseps\small
\begin{verbatim}
first
second
example = () : void
\end{verbatim}
}
\SEEALSO
print_begin, print_end, print_break
\ENDDOC
\DOC{print\_stack}
\TYPE {\small\verb%print_stack : (subgoals list -> int -> void)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{print\_state}
\TYPE {\small\verb%print_state : (int -> void)%}\egroup
\SYNOPSIS
Prints the top levels of the subgoal package goal stack.
\DESCRIBE
The function {\small\verb%print_state%} is part of the subgoal package. Calling
{\small\verb%print_state n%} prints the top {\small\verb%n%} levels of the goal stack of the current
proof state (that is, the top {\small\verb%n%} levels of unproven subgoals). If more than
one subgoal is produced, they are printed from the bottom of the stack so that
the current goal is printed last. If {\small\verb%n%} is negative or is greater than the
number of levels on the goal stack, the whole stack is printed. If no goal has
been set or {\small\verb%n%} is zero, nothing will be printed. If the original goal has just
been proved so that the proof state consists of a theorem, and {\small\verb%n%} is non-zero,
{\small\verb%goal proved%} is printed. For a description of the subgoal package, see
{\small\verb%set_goal%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
#e CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"
"HD[1;2;3] = 1"
() : void
#print_state 2;;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
2 subgoals
"TL[1;2;3] = [2;3]"
"HD[1;2;3] = 1"
() : void
\end{verbatim}
}
\USES
Examining the proof state during an interactive proof session.
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, p, r,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{print\_string}
\TYPE {\small\verb%print_string : (string -> void)%}\egroup
\SYNOPSIS
Prints an ML string to the terminal (without surrounding string quotes).
\DESCRIBE
{\small\verb%print_string s%} returns {\small\verb%():void%} with the side-effect of printing the string
{\small\verb%s%} to the terminal. String quotes are not printed around the string, and the
text is not terminated with a carriage return. In fact, the text is queued
until the pretty-printer decides where line breaks are needed, or until the
queue is explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_string `This is an example`;;
This is an example() : void
\end{verbatim}
}
\SEEALSO
print_tok, message, print_begin, print_end, print_newline.
\ENDDOC
\DOC{print\_subgoals}
\TYPE {\small\verb%print_subgoals : (subgoals -> void)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{print\_term}
\TYPE {\small\verb%print_term : (term -> void)%}\egroup
\SYNOPSIS
Prints a HOL term to the terminal.
\DESCRIBE
{\small\verb%print_term tm%} returns {\small\verb%():void%} with the side-effect of printing the value
of {\small\verb%tm%} to the terminal. The text is not terminated with a carriage return.
In fact, the text is queued until the pretty-printer decides where line breaks
are needed, or until the queue is explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_term "x /\ y";;
"x /\ y"() : void
\end{verbatim}
}
\SEEALSO
print_begin, print_end, print_newline, show_types, print_type, print_thm.
\ENDDOC
\DOC{print\_theory}
\TYPE {\small\verb%print_theory : (string -> void)%}\egroup
\SYNOPSIS
Prints the contents of a HOL theory to the terminal.
\DESCRIBE
{\small\verb%print_theory `name`%} returns {\small\verb%():void%} with the side-effect of printing the
contents of the theory called {\small\verb%name%}. {\small\verb%print_theory `-`%} prints the current
theory. The following information is displayed: the parents of the theory,
types defined within the theory, type abbreviations defined within the theory,
constants of the theory, the binders and infixes (subsets of the constants),
the axioms, the definitions, and the derived theorems.
\FAILURE
Fails if the named theory does not exist or is not an ancestor of the current
theory.
\EXAMPLE
To obtain an example, type {\small\verb%print_theory `bool`;;%} to the system.
\SEEALSO
print_type, print_term, print_thm.
\ENDDOC
\DOC{print\_thm}
\TYPE {\small\verb%print_thm : (thm -> void)%}\egroup
\SYNOPSIS
Prints a HOL theorem to the terminal (abbreviating assumptions).
\DESCRIBE
{\small\verb%print_thm th%} returns {\small\verb%():void%} with the side-effect of printing the value
of {\small\verb%th%} to the terminal. The text is not terminated with a carriage return.
In fact, the text is queued until the pretty-printer decides where line breaks
are needed, or until the queue is explicitly flushed.
Each assumption of the theorem is printed as one dot (period, full stop).
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_thm CONJ_SYM;;
|- !t1 t2. t1 /\ t2 = t2 /\ t1() : void
\end{verbatim}
}
\SEEALSO
print_all_thm, print_begin, print_end, print_newline, show_types, print_type,
print_term.
\ENDDOC
\DOC{print\_tok}
\TYPE {\small\verb%print_tok : (string -> void)%}\egroup
\SYNOPSIS
Prints an ML string to the terminal (with surrounding string quotes).
\DESCRIBE
{\small\verb%print_tok s%} returns {\small\verb%():void%} with the side-effect of printing the string
{\small\verb%s%} to the terminal. String quotes are printed around the string but the text
is not terminated with a carriage return. In fact, the text is queued until
the pretty-printer decides where line breaks are needed, or until the queue is
explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_tok `This is an example`;;
`This is an example`() : void
\end{verbatim}
}
\SEEALSO
print_string, message, print_begin, print_end, print_newline.
\ENDDOC
\DOC{print\_type}
\TYPE {\small\verb%print_type : (type -> void)%}\egroup
\SYNOPSIS
Prints a HOL type to the terminal.
\DESCRIBE
{\small\verb%print_type ty%} returns {\small\verb%():void%} with the side-effect of printing the value
of {\small\verb%ty%} to the terminal. The text is not terminated with a carriage return.
In fact, the text is queued until the pretty-printer decides where line breaks
are needed, or until the queue is explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_type ":bool";;
":bool"() : void
\end{verbatim}
}
\SEEALSO
print_begin, print_end, print_newline, print_term, print_thm.
\ENDDOC
\DOC{print\_unquoted\_term}
\TYPE {\small\verb%print_unquoted_term : (term -> void)%}\egroup
\SYNOPSIS
Prints a HOL term to the terminal without surrounding quotes.
\DESCRIBE
{\small\verb%print_unquoted_term tm%} returns {\small\verb%():void%} with the side-effect of printing
the value of {\small\verb%tm%} to the terminal without surrounding quotes. The text is not
terminated with a carriage return. In fact, the text is queued until the
pretty-printer decides where line breaks are needed, or until the queue is
explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_unquoted_term "x /\ y";;
x /\ y() : void
\end{verbatim}
}
\SEEALSO
print_term, print_begin, print_end, print_newline, show_types, print_type,
print_thm, print_unquoted_type.
\ENDDOC
\DOC{print\_unquoted\_type}
\TYPE {\small\verb%print_unquoted_type : (type -> void)%}\egroup
\SYNOPSIS
Prints a HOL type to the terminal without surrounding quotes and without the
leading colon.
\DESCRIBE
{\small\verb%print_unquoted_type ty%} returns {\small\verb%():void%} with the side-effect of printing
the value of {\small\verb%ty%} to the terminal without surrounding quotes and without the
leading colon. The text is not terminated with a carriage return. In fact, the
text is queued until the pretty-printer decides where line breaks are needed,
or until the queue is explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_unquoted_type ":bool";;
bool() : void
\end{verbatim}
}
\SEEALSO
print_type, print_begin, print_end, print_newline, print_term, print_thm,
print_unquoted_term.
\ENDDOC
\DOC{print\_void}
\TYPE {\small\verb%print_void : (void -> void)%}\egroup
\SYNOPSIS
Prints `{\small\verb%()%}' to the terminal.
\DESCRIBE
{\small\verb%print_void ()%} returns {\small\verb%():void%} with the side-effect of printing the value
`{\small\verb%()%}' to the terminal. The text is not terminated with a carriage return.
In fact, the text is queued until the pretty-printer decides where line breaks
are needed, or until the queue is explicitly flushed.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#print_void();;
()() : void
\end{verbatim}
}
\SEEALSO
print_begin, print_end, print_newline.
\ENDDOC
\DOC{prompt}
\TYPE {\small\verb%prompt : (bool -> bool)%}\egroup
\SYNOPSIS
Switches the ML prompt on or off.
\DESCRIBE
{\small\verb%prompt true%} switches on the ML prompt (which is `{\small\verb%#%}' by default);
{\small\verb%prompt false%} switches it off. In either case, {\small\verb%prompt%} returns the previous
state ({\small\verb%true%} for on, {\small\verb%false%} for off).
\FAILURE
Never fails.
\SEEALSO
set_prompt.
\ENDDOC
\DOC{prove\_abs\_fn\_one\_one}
\TYPE {\small\verb%prove_abs_fn_one_one : (thm -> thm)%}\egroup
\SYNOPSIS
Proves that a type abstraction function is one-to-one (injective).
\DESCRIBE
If {\small\verb%th%} is a theorem of the form returned by the function
{\small\verb%define_new_type_bijections%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))
\end{verbatim}
}
\noindent then {\small\verb%prove_abs_fn_one_one th%} proves from this theorem that the
function {\small\verb%abs%} is one-to-one for values that satisfy {\small\verb%P%}, returning the
theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !r r'. P r ==> P r' ==> ((abs r = abs r') = (r = r'))
\end{verbatim}
}
\FAILURE
Fails if applied to a theorem not of the form shown above.
\SEEALSO
new_type_definition, define_new_type_bijections, prove_abs_fn_onto,
prove_rep_fn_one_one, prove_rep_fn_onto.
\ENDDOC
\DOC{prove\_abs\_fn\_onto}
\TYPE {\small\verb%prove_abs_fn_onto : (thm -> thm)%}\egroup
\SYNOPSIS
Proves that a type abstraction function is onto (surjective).
\DESCRIBE
If {\small\verb%th%} is a theorem of the form returned by the function
{\small\verb%define_new_type_bijections%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))
\end{verbatim}
}
\noindent then {\small\verb%prove_abs_fn_onto th%} proves from this theorem that the
function {\small\verb%abs%} is onto, returning the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !a. ?r. (a = abs r) /\ P r
\end{verbatim}
}
\FAILURE
Fails if applied to a theorem not of the form shown above.
\SEEALSO
new_type_definition, define_new_type_bijections, prove_abs_fn_one_one,
prove_rep_fn_one_one, prove_rep_fn_onto.
\ENDDOC
\DOC{prove\_cases\_thm}
\TYPE {\small\verb%prove_cases_thm : (thm -> thm)%}\egroup
\SYNOPSIS
Proves a structural cases theorem for an automatically-defined concrete type.
\DESCRIBE
{\small\verb%prove_cases_thm%} takes as its argument a structural induction theorem, in the
form returned by {\small\verb%prove_induction_thm%} for an automatically-defined concrete
type. When applied to such a theorem, {\small\verb%prove_cases_thm%} automatically proves
and returns a theorem which states that every value the concrete type in
question is denoted by the value returned by some constructor of the type.
\FAILURE
Fails if the argument is not a theorem of the form returned by
{\small\verb%prove_induction_thm%}
\EXAMPLE
Given the following structural induction theorem for labelled binary trees:
{\par\samepage\setseps\small
\begin{verbatim}
|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)
\end{verbatim}
}
\noindent {\small\verb%prove_cases_thm%} proves and returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !b. (?x. b = LEAF x) \/ (?b1 b2. b = NODE b1 b2)
\end{verbatim}
}
\noindent This states that every labelled binary tree {\small\verb%b%} is either a leaf node
with a label {\small\verb%x%} or a tree with two subtrees {\small\verb%b1%} and {\small\verb%b2%}.
\SEEALSO
define_type, INDUCT_THEN, new_recursive_definition,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.
\ENDDOC
\DOC{prove\_constructors\_distinct}
\TYPE {\small\verb%prove_constructors_distinct : (thm -> thm)%}\egroup
\SYNOPSIS
Proves that the constructors of an automatically-defined concrete type yield
distinct values.
\DESCRIBE
{\small\verb%prove_constructors_distinct%} takes as its argument a primitive recursion
theorem, in the form returned by {\small\verb%define_type%} for an automatically-defined
concrete type. When applied to such a theorem, {\small\verb%prove_constructors_distinct%}
automatically proves and returns a theorem which states that distinct
constructors of the concrete type in question yield distinct values of this
type.
\FAILURE
Fails if the argument is not a theorem of the form returned by {\small\verb%define_type%},
or if the concrete type in question has only one constructor.
\EXAMPLE
Given the following primitive recursion theorem for labelled binary trees:
{\par\samepage\setseps\small
\begin{verbatim}
|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)
\end{verbatim}
}
\noindent {\small\verb%prove_constructors_distinct%} proves and returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !x b1 b2. ~(LEAF x = NODE b1 b2)
\end{verbatim}
}
\noindent This states that leaf nodes are different from internal nodes. When
the concrete type in question has more than two constructors, the resulting
theorem is just conjunction of inequalities of this kind.
\SEEALSO
define_type, INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_one_one, prove_induction_thm, prove_rec_fn_exists.
\ENDDOC
\DOC{prove\_constructors\_one\_one}
\TYPE {\small\verb%prove_constructors_one_one : (thm -> thm)%}\egroup
\SYNOPSIS
Proves that the constructors of an automatically-defined concrete type are
injective.
\DESCRIBE
{\small\verb%prove_constructors_one_one%} takes as its argument a primitive recursion
theorem, in the form returned by {\small\verb%define_type%} for an automatically-defined
concrete type. When applied to such a theorem, {\small\verb%prove_constructors_one_one%}
automatically proves and returns a theorem which states that the constructors
of the concrete type in question are injective (one-to-one). The resulting
theorem covers only those constructors that take arguments (i.e. that are not
just constant values).
\FAILURE
Fails if the argument is not a theorem of the form returned by {\small\verb%define_type%},
or if all the constructors of the concrete type in question are simply
constants of that type.
\EXAMPLE
Given the following primitive recursion theorem for labelled binary trees:
{\par\samepage\setseps\small
\begin{verbatim}
|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)
\end{verbatim}
}
\noindent {\small\verb%prove_constructors_one_one%} proves and returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x x'. (LEAF x = LEAF x') = (x = x')) /\
(!b1 b2 b1' b2'.
(NODE b1 b2 = NODE b1' b2') = (b1 = b1') /\ (b2 = b2'))
\end{verbatim}
}
\noindent This states that the constructors {\small\verb%LEAF%} and {\small\verb%NODE%} are both
injective.
\SEEALSO
define_type, INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_induction_thm, prove_rec_fn_exists.
\ENDDOC
\DOC{prove}
\TYPE {\small\verb%prove : ((term # tactic) -> thm)%}\egroup
\SYNOPSIS
Attempts to prove a boolean term using the supplied tactic.
\DESCRIBE
When applied to a term-tactic pair {\small\verb%(tm,tac)%}, the function {\small\verb%prove%} attempts to
prove the goal {\small\verb%?- tm%}, that is, the term {\small\verb%tm%} with no assumptions, using the
tactic {\small\verb%tac%}. If {\small\verb%prove%} succeeds, it returns the corresponding theorem
{\small\verb%A |- tm%}, where the assumption list {\small\verb%A%} may not be empty if the tactic is
invalid; {\small\verb%prove%} has no inbuilt validity-checking.
\FAILURE
Fails if the term is not of type {\small\verb%bool%} (and so cannot possibly be
the conclusion of a theorem), or if the tactic cannot solve the goal.
\COMMENTS
The function {\small\verb%PROVE%} provides almost identical functionality, and will
also list unsolved goals if the tactic fails. It is therefore preferable
for most purposes.
\SEEALSO
PROVE, prove_thm, TAC_PROOF, VALID.
\ENDDOC
\DOC{PROVE}
\TYPE {\small\verb%PROVE : ((term # tactic) -> thm)%}\egroup
\SYNOPSIS
Attempts to prove a boolean term using the supplied tactic.
\DESCRIBE
When applied to a term-tactic pair {\small\verb%(tm,tac)%}, the function {\small\verb%PROVE%} attempts to
prove the goal {\small\verb%?- tm%}, that is, the term {\small\verb%tm%} with no assumptions, using the
tactic {\small\verb%tac%}. If {\small\verb%PROVE%} succeeds, it returns the corresponding theorem
{\small\verb%A |- tm%}, where the assumption list {\small\verb%A%} may not be empty if the tactic is
invalid; {\small\verb%PROVE%} has no inbuilt validity-checking.
\FAILURE
Fails if the term is not of type {\small\verb%bool%} (and so cannot possibly be
the conclusion of a theorem), or if the tactic cannot solve the goal.
In the latter case {\small\verb%PROVE%} will list the unsolved goals to help the user.
\SEEALSO
TAC_PROOF, prove, prove_thm, VALID.
\ENDDOC
\DOC{PROVE\_HYP}
\TYPE {\small\verb%PROVE_HYP : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Eliminates a provable assumption from a theorem.
\DESCRIBE
When applied to two theorems, {\small\verb%PROVE_HYP%} gives a new theorem with the
conclusion of the second and the union of the assumption list minus the
conclusion of the first theorem.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 A2 |- t2
------------------------ PROVE_HYP
(A1 u A2) - {t1} |- t2
\end{verbatim}
}
\FAILURE
Never fails.
\COMMENTS
This is the Cut rule. It is not necessary for the conclusion of the first
theorem to be the same as an assumption of the second, but {\small\verb%PROVE_HYP%} is
otherwise of doubtful value.
\SEEALSO
DISCH, MP, UNDISCH.
\ENDDOC
\DOC{prove\_induction\_thm}
\TYPE {\small\verb%prove_induction_thm : (thm -> thm)%}\egroup
\SYNOPSIS
Derives structural induction for an automatically-defined concrete type.
\DESCRIBE
{\small\verb%prove_induction_thm%} takes as its argument a primitive recursion theorem, in
the form returned by {\small\verb%define_type%} for an automatically-defined concrete type.
When applied to such a theorem, {\small\verb%prove_induction_thm%} automatically proves and
returns a theorem that states a structural induction principle for the concrete
type described by the argument theorem. The theorem returned by
{\small\verb%prove_induction_thm%} is in a form suitable for use with the general structural
induction tactic {\small\verb%INDUCT_THEN%}.
\FAILURE
Fails if the argument is not a theorem of the form returned by {\small\verb%define_type%}.
\EXAMPLE
Given the following primitive recursion theorem for labelled binary trees:
{\par\samepage\setseps\small
\begin{verbatim}
|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)
\end{verbatim}
}
\noindent {\small\verb%prove_induction_thm%} proves and returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !P. (!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)
\end{verbatim}
}
\noindent This theorem states the principle of structural induction on labelled
binary trees: if a predicate {\small\verb%P%} is true of all leaf nodes, and if whenever it
is true of two subtrees {\small\verb%b1%} and {\small\verb%b2%} it is also true of the tree {\small\verb%NODE b1 b2%},
then {\small\verb%P%} is true of all labelled binary trees.
\SEEALSO
define_type, INDUCT_THEN, new_recursive_definition, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_rec_fn_exists.
\ENDDOC
\DOC{prove\_rec\_fn\_exists}
\TYPE {\small\verb%prove_rec_fn_exists : (thm -> term -> thm)%}\egroup
\SYNOPSIS
Proves the existence of a primitive recursive function over a concrete recursive
type.
\DESCRIBE
{\small\verb%prove_rec_fn_exists%} is a version of {\small\verb%new_recursive_definition%} which proves
only that the required function exists; it does not make a constant
specification. The first argument is a theorem of the form returned by
{\small\verb%define_type%}, and the second is a user-supplied primitive recursive function
definition. The theorem which is returned asserts the existence of the
recursively-defined function in question (if it is primitive recursive over the
type characterized by the theorem given as the first argument). See the entry
for {\small\verb%new_recursive_definition%} for details.
\FAILURE
As for {\small\verb%new_recursive_definition%}.
\EXAMPLE
Given the following primitive recursion theorem for labelled binary trees:
{\par\samepage\setseps\small
\begin{verbatim}
|- !f0 f1.
?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)
\end{verbatim}
}
\noindent {\small\verb%prove_rec_fn_exists%} can be used to prove the existence of primitive
recursive functions over binary trees. Suppose the value of {\small\verb%th%} is this
theorem. Then the existence of a recursive function {\small\verb%Leaves%}, which computes
the number of leaves in a binary tree, can be proved as shown below:
{\par\samepage\setseps\small
\begin{verbatim}
#prove_rec_fn_exists th
# "(Leaves (LEAF (x:*)) = 1) /\
# (Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))";;
|- ?Leaves. (!x. Leaves(LEAF x) = 1) /\
(!t1 t2. Leaves(NODE t1 t2) = (Leaves t1) + (Leaves t2))
\end{verbatim}
}
\noindent The result should be compared with the example given under
{\small\verb%new_recursive_definition%}.
\SEEALSO
define_type, new_recursive_definition.
\ENDDOC
\DOC{prove\_rep\_fn\_one\_one}
\TYPE {\small\verb%prove_rep_fn_one_one : (thm -> thm)%}\egroup
\SYNOPSIS
Proves that a type representation function is one-to-one (injective).
\DESCRIBE
If {\small\verb%th%} is a theorem of the form returned by the function
{\small\verb%define_new_type_bijections%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))
\end{verbatim}
}
\noindent then {\small\verb%prove_rep_fn_one_one th%} proves from this theorem that the
function {\small\verb%rep%} is one-to-one, returning the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !a a'. (rep a = rep a') = (a = a')
\end{verbatim}
}
\FAILURE
Fails if applied to a theorem not of the form shown above.
\SEEALSO
new_type_definition, define_new_type_bijections, prove_abs_fn_one_one,
prove_abs_fn_onto, prove_rep_fn_onto.
\ENDDOC
\DOC{prove\_rep\_fn\_onto}
\TYPE {\small\verb%prove_rep_fn_onto : (thm -> thm)%}\egroup
\SYNOPSIS
Proves that a type representation function is onto (surjective).
\DESCRIBE
If {\small\verb%th%} is a theorem of the form returned by the function
{\small\verb%define_new_type_bijections%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))
\end{verbatim}
}
\noindent then {\small\verb%prove_rep_fn_onto th%} proves from this theorem that the
function {\small\verb%rep%} is onto the set of values that satisfy {\small\verb%P%}, returning the
theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !r. P r = (?a. r = rep a)
\end{verbatim}
}
\FAILURE
Fails if applied to a theorem not of the form shown above.
\SEEALSO
new_type_definition, define_new_type_bijections, prove_abs_fn_one_one,
prove_abs_fn_onto, prove_rep_fn_one_one.
\ENDDOC
\DOC{prove\_thm}
\TYPE {\small\verb%prove_thm : ((string # term # tactic) -> thm)%}\egroup
\SYNOPSIS
Attempts to prove a boolean term using the supplied tactic, then save the
theorem.
\DESCRIBE
When applied to a triple {\small\verb%(s,tm,tac)%}, giving the name to
save the theorem under, the term to prove (with no assumptions) and the tactic
to perform the proof, the function {\small\verb%prove_thm%} attempts to prove the goal
{\small\verb%?- tm%}, that is, the term {\small\verb%tm%} with no assumptions, using the tactic {\small\verb%tac%}. If
{\small\verb%prove_thm%} succeeds, it attempts to save the resulting theorem in the current
theory segment, and if this succeeds, the saved theorem is returned.
\FAILURE
Fails if the term is not of type {\small\verb%bool%} (and so cannot possibly be
the conclusion of a theorem), or if the tactic cannot solve the goal.
In the latter case {\small\verb%prove_thm%} will list the unsolved goals to help the user.
In addition, {\small\verb%prove_thm%} will fail if the theorem cannot be saved, e.g. because
there is already a theorem of that name in the current theory segment, or if
the resulting theorem has assumptions; clearly this can only happen if the
tactic was invalid, so this gives some measure of validity checking.
\SEEALSO
prove, PROVE, TAC_PROOF, VALID.
\ENDDOC
\DOC{PURE\_ASM\_REWRITE\_RULE}
\TYPE {\small\verb%PURE_ASM_REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem including the theorem's assumptions as rewrites.
\DESCRIBE
The list of theorems supplied by the user and the assumptions of the
object theorem are used to generate a set of rewrites, without adding
implicitly the basic tautologies stored under {\small\verb%basic_rewrites%}.
The rule searches for matching subterms in a top-down recursive
fashion, stopping only when no more rewrites apply. For a general
description of rewriting strategies see {\small\verb%GEN_REWRITE_RULE%}.
\FAILURE
Rewriting with {\small\verb%PURE_ASM_REWRITE_RULE%} does not result in failure. It
may diverge, in which case {\small\verb%PURE_ONCE_ASM_REWRITE_RULE%} may be used.
\SEEALSO
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE.
\ENDDOC
\DOC{PURE\_ASM\_REWRITE\_TAC}
\TYPE {\small\verb%PURE_ASM_REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal including the goal's assumptions as rewrites.
\DESCRIBE
{\small\verb%PURE_ASM_REWRITE_TAC%} generates a set of rewrites from the supplied
theorems and the assumptions of the goal, and applies these in a
top-down recursive manner until no match is found. See
{\small\verb%GEN_REWRITE_TAC%} for more information on the group of rewriting
tactics.
\FAILURE
{\small\verb%PURE_ASM_REWRITE_TAC%} does not fail, but it can diverge in certain
situations. For limited depth rewriting, see
{\small\verb%PURE_ONCE_ASM_REWRITE_TAC%}. It can also result in an invalid tactic.
\USES
To advance or solve a goal when the current assumptions are expected
to be useful in reducing the goal.
\SEEALSO
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ONCE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWRITE_TAC, SUBST_TAC.
\ENDDOC
\DOC{PURE\_ONCE\_ASM\_REWRITE\_RULE}
\TYPE {\small\verb%PURE_ONCE_ASM_REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem once, including the theorem's assumptions as rewrites.
\DESCRIBE
{\small\verb%PURE_ONCE_ASM_REWRITE_RULE%} excludes the basic tautologies in
{\small\verb%basic_rewrites%} from the theorems used for rewriting. It searches for
matching subterms once only, without recursing over already rewritten
subterms. For a general introduction to rewriting tools see
{\small\verb%GEN_REWRITE_RULE%}.
\FAILURE
{\small\verb%PURE_ONCE_ASM_REWRITE_RULE%} does not fail and does not diverge.
\SEEALSO
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
ONCE_REWRITE_RULE, PURE_ASM_REWRITE_RULE, PURE_REWRITE_RULE,
REWRITE_RULE.
\ENDDOC
\DOC{PURE\_ONCE\_ASM\_REWRITE\_TAC}
\TYPE {\small\verb%PURE_ONCE_ASM_REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal once, including the goal's assumptions as rewrites.
\DESCRIBE
A set of rewrites generated from the assumptions of the goal and the
supplied theorems is used to rewrite the term part of the goal, making
only one pass over the goal. The basic tautologies are not included as
rewrite theorems. The order in which the given theorems are applied is
an implementation matter and the user should not depend on any
ordering. See {\small\verb%GEN_REWRITE_TAC%} for more information on rewriting
tactics in general.
\FAILURE
{\small\verb%PURE_ONCE_ASM_REWRITE_TAC%} does not fail and does not diverge.
\USES
Manipulation of the goal by rewriting with its assumptions, in
instances where rewriting with tautologies and recursive rewriting is
undesirable.
\SEEALSO
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWRITE_TAC, SUBST_TAC.
\ENDDOC
\DOC{PURE\_ONCE\_REWRITE\_CONV}
\TYPE {\small\verb%PURE_ONCE_REWRITE_CONV : (thm list -> conv)%}\egroup
\SYNOPSIS
Rewrites a term once with only the given list of rewrites.
\DESCRIBE
{\small\verb%PURE_ONCE_REWRITE_CONV%} generates rewrites from the list of theorems
supplied by the user, without including the tautologies given in
{\small\verb%basic_rewrites%}. The applicable rewrites are employeded once, without
entailing in a recursive search for matches over the term.
See {\small\verb%GEN_REWRITE_CONV%} for more details about rewriting strategies in
HOL.
\FAILURE
This rule does not fail, and it does not diverge.
\SEEALSO
GEN_REWRITE_CONV, ONCE_DEPTH_CONV,
ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWRITE_CONV.
\ENDDOC
\DOC{PURE\_ONCE\_REWRITE\_RULE}
\TYPE {\small\verb%PURE_ONCE_REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem once with only the given list of rewrites.
\DESCRIBE
{\small\verb%PURE_ONCE_REWRITE_RULE%} generates rewrites from the list of theorems
supplied by the user, without including the tautologies given in
{\small\verb%basic_rewrites%}. The applicable rewrites are employeded once, without
entailing in a recursive search for matches over the theorem.
See {\small\verb%GEN_REWRITE_RULE%} for more details about rewriting strategies in
HOL.
\FAILURE
This rule does not fail, and it does not diverge.
\SEEALSO
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_DEPTH_CONV,
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{PURE\_ONCE\_REWRITE\_TAC}
\TYPE {\small\verb%PURE_ONCE_REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal using a supplied list of theorems, making one
rewriting pass over the goal.
\DESCRIBE
{\small\verb%PURE_ONCE_REWRITE_TAC%} generates a set of rewrites from the given
list of theorems, and applies them at every match found through
searching once over the term part of the goal, without recursing. It
does not include the basic tautologies as rewrite theorems. The order
in which the rewrites are applied is unspecified. For more information
on rewriting tactics see {\small\verb%GEN_REWRITE_TAC%}.
\FAILURE
{\small\verb%PURE_ONCE_REWRITE_TAC%} does not fail and does not diverge.
\USES
This tactic is useful when the built-in tautologies are not required
as rewrite equations and recursive rewriting is not desired.
\SEEALSO
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_REWRITE_TAC,
REWRITE_TAC, SUBST_TAC.
\ENDDOC
\DOC{PURE\_REWRITE\_CONV}
\TYPE {\small\verb%PURE_REWRITE_CONV : (thm list -> conv)%}\egroup
\SYNOPSIS
Rewrites a term with only the given list of rewrites.
\DESCRIBE
This conversion provides a method for rewriting a term with the theorems given,
and excluding simplification with tautologies in {\small\verb%basic_rewrites%}. Matching
subterms are found recursively, until no more matches are found.
For more details on rewriting see
{\small\verb%GEN_REWRITE_CONV%}.
\USES
{\small\verb%PURE_REWRITE_CONV%} is useful when the simplifications that arise by
rewriting a theorem with {\small\verb%basic_rewrites%} are not wanted.
\FAILURE
Does not fail. May result in divergence, in which case
{\small\verb%PURE_ONCE_REWRITE_CONV%} can be used.
\SEEALSO
GEN_REWRITE_CONV, ONCE_REWRITE_CONV, PURE_ONCE_REWRITE_CONV, REWRITE_CONV.
\ENDDOC
\DOC{PURE\_REWRITE\_RULE}
\TYPE {\small\verb%PURE_REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem with only the given list of rewrites.
\DESCRIBE
This rule provides a method for rewriting a theorem with the theorems given,
and excluding simplification with tautologies in {\small\verb%basic_rewrites%}. Matching
subterms are found recursively starting from the term in the conclusion part of
the theorem, until no more matches are found. For more details on rewriting see
{\small\verb%GEN_REWRITE_RULE%}.
\USES
{\small\verb%PURE_REWRITE_RULE%} is useful when the simplifications that arise by
rewriting a theorem with {\small\verb%basic_rewrites%} are not wanted.
\FAILURE
Does not fail. May result in divergence, in which case
{\small\verb%PURE_ONCE_REWRITE_RULE%} can be used.
\SEEALSO
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE,
PURE_ONCE_REWRITE_RULE, REWRITE_RULE.
\ENDDOC
\DOC{PURE\_REWRITE\_TAC}
\TYPE {\small\verb%PURE_REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal with only the given list of rewrites.
\DESCRIBE
{\small\verb%PURE_REWRITE_TAC%} behaves in the same way as {\small\verb%REWRITE_TAC%}, but
without the effects of the built-in tautologies. The order in which
the given theorems are applied is an implementation matter and the user
should not depend on any ordering. For more information on rewriting
strategies see {\small\verb%GEN_REWRITE_TAC%}.
\FAILURE
{\small\verb%PURE_REWRITE_TAC%} does not fail, but it can diverge in certain
situations; in such cases {\small\verb%PURE_ONCE_REWRITE_TAC%} may be used.
\USES
This tactic is useful when the built-in tautologies are not required as
rewrite equations. It is sometimes useful in making more time-efficient
replacements according to equations for which it is clear that no extra
reduction via tautology will be needed. (The difference in efficiency
is only apparent, however, in quite large examples.)
{\small\verb%PURE_REWRITE_TAC%} advances goals but solves them less frequently than
{\small\verb%REWRITE_TAC%}; to be precise, {\small\verb%PURE_REWRITE_TAC%} only solves goals
which are rewritten to {\small\verb%"T"%} (i.e. {\small\verb%TRUTH%}) without recourse to any
other tautologies.
\EXAMPLE
It might be necessary, say for subsequent application of an induction
hypothesis, to resist reducing a term {\small\verb%"b = T"%} to {\small\verb%"b"%}.
{\par\samepage\setseps\small
\begin{verbatim}
#PURE_REWRITE_TAC[]([],"b = T");;
([([], "b = T")], -) : subgoals
#REWRITE_TAC[]([],"b = T");;
([([], "b")], -) : subgoals
\end{verbatim}
}
\SEEALSO
ASM_REWRITE_TAC, FILTER_ASM_REWRITE_TAC, FILTER_ONCE_ASM_REWRITE_TAC,
GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.
\ENDDOC
\DOC{push\_fsubgoals}
\TYPE {\small\verb%push_fsubgoals : (subgoals list -> tactic -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{push\_print}
\TYPE {\small\verb%push_print : (subgoals -> subgoals list -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{push\_subgoals}
\TYPE {\small\verb%push_subgoals : (subgoals list -> tactic -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{quit}
\TYPE {\small\verb%quit : (void -> void)%}\egroup
\SYNOPSIS
Evaluating {\small\verb%quit()%} terminates the current HOL session.
\FAILURE
Never fails.
\ENDDOC
\DOC{RAND\_CONV}
\TYPE {\small\verb%RAND_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion to the operand of an application.
\DESCRIBE
If {\small\verb%c%} is a conversion that maps a term {\small\verb%"t2"%} to the theorem {\small\verb%|- t2 = t2'%},
then the conversion {\small\verb%RAND_CONV c%} maps applications of the form {\small\verb%"t1 t2"%} to
theorems of the form:
{\par\samepage\setseps\small
\begin{verbatim}
|- (t1 t2) = (t1 t2')
\end{verbatim}
}
\noindent That is, {\small\verb%RAND_CONV c "t1 t2"%} applies {\small\verb%c%} to the operand of the
application {\small\verb%"t1 t2"%}.
\FAILURE
{\small\verb%RAND_CONV c tm%} fails if {\small\verb%tm%} is not an application or if {\small\verb%tm%} has the form
{\small\verb%"t1 t2"%} but the conversion {\small\verb%c%} fails when applied to the term {\small\verb%t2%}. The
function returned by {\small\verb%RAND_CONV c%} may also fail if the ML function
{\small\verb%c:term->thm%} is not, in fact, a conversion (i.e. a function that maps a term
{\small\verb%t%} to a theorem {\small\verb%|- t = t'%}).
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#RAND_CONV num_CONV "SUC 2";;
|- SUC 2 = SUC(SUC 1)
\end{verbatim}
}
\SEEALSO
ABS_CONV, RATOR_CONV, SUB_CONV.
\ENDDOC
\DOC{rand}
\TYPE {\small\verb%rand : (term -> term)%}\egroup
\SYNOPSIS
Returns the operand from a combination (function application).
\DESCRIBE
{\small\verb%rand "t1 t2"%} returns {\small\verb%"t2"%}.
\FAILURE
Fails with {\small\verb%rand%} if term is not a combination.
\SEEALSO
rator, dest_comb.
\ENDDOC
\DOC{RATOR\_CONV}
\TYPE {\small\verb%RATOR_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion to the operator of an application.
\DESCRIBE
If {\small\verb%c%} is a conversion that maps a term {\small\verb%"t1"%} to the theorem {\small\verb%|- t1 = t1'%},
then the conversion {\small\verb%RATOR_CONV c%} maps applications of the form {\small\verb%"t1 t2"%} to
theorems of the form:
{\par\samepage\setseps\small
\begin{verbatim}
|- (t1 t2) = (t1' t2)
\end{verbatim}
}
\noindent That is, {\small\verb%RATOR_CONV c "t1 t2"%} applies {\small\verb%c%} to the operand of the
application {\small\verb%"t1 t2"%}.
\FAILURE
{\small\verb%RATOR_CONV c tm%} fails if {\small\verb%tm%} is not an application or if {\small\verb%tm%} has the form
{\small\verb%"t1 t2"%} but the conversion {\small\verb%c%} fails when applied to the term {\small\verb%t1%}. The
function returned by {\small\verb%RATOR_CONV c%} may also fail if the ML function
{\small\verb%c:term->thm%} is not, in fact, a conversion (i.e. a function that maps a term
{\small\verb%t%} to a theorem {\small\verb%|- t = t'%}).
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#RATOR_CONV BETA_CONV "(\x y. x + y) 1 2";;
|- (\x y. x + y)1 2 = (\y. 1 + y)2
\end{verbatim}
}
\SEEALSO
ABS_CONV, RAND_CONV, SUB_CONV.
\ENDDOC
\DOC{rator}
\TYPE {\small\verb%rator : (term -> term)%}\egroup
\SYNOPSIS
Returns the operator from a combination (function application).
\DESCRIBE
{\small\verb%rator("t1 t2")%} returns {\small\verb%"t1"%}.
\FAILURE
Fails with {\small\verb%rator%} if term is not a combination.
\SEEALSO
rand, dest_comb.
\ENDDOC
\DOC{r}
\TYPE {\small\verb%r : (int -> void)%}\egroup
\SYNOPSIS
Reorders the subgoals on top of the subgoal package goal stack.
\DESCRIBE
The function {\small\verb%r%} is part of the subgoal package. It is an abbreviation for
{\small\verb%rotate%}. For a description of the subgoal package, see {\small\verb%set_goal%}.
\FAILURE
As for {\small\verb%rotate%}.
\USES
Proving subgoals in a different order to that generated by the subgoal package.
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state,
rotate, save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{read}
\TYPE {\small\verb%read : (string -> string)%}\egroup
\SYNOPSIS
Reads a character from a file.
\DESCRIBE
When applied to a string describing a port (a port is the standard ML file
descriptor, normally obtained from a call to {\small\verb%openi%}), the function {\small\verb%read%}
reads in a character from that port, and advances the internal state so that a
subsequent call to {\small\verb%read%} will return the next character. When the end of the
file is reached, the multi-character string `nil` will be returned.
\FAILURE
May fail or hang in system-dependent ways when given an invalid port
descriptor.
\EXAMPLE
The following assumes that HOL is being run under Unix. It will overwrite an
existing file {\small\verb%test-file%} in the current directory. Notice that the actual
string returned by {\small\verb%openi%} may vary on other systems.
{\par\samepage\setseps\small
\begin{verbatim}
#system `echo "Hi" >test-file`;;
0 : int
#let port = openi `test-file`;;
port = `%test-file` : string
#read port, read port, read port, read port, read port;;
(`H`, `i`, `
`, `nil`, `nil`)
: (string # string # string # string # string)
#close port;;
() : void
\end{verbatim}
}
\SEEALSO
append_openw, close, openi, openw, tty_read, tty_write, write.
\ENDDOC
\DOC{record\_proof}
\TYPE {\small\verb%record_proof : bool -> void%}\egroup
\SYNOPSIS
Enable/disable proof recording.
\DESCRIBE
A proof is a list of inference steps. After the proof recorder is
enabled, every inference performed by the system is recorded and
cumulated in an internal buffer. When a proof is completed, the raw
records can then be processed and output to a disk file.
{\small\verb%record_proof%} is a low level user function for managing the proof
recorder. It takes a single boolean as its argument. If
this is {\small\verb%true%}, it initialises and enables the proof recorder. If it
is {\small\verb%false%}, it disables the proof recorder without clearing the proof
recorded since the last time this function is called with the value
{\small\verb%true%}.
The current state of the proof recorder can interrogated using the
function {\small\verb%is_recording_proof%}. The recorder can be temporarily
disabled and later re-enabled without clearing the internal buffer.
\FAILURE
Never fail.
\EXAMPLE
Below is an example showing how to record an extremely simple proof:
{\par\samepage\setseps\small
\begin{verbatim}
#let th = SPEC_ALL ADD_SYM;;
Theorem ADD_SYM autoloading from theory `arithmetic` ...
ADD_SYM = |- !m n. m + n = n + m
th = |- m + n = n + m
#let v = genvar ":num";;
"GEN%VAR%536" : term
#record_proof true;;
() : void
#let th1 = (REFL "SUC(m + n)");;
th1 = |- SUC(m + n) = SUC(m + n)
#let th2 = SUBST [th,v] "SUC(m + n) = SUC ^v" th1;;
th2 = |- SUC(m + n) = SUC(n + m)
#record_proof false;;
() : void
#write_proof_to `ap_term.prf` `ap_term` [] (get_steps());;
() : void
\end{verbatim}
}
The proof consists of two inference steps: the application of the two
primitive inference rules {\small\verb%REFL%} and {\small\verb%SUBST%}. The function
{\small\verb%write_proof_to%} outputs the proof into a file names {\small\verb%ap_term.prf%}.
\COMMENTS
This function is used to implement higher level user functions for
recording proof in the library {\small\verb%record_proof%}. It is much more
convenient to use those functions than the low level functions
such as {\small\verb%record_proof%} directly.
\SEEALSO
is_recording_proof, RecordStep, get_steps,
suspend_recording, resume_recording,
current_proof, current_proof_file,
new_proof_file, close_proof_file, begin_proof, end_proof,
TAC_PROOF, PROVE, prove, prove_thm.
\ENDDOC
\DOC{RecordStep}
\TYPE {\small\verb%RecordStep : step -> void%}\egroup
\SYNOPSIS
Record a single inference step.
\DESCRIBE
A proof is a list of inference steps. After the proof recorder is
enabled, every inference performed by the system is recorded and
cumulated in an internal buffer. When a proof is completed, the raw
records can then be processed and output to a disk file.
{\small\verb%record_proof%} is a system function for recording a single proof step.
The type {\small\verb%step%} represents a basic inference step. It contains all
the necessary information of each inference. There are currently 52
basic inferences which are being recorded. All other ML functions
representing inference rules are implemented by these basic
inferences.
If the proof recorder is enabled when an inference is performed,
{\small\verb%RecordStep%} will add a step into the internal buffer.
\FAILURE
Never fail.
\COMMENTS
This is a system function implementing the proof recorded. Users
should not use this function directly. User functions are provided in
the library {\small\verb%record_proof%}. When new basic inference rule
is implemented, this function should be called to record the inference step.
\SEEALSO
record_proof, is_recording_proof, get_steps,
suspend_recording, resume_recording.
\ENDDOC
\DOC{REDEPTH\_CONV}
\TYPE {\small\verb%REDEPTH_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion bottom-up to all subterms, retraversing changed ones.
\DESCRIBE
{\small\verb%REDEPTH_CONV c tm%} applies the conversion {\small\verb%c%} repeatedly to all subterms of
the term {\small\verb%tm%} and recursively applies {\small\verb%REDEPTH_CONV c%} to each subterm at which
{\small\verb%c%} succeeds, until there is no subterm remaining for which application of {\small\verb%c%}
succeeds.
More precisely, {\small\verb%REDEPTH_CONV c tm%} repeatedly applies the conversion {\small\verb%c%} to
all the subterms of the term {\small\verb%tm%}, including the term {\small\verb%tm%} itself. The supplied
conversion {\small\verb%c%} is applied to the subterms of {\small\verb%tm%} in bottom-up order and is
applied repeatedly (zero or more times, as is done by {\small\verb%REPEATC%}) to each
subterm until it fails. If {\small\verb%c%} is successfully applied at least once to a
subterm, {\small\verb%t%} say, then the term into which {\small\verb%t%} is transformed is retraversed by
applying {\small\verb%REDEPTH_CONV c%} to it.
\FAILURE
{\small\verb%REDEPTH_CONV c tm%} never fails but can diverge if the conversion {\small\verb%c%} can be
applied repeatedly to some subterm of {\small\verb%tm%} without failing.
\EXAMPLE
The following example shows how {\small\verb%REDEPTH_CONV%} retraverses subterms:
{\par\samepage\setseps\small
\begin{verbatim}
#REDEPTH_CONV BETA_CONV "(\f x. (f x) + 1) (\y.y) 2";;
|- (\f x. (f x) + 1)(\y. y)2 = 2 + 1
\end{verbatim}
}
\noindent Here, {\small\verb%BETA_CONV%} is first applied successfully to the (beta-redex)
subterm:
{\par\samepage\setseps\small
\begin{verbatim}
"(\f x. (f x) + 1) (\y.y)"
\end{verbatim}
}
\noindent This application reduces this subterm to:
{\par\samepage\setseps\small
\begin{verbatim}
"(\x. ((\y.y) x) + 1)"
\end{verbatim}
}
\noindent {\small\verb%REDEPTH_CONV BETA_CONV%} is then recursively applied to this
transformed subterm, eventually reducing it to {\small\verb%"(\x. x + 1)"%}. Finally, a
beta-reduction of the top-level term, now the simplified beta-redex
{\small\verb%"(\x. x + 1) 2"%}, produces {\small\verb%"2 + 1"%}.
\COMMENTS
The implementation of this function uses failure to avoid rebuilding
unchanged subterms. That is to say, during execution the failure string
{\small\verb%`QCONV`%} may be generated and later trapped. The behaviour of the function
is dependent on this use of failure. So, if the conversion given as argument
happens to generate a failure with string {\small\verb%`QCONV`%}, the operation of
{\small\verb%REDEPTH_CONV%} will be unpredictable.
\SEEALSO
DEPTH_CONV, ONCE_DEPTH_CONV, TOP_DEPTH_CONV.
\ENDDOC
\DOC{REFL}
\TYPE {\small\verb%REFL : conv%}\egroup
\SYNOPSIS
Returns theorem expressing reflexivity of equality.
\DESCRIBE
{\small\verb%REFL%} maps any term {\small\verb%"t"%} to the corresponding theorem {\small\verb%|- t = t%}.
\FAILURE
Never fails.
\SEEALSO
ALL_CONV, REFL_TAC.
\ENDDOC
\DOC{REFL\_TAC}
\TYPE {\small\verb%REFL_TAC : tactic%}\egroup
\SYNOPSIS
Solves a goal which is an equation between alpha-equivalent terms.
\DESCRIBE
When applied to a goal {\small\verb%A ?- t = t'%}, where {\small\verb%t%} and {\small\verb%t'%} are alpha-equivalent,
{\small\verb%REFL_TAC%} completely solves it.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t = t'
============= REFL_TAC
\end{verbatim}
}
\FAILURE
Fails unless the goal is an equation between alpha-equivalent terms.
\SEEALSO
ACCEPT_TAC, MATCH_ACCEPT_TAC, REWRITE_TAC.
\ENDDOC
\DOC{remove}
\TYPE {\small\verb%remove : ((* -> bool) -> * list -> (* # * list))%}\egroup
\SYNOPSIS
Separates the first element of a list to satisfy a predicate from the rest of
the list.
\FAILURE
Fails with {\small\verb%hd%} if no element satisfes the predicate. This will always be the
case for an empty list.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#remove (\x. x = 3) [1;2;3;4;5;6];;
(3, [1; 2; 4; 5; 6]) : (int # int list)
\end{verbatim}
}
\SEEALSO
partition, filter.
\ENDDOC
\DOC{remove\_sticky\_type}
\TYPE {\small\verb%remove_sticky_type : (string -> type)%}\egroup
\SYNOPSIS
Removes a sticky type from a given variable.
\DESCRIBE
A call {\small\verb%remove_sticky_type name%} will remove any sticky type from {\small\verb%name%},
whether this was inferred automatically as a result of the setting of the
{\small\verb%sticky%} flag, or given explicitly by the {\small\verb%set_sticky_type%} function. It
returns the sticky type which was associated with that name. For more
details of the sticky type mechanism, refer to the DESCRIPTION.
\FAILURE
Fails if the name was not associated with a sticky type.
\SEEALSO
set_sticky_type, sticky_list.
\ENDDOC
\DOC{REPEATC}
\TYPE {\small\verb%REPEATC : (conv -> conv)%}\egroup
\SYNOPSIS
Repeatedly apply a conversion (zero or more times) until it fails.
\DESCRIBE
If {\small\verb%c%} is a conversion effects a transformation of a term {\small\verb%t%} to a term {\small\verb%t'%},
that is if {\small\verb%c%} maps {\small\verb%t%} to the theorem {\small\verb%|- t = t`%}, then {\small\verb%REPEATC c%} is the
conversion that repeats this transformation as often as possible. More
exactly, if {\small\verb%c%} maps the term {\small\verb%"ti"%} to {\small\verb%|- ti=t(i+1)%} for {\small\verb%i%} from {\small\verb%1%} to {\small\verb%n%},
but fails when applied to the {\small\verb%n+1%}th term {\small\verb%"t(n+1)"%}, then {\small\verb%REPEATC c "t1"%}
returns {\small\verb%|- t1 = t(n+1)%}. And if {\small\verb%c "t"%} fails, them {\small\verb%REPEATC c "t"%} returns
{\small\verb%|- t = t%}.
\FAILURE
Never fails, but can diverge if the supplied conversion never fails.
\ENDDOC
\DOC{REPEAT}
\TYPE {\small\verb%REPEAT : (tactic -> tactic)%}\egroup
\SYNOPSIS
Repeatedly applies a tactic until it fails.
\DESCRIBE
The tactic {\small\verb%REPEAT T%} is a tactic which applies {\small\verb%T%} to a goal, and while it
succeeds, continues applying it to all subgoals generated.
\FAILURE
The application of {\small\verb%REPEAT%} to a tactic never fails, and neither does the
composite tactic, even if the basic tactic fails immediately.
\SEEALSO
EVERY, FIRST, ORELSE, THEN, THENL.
\ENDDOC
\DOC{REPEAT\_GTCL}
\TYPE {\small\verb%REPEAT_GTCL : (thm_tactical -> thm_tactical)%}\egroup
\SYNOPSIS
Applies a theorem-tactical until it fails when applied to a goal.
\DESCRIBE
When applied to a theorem-tactical, a theorem-tactic, a theorem and a goal:
{\par\samepage\setseps\small
\begin{verbatim}
REPEAT_GTCL ttl ttac th goal
\end{verbatim}
}
\noindent {\small\verb%REPEAT_GTCL%} repeatedly modifies the theorem according to
{\small\verb%ttl%} till the result of handing it to {\small\verb%ttac%} and applying it to the goal
fails (this may be no times at all).
\FAILURE
Fails iff the theorem-tactic fails immediately when applied to the theorem
and the goal.
\EXAMPLE
The following tactic matches {\small\verb%th%}'s antecedents against the assumptions
of the goal until it can do so no longer, then puts the resolvents
onto the assumption list:
{\par\samepage\setseps\small
\begin{verbatim}
REPEAT_GTCL (IMP_RES_THEN ASSUME_TAC) th
\end{verbatim}
}
\SEEALSO
REPEAT_TCL, THEN_TCL.
\ENDDOC
\DOC{REPEAT\_TCL}
\TYPE {\small\verb%REPEAT_TCL : (thm_tactical -> thm_tactical)%}\egroup
\SYNOPSIS
Repeatedly applies a theorem-tactical until it fails when applied to the
theorem.
\DESCRIBE
When applied to a theorem-tactical, a theorem-tactic and a theorem:
{\par\samepage\setseps\small
\begin{verbatim}
REPEAT_TCL ttl ttac th
\end{verbatim}
}
\noindent {\small\verb%REPEAT_TCL%} repeatedly modifies the theorem according to {\small\verb%ttl%}
until it fails when given to the theorem-tactic {\small\verb%ttac%}.
\FAILURE
Fails iff the theorem-tactic fails immediately when applied to the theorem.
\EXAMPLE
It is often desirable to repeat the action of basic theorem-tactics. For
example {\small\verb%CHOOSE_THEN%} strips off a single existential quantification, so one
might use {\small\verb%REPEAT_TCL CHOOSE_THEN%} to get rid of them all.
Alternatively, one might want to repeatedly break apart a theorem which is a
nested conjunction and apply the same theorem-tactic to each conjunct. For
example the following goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- ((0 = w) /\ (0 = x)) /\ (0 = y) /\ (0 = z) ==> (w + x + y + z = 0)
\end{verbatim}
}
\noindent might be solved by
{\par\samepage\setseps\small
\begin{verbatim}
DISCH_THEN (REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
REWRITE_TAC[ADD_CLAUSES]
\end{verbatim}
}
\SEEALSO
REPEAT_GTCL, THEN_TCL.
\ENDDOC
\DOC{rep\_goals}
\TYPE {\small\verb%rep_goals : (goalstack -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{replicate}
\TYPE {\small\verb%replicate : (* -> int -> * list)%}\egroup
\SYNOPSIS
Makes a list consisting of a value replicated a specified number of times.
\DESCRIBE
{\small\verb%replicate x n%} returns {\small\verb%[x;...;x]%}, a list of length {\small\verb%n%}.
\FAILURE
Fails if number of replications is less than zero.
\ENDDOC
\DOC{RES\_CANON}
\TYPE {\small\verb%RES_CANON : (thm -> thm list)%}\egroup
\SYNOPSIS
Put an implication into canonical form for resolution.
\DESCRIBE
All the HOL resolution tactics (e.g. {\small\verb%IMP_RES_TAC%}) work by using modus ponens
to draw consequences from an implicative theorem and the assumptions of the
goal. Some of these tactics derive this implication from a theorem supplied
explicitly the user (or otherwise from `outside' the goal) and some obtain it
from the assumptions of the goal itself. But in either case, the supplied
theorem or assumption is first transformed into a list of implications in
`canonical' form by the function {\small\verb%RES_CANON%}.
The theorem argument to {\small\verb%RES_CANON%} should be either be an implication (which
can be universally quantified) or a theorem from which an implication can be
derived using the transformation rules discussed below. Given such a theorem,
{\small\verb%RES_CANON%} returns a list of implications in canonical form. It is the
implications in this resulting list that are used by the various resolution
tactics to infer consequences from the assumptions of a goal.
The transformations done by {\small\verb%RES_CANON th%} to the theorem {\small\verb%th%} are as follows.
First, if {\small\verb%th%} is a negation {\small\verb%A |- ~t%}, this is converted to the implication
{\small\verb%A |- t ==> F%}. The following inference rules are then applied
repeatedly, until no further rule applies. Conjunctions are split into their
components and equivalence (boolean equality) is split into implication in
both directions:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 /\ t2 A |- t1 = t2
-------------------- ----------------------------------
A |- t1 A |- t2 A |- t1 ==> t2 A |- t2 ==> t1
\end{verbatim}
}
\noindent Conjunctive antecedents are transformed by:
{\par\samepage\setseps\small
\begin{verbatim}
A |- (t1 /\ t2) ==> t
---------------------------------------------------
A |- t1 ==> (t2 ==> t) A |- t2 ==> (t1 ==> t)
\end{verbatim}
}
\noindent and disjunctive antecedents by:
{\par\samepage\setseps\small
\begin{verbatim}
A |- (t1 \/ t2) ==> t
--------------------------------
A |- t1 ==> t A |- t2 ==> t
\end{verbatim}
}
\noindent The scope of universal quantifiers is restricted, if possible:
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x. t1 ==> t2
-------------------- [if x is not free in t1]
A |- t1 ==> !x. t2
\end{verbatim}
}
\noindent and existentially-quantified antecedents are eliminated by:
{\par\samepage\setseps\small
\begin{verbatim}
A |- (?x. t1) ==> t2
--------------------------- [x' chosen so as not to be free in t2]
A |- !x'. t1[x'/x] ==> t2
\end{verbatim}
}
\noindent Finally, when no further applications of the above rules are
possible, and the theorem is an implication:
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x1...xn. t1 ==> t2
\end{verbatim}
}
\noindent then the theorem {\small\verb%A u {t1} |- t2%} is transformed by a recursive
application of {\small\verb%RES_CANON%} to get a list of theorems:
{\par\samepage\setseps\small
\begin{verbatim}
[A u {t1} |- t21 ; ... ; A u {t1} |- t2n]
\end{verbatim}
}
\noindent and the result of discharging {\small\verb%t1%} from these theorems:
{\par\samepage\setseps\small
\begin{verbatim}
[A |- !x1...xn. t1 ==> t21 ; ... ; A |- !x1...xn. t1 ==> t2n]
\end{verbatim}
}
\noindent is returned. That is, the transformation rules are recursively
applied to the conclusions of all implications.
\FAILURE
{\small\verb%RES_CANON th%} fails if no implication(s) can be derived from {\small\verb%th%} using the
transformation rules shown above.
\EXAMPLE
The uniqueness of the remainder {\small\verb%k MOD n%} is expressed in HOL by the built-in
theorem {\small\verb%MOD_UNIQUE%}:
{\par\samepage\setseps\small
\begin{verbatim}
|- !n k r. (?q. (k = (q * n) + r) /\ r < n) ==> (k MOD n = r)
\end{verbatim}
}
\noindent For this theorem, the canonical list of implications returned by
{\small\verb%RES_CANON%} is as follows:
{\par\samepage\setseps\small
\begin{verbatim}
#RES_CANON MOD_UNIQUE;;
[|- !k q n r. (k = (q * n) + r) ==> r < n ==> (k MOD n = r);
|- !r n. r < n ==> (!k q. (k = (q * n) + r) ==> (k MOD n = r))]
: thm list
\end{verbatim}
}
\noindent The existentially-quantified, conjunctive, antecedent has given rise
to two implications, and the scope of universal quantifiers has been restricted
to the conclusions of the resulting implications wherever possible.
\USES
The primary use of {\small\verb%RES_CANON%} is for the (internal) pre-processing phase of
the built-in resolution tactics {\small\verb%IMP_RES_TAC%}, {\small\verb%IMP_RES_THEN%}, {\small\verb%RES_TAC%}, and
{\small\verb%RES_THEN%}. But the function {\small\verb%RES_CANON%} is also made available at top-level
so that users can call it to see the actual form of the implications used for
resolution in any particular case.
\SEEALSO
IMP_RES_TAC, IMP_RES_THEN, RES_TAC, RES_THEN.
\ENDDOC
\DOC{RES\_TAC}
\TYPE {\small\verb%RES_TAC : tactic%}\egroup
\SYNOPSIS
Enriches assumptions by repeatedly resolving them against each other.
\DESCRIBE
{\small\verb%RES_TAC%} searches for pairs of assumed assumptions of a goal (that is, for a
candidate implication and a candidate antecedent, respectively) which can be
`resolved' to yield new results. The conclusions of all the new results are
returned as additional assumptions of the subgoal(s). The effect of {\small\verb%RES_TAC%}
on a goal is to enrich the assumptions set with some of its collective
consequences.
When applied to a goal {\small\verb%A ?- g%}, the tactic {\small\verb%RES_TAC%} uses {\small\verb%RES_CANON%} to
obtain a set of implicative theorems in canonical form from the assumptions {\small\verb%A%}
of the goal. Each of the resulting theorems (if there are any) will have the
form:
{\par\samepage\setseps\small
\begin{verbatim}
A |- u1 ==> u2 ==> ... ==> un ==> v
\end{verbatim}
}
\noindent {\small\verb%RES_TAC%} then tries to repeatedly `resolve' these theorems
against the assumptions of a goal by attempting to match the antecedents {\small\verb%u1%},
{\small\verb%u2%}, ..., {\small\verb%un%} (in that order) to some assumption of the goal (i.e. to some
candidate antecedents among the assumptions). If all the antecedents can be
matched to assumptions of the goal, then an instance of the theorem
{\par\samepage\setseps\small
\begin{verbatim}
A u {a1,...,an} |- v
\end{verbatim}
}
\noindent called a `final resolvent' is obtained by repeated specialization of
the variables in the implicative theorem, type instantiation, and applications
of modus ponens. If only the first {\small\verb%i%} antecedents {\small\verb%u1%}, ..., {\small\verb%ui%} can be
matched to assumptions and then no further matching is possible, then the final
resolvent is an instance of the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
A u {a1,...,ai} |- u(i+1) ==> ... ==> v
\end{verbatim}
}
\noindent All the final resolvents obtained in this way (there may be several,
since an antecedent {\small\verb%ui%} may match several assumptions) are added to the
assumptions of the goal, in the stripped form produced by using
{\small\verb%STRIP_ASSUME_TAC%}. If the conclusion of any final resolvent is a
contradiction `{\small\verb%F%}' or is alpha-equivalent to the conclusion of the goal, then
{\small\verb%RES_TAC%} solves the goal.
\FAILURE
{\small\verb%RES_TAC%} cannot fail and so should not be unconditionally {\small\verb%REPEAT%}ed. However,
since the final resolvents added to the original assumptions are never used as
`candidate antecedents' it is sometimes necessary to apply {\small\verb%RES_TAC%} more than
once to derive the desired result.
\SEEALSO
IMP_RES_TAC, IMP_RES_THEN, RES_CANON, RES_THEN.
\ENDDOC
\DOC{RES\_THEN}
\TYPE {\small\verb%RES_THEN : (thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Resolves all implicative assumptions against the rest.
\DESCRIBE
Like the basic resolution function {\small\verb%IMP_RES_THEN%}, the resolution tactic
{\small\verb%RES_THEN%} performs a single-step resolution of an implication and the
assumptions of a goal. {\small\verb%RES_THEN%} differs from {\small\verb%IMP_RES_THEN%} only in that the
implications used for resolution are taken from the assumptions of the goal
itself, rather than supplied as an argument.
When applied to a goal {\small\verb%A ?- g%}, the tactic {\small\verb%RES_THEN ttac%} uses {\small\verb%RES_CANON%} to
obtain a set of implicative theorems in canonical form from the assumptions {\small\verb%A%}
of the goal. Each of the resulting theorems (if there are any) will have the
form:
{\par\samepage\setseps\small
\begin{verbatim}
ai |- !x1...xn. ui ==> vi
\end{verbatim}
}
\noindent where {\small\verb%ai%} is one of the assumptions of the goal. Having obtained
these implications, {\small\verb%RES_THEN%} then attempts to match each antecedent {\small\verb%ui%} to
each assumption {\small\verb%aj |- aj%} in the assumptions {\small\verb%A%}. If the antecedent {\small\verb%ui%} of
any implication matches the conclusion {\small\verb%aj%} of any assumption, then an instance
of the theorem {\small\verb%ai, aj |- vi%}, called a `resolvent', is obtained by
specialization of the variables {\small\verb%x1%}, ..., {\small\verb%xn%} and type instantiation,
followed by an application of modus ponens. There may be more than one
canonical implication derivable from the assumptions of the goal and each
such implication is tried against every assumption, so there may be several
resolvents (or, indeed, none).
Tactics are produced using the theorem-tactic {\small\verb%ttac%} from all these resolvents
(failures of {\small\verb%ttac%} at this stage are filtered out) and these tactics are then
applied in an unspecified sequence to the goal. That is,
{\par\samepage\setseps\small
\begin{verbatim}
RES_THEN ttac (A ?- g)
\end{verbatim}
}
\noindent has the effect of:
{\par\samepage\setseps\small
\begin{verbatim}
MAP_EVERY (mapfilter ttac [... ; (ai,aj |- vi) ; ...]) (A ?- g)
\end{verbatim}
}
\noindent where the theorems {\small\verb%ai,aj |- vi%} are all the consequences that can be
drawn by a (single) matching modus-ponens inference from the assumptions {\small\verb%A%}
and the implications derived using {\small\verb%RES_CANON%} from the assumptions. The
sequence in which the theorems {\small\verb%ai,aj |- vi%} are generated and the
corresponding tactics applied is unspecified.
\FAILURE
Evaluating {\small\verb%RES_THEN ttac th%} fails with `{\small\verb%no implication%}' if no
implication(s) can be derived from the assumptions of the goal by the
transformation process described under the entry for {\small\verb%RES_CANON%}. Evaluating
{\small\verb%RES_THEN ttac (A ?- g)%} fails with `{\small\verb%no resolvents%}' if no assumption of the
goal {\small\verb%A ?- g%} can be resolved with the derived implication or implications.
Evaluation also fails, with `{\small\verb%no tactics%}', if there are resolvents, but for
every resolvent {\small\verb%ai,aj |- vi%} evaluating the application {\small\verb%ttac (ai,aj |- vi)%}
fails---that is, if for every resolvent {\small\verb%ttac%} fails to produce a tactic.
Finally, failure is propagated if any of the tactics that are produced from the
resolvents by {\small\verb%ttac%} fails when applied in sequence to the goal.
\SEEALSO
IMP_RES_TAC, IMP_RES_THEN, MATCH_MP, RES_CANON, RES_TAC.
\ENDDOC
\DOC{resume\_recording}
\TYPE {\small\verb%resume_recording : void -> void%}\egroup
\SYNOPSIS
Suspend proof recording temporarily.
\DESCRIBE
A proof is a list of inference steps. After the proof recorder is
enabled, every inference performed by the system is recorded and
cumulated in an internal buffer. When a proof is completed, the raw
records can then be processed and output to a disk file.
{\small\verb%resume_recording%} is a low level user function for managing the proof
recorder. It resumes the proof recorder without clearing the internal
inference step buffer. The proof recorder should be in the suspended state.
Otherwise, this function does nothing.
The current state of the proof recorder can interrogated using the
function {\small\verb%is_recording_proof%}. A value of {\small\verb%false%} indicates the proof
recorder is disabled.
\FAILURE
Never fail.
\COMMENTS
This function is used to implement higher level user functions for
recording proof in the library {\small\verb%record_proof%}. It is much more
convenient to use those functions than the low level functions
such as {\small\verb%resume_recording%} directly.
\SEEALSO
record_proof, is_recording_proof, RecordStep, get_steps, suspend_recording,
current_proof, current_proof_file,
new_proof_file, close_proof_file, begin_proof, end_proof,
TAC_PROOF, PROVE, prove, prove_thm.
\ENDDOC
\DOC{rev\_assoc}
\TYPE {\small\verb%rev_assoc : (* -> (** # *) list -> (** # *))%}\egroup
\SYNOPSIS
Searches a list of pairs for a pair whose second component equals a specified
value.
\DESCRIBE
{\small\verb%rev_assoc y [(x1,y1);...;(xn,yn)]%} returns the first {\small\verb%(xi,yi)%} in the list
such that {\small\verb%yi%} equals {\small\verb%y%}.
\FAILURE
Fails if no matching pair is found. This will always be the case if the list
is empty.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#rev_assoc 2 [(1,4);(3,2);(2,5);(2,6)];;
(3, 2) : (int # int)
\end{verbatim}
}
\SEEALSO
assoc, find, mem, tryfind, exists, forall.
\ENDDOC
\DOC{rev}
\TYPE {\small\verb%rev : (* list -> * list)%}\egroup
\SYNOPSIS
Reverses a list.
\DESCRIBE
{\small\verb%rev [x1;...;xn]%} returns {\small\verb%[xn;...;x1]%}.
\FAILURE
Never fails.
\ENDDOC
\DOC{REVERSE\_CONV}
\TYPE {\small\verb%REVERSE_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of reversing a list.
\DESCRIBE
{\small\verb%REVERSE_CONV%} a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
REVERSE [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- REVERSE [x0;...xn] = [xn;...x0]
\end{verbatim}
}
\noindent where the right-hand side is the list in the reverse order.
\FAILURE
{\small\verb%REVERSE_CONV tm%} fails if {\small\verb%tm%} is not of the form described above.
\EXAMPLE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
REVERSE_CONV "REVERSE [0;1;2;3;4]";;
\end{verbatim}
}
\noindent returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- REVERSE [0;1;2;3;4] = [4;3;2;1;0]
\end{verbatim}
}
\SEEALSO
FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{rev\_itlist}
\TYPE {\small\verb%rev_itlist : ((* -> ** -> **) -> * list -> ** -> **)%}\egroup
\SYNOPSIS
Applies a binary function between adjacent elements of the reverse of a list.
\DESCRIBE
{\small\verb%rev_itlist f [x1;...;xn] y%} returns {\small\verb%f xn ( ... (f x2 (f x1 y))...)%}.
It returns {\small\verb%y%} if the list is empty.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#rev_itlist (\x y. x * y) [1;2;3;4] 1;;
24 : int
\end{verbatim}
}
\SEEALSO
itlist, end_itlist.
\ENDDOC
\DOC{REW\_DEPTH\_CONV}
\TYPE {\small\verb%REW_DEPTH_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion top-down to all subterms, retraversing changed ones.
For use in rewriting.
\DESCRIBE
{\small\verb%REW_DEPTH_CONV c tm%} repeatedly applies the conversion {\small\verb%c%} to all the subterms
of the term {\small\verb%tm%}, including the term {\small\verb%tm%} itself. The supplied conversion {\small\verb%c%}
is applied to the subterms of {\small\verb%tm%} in top-down order and is applied repeatedly
(zero or more times, as is done by {\small\verb%REPEATC%}) at each subterm until it fails.
If a subterm {\small\verb%t%} is changed (up to alpha-equivalence) by virtue of the
application of {\small\verb%c%} to its own subterms, then the term into which {\small\verb%t%} is
transformed is retraversed by applying {\small\verb%REW_DEPTH_CONV c%} to it.
{\small\verb%REW_DEPTH_CONV%} is a special version of {\small\verb%TOP_DEPTH_CONV%} for use by the
rewriting conversions, rules and tactics. It differs from {\small\verb%TOP_DEPTH_CONV%} as
follows: If converting an abstraction fails due to the presence of the bound
variable in the hypotheses of the theorem generated by converting the body,
{\small\verb%REW_DEPTH_CONV%} retries the conversion having renamed the bound variable of
the abstraction. If successful the renaming is reversed.
\FAILURE
{\small\verb%REW_DEPTH_CONV c tm%} never fails but can diverge.
\EXAMPLE
The following example illustrates the difference between the functions
{\small\verb%REW_DEPTH_CONV%} and {\small\verb%TOP_DEPTH_CONV%}. It is not intended to illustrate the
full range of behaviour of the former. Both {\small\verb%REW_DEPTH_CONV%} and
{\small\verb%TOP_DEPTH_CONV%} successfully apply the theorem {\small\verb%ADD_0%} inside an abstraction:
{\par\samepage\setseps\small
\begin{verbatim}
#REW_DEPTH_CONV (REWR_CONV ADD_0) "\n. n + 0";;
|- (\n. n + 0) = (\n. n)
#TOP_DEPTH_CONV (REWR_CONV ADD_0) "\n. n + 0";;
|- (\n. n + 0) = (\n. n)
\end{verbatim}
}
\noindent However, if a hypothesis containing a free occurrence of the bound
variable is added to the rewrite rule, it interferes with the operation of
{\small\verb%TOP_DEPTH_CONV%} but not that of {\small\verb%REW_DEPTH_CONV%}:
{\par\samepage\setseps\small
\begin{verbatim}
#let th = ADD_ASSUM "n = 0" ADD_0;;
th = n = 0 |- !m. m + 0 = m
#REW_DEPTH_CONV (REWR_CONV th) "\n. n + 0";;
n = 0 |- (\n. n + 0) = (\n. n)
#TOP_DEPTH_CONV (REWR_CONV th) "\n. n + 0";;
|- (\n. n + 0) = (\n. n + 0)
\end{verbatim}
}
\COMMENTS
The implementation of this function uses failure to avoid rebuilding
unchanged subterms. That is to say, during execution the failure string
{\small\verb%`QCONV`%} may be generated and later trapped. The behaviour of the function
is dependent on this use of failure. So, if the conversion given as argument
happens to generate a failure with string {\small\verb%`QCONV`%}, the operation of
{\small\verb%REW_DEPTH_CONV%} will be unpredictable.
\SEEALSO
ONCE_REW_DEPTH_CONV, TOP_DEPTH_CONV.
\ENDDOC
\DOC{REWR\_CONV}
\TYPE {\small\verb%REWR_CONV : (thm -> conv)%}\egroup
\SYNOPSIS
Uses an instance of a given equation to rewrite a term.
\DESCRIBE
{\small\verb%REWR_CONV%} is one of the basic building blocks for the implementation of
rewriting in the HOL system. In particular, the term replacement or rewriting
done by all the built-in rewriting rules and tactics is ultimately done by
applications of {\small\verb%REWR_CONV%} to appropriate subterms. The description given
here for {\small\verb%REWR_CONV%} may therefore be taken as a specification of the atomic
action of replacing equals by equals that is used in all these higher level
rewriting tools.
The first argument to {\small\verb%REWR_CONV%} is expected to be an equational theorem
which is to be used as a left-to-right rewrite rule. The general form of this
theorem is:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t[x1,...,xn] = u[x1,...,xn]
\end{verbatim}
}
\noindent where {\small\verb%x1%}, ..., {\small\verb%xn%} are all the variables that occur free in the
left-hand side of the conclusion of the theorem but do not occur free in the
assumptions. Any of these variables may also be universally quantified at the
outermost level of the equation, as for example in:
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x1...xn. t[x1,...,xn] = u[x1,...,xn]
\end{verbatim}
}
\noindent Note that {\small\verb%REWR_CONV%} will also work, but will give a generally
undesirable result (see below), if the right-hand side of the equation contains
free variables that do not also occur free on the left-hand side, as for
example in:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]
\end{verbatim}
}
\noindent where the variables {\small\verb%y1%}, ..., {\small\verb%ym%} do not occur free in
{\small\verb%t[x1,...,xn]%}.
If {\small\verb%th%} is an equational theorem of the kind shown above, then
{\small\verb%REWR_CONV th%} returns a conversion that maps terms of the form
{\small\verb%t[e1,...,en/x1,...,xn]%}, in which the terms {\small\verb%e1%}, ..., {\small\verb%en%} are free for
{\small\verb%x1%}, ..., {\small\verb%xn%} in {\small\verb%t%}, to theorems of the form:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t[e1,...,en/x1,...,xn] = u[e1,...,en/x1,...,xn]
\end{verbatim}
}
\noindent That is, {\small\verb%REWR_CONV th tm%} attempts to match the left-hand side of
the rewrite rule {\small\verb%th%} to the term {\small\verb%tm%}. If such a match is possible, then
{\small\verb%REWR_CONV%} returns the corresponding substitution instance of {\small\verb%th%}.
If {\small\verb%REWR_CONV%} is given a theorem {\small\verb%th%}:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]
\end{verbatim}
}
\noindent where the variables {\small\verb%y1%}, ..., {\small\verb%ym%} do not occur free in the
left-hand side, then the result of applying the conversion {\small\verb%REWR_CONV th%} to
a term {\small\verb%t[e1,...,en/x1,...,xn]%} will be:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t[e1,...,en/x1,...,xn] = u[e1,...,en,v1,...,vm/x1,...,xn,y1,...,ym]
\end{verbatim}
}
\noindent where {\small\verb%v1%}, ..., {\small\verb%vm%} are variables chosen so as to be free nowhere
in {\small\verb%th%} or in the input term. The user has no control over the choice of the
variables {\small\verb%v1%}, ..., {\small\verb%vm%}, and the variables actually chosen may well be
inconvenient for other purposes. This situation is, however, relatively rare;
in most equations the free variables on the right-hand side are a subset of the
free variables on the left-hand side.
In addition to doing substitution for free variables in the supplied equational
theorem (or `rewrite rule'), {\small\verb%REWR_CONV th tm%} also does type instantiation,
if this is necessary in order to match the left-hand side of the given rewrite
rule {\small\verb%th%} to the term argument {\small\verb%tm%}. If, for example, {\small\verb%th%} is the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t[x1,...,xn] = u[x1,...,xn]
\end{verbatim}
}
\noindent and the input term {\small\verb%tm%} is (a substitution instance of) an instance
of {\small\verb%t[x1,...,xn]%} in which the types {\small\verb%ty1%}, ..., {\small\verb%tyi%} are substituted for the
type variables {\small\verb%vty1%}, ..., {\small\verb%vtyi%}, that is if:
{\par\samepage\setseps\small
\begin{verbatim}
tm = t[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]
\end{verbatim}
}
\noindent then {\small\verb%REWR_CONV th tm%} returns:
{\par\samepage\setseps\small
\begin{verbatim}
A |- (t = u)[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]
\end{verbatim}
}
\noindent Note that, in this case, the type variables {\small\verb%vty1%}, ..., {\small\verb%vtyi%} must
not occur anywhere in the hypotheses {\small\verb%A%}. Otherwise, the conversion will fail.
\FAILURE
{\small\verb%REWR_CONV th%} fails if {\small\verb%th%} is not an equation or an equation universally
quantified at the outermost level. If {\small\verb%th%} is such an equation:
{\par\samepage\setseps\small
\begin{verbatim}
th = A |- !v1....vi. t[x1,...,xn] = u[x1,...,xn,y1,...,yn]
\end{verbatim}
}
\noindent then {\small\verb%REWR_CONV th tm%} fails unless the term {\small\verb%tm%} is
alpha-equivalent to an instance of the left-hand side {\small\verb%t[x1,...,xn]%} which
can be obtained by instantiation of free type variables (i.e. type variables
not occurring in the assumptions {\small\verb%A%}) and substitution for the free variables
{\small\verb%x1%}, ..., {\small\verb%xn%}.
\EXAMPLE
The following example illustrates a straightforward use of {\small\verb%REWR_CONV%}.
The supplied rewrite rule is polymorphic, and both substitution for free
variables and type instantiation may take place. {\small\verb%EQ_SYM_EQ%} is the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- !x:*. !y. (x = y) = (y = x)
\end{verbatim}
}
\noindent and {\small\verb%REWR_CONV EQ_SYM%} behaves as follows:
{\par\samepage\setseps\small
\begin{verbatim}
#REWR_CONV EQ_SYM_EQ "1 = 2";;
|- (1 = 2) = (2 = 1)
#REWR_CONV EQ_SYM_EQ "1 < 2";;
evaluation failed REWR_CONV: lhs of theorem doesn't match term
\end{verbatim}
}
\noindent The second application fails because the left-hand side {\small\verb%"x = y"%} of
the rewrite rule does not match the term to be rewritten, namely {\small\verb%"1 < 2"%}.
In the following example, one might expect the result to be the theorem
{\small\verb%A |- f 2 = 2%}, where {\small\verb%A%} is the assumption of the supplied rewrite rule:
{\par\samepage\setseps\small
\begin{verbatim}
#REWR_CONV (ASSUME "!x:*. f x = x") "f 2:num";;
evaluation failed REWR_CONV: lhs of theorem doesn't match term
\end{verbatim}
}
\noindent The application fails, however, because the type variable {\small\verb%*%} appears
in the assumption of the theorem returned by {\small\verb%ASSUME "!x:*. f x = x"%}.
Failure will also occur in situations like:
{\par\samepage\setseps\small
\begin{verbatim}
#REWR_CONV (ASSUME "f (n:num) = n") "f 2:num";;
evaluation failed REWR_CONV: lhs of theorem doesn't match term
\end{verbatim}
}
\noindent where the left-hand side of the supplied equation contains a free
variable (in this case {\small\verb%n%}) which is also free in the assumptions, but which
must be instantiated in order to match the input term.
\SEEALSO
REWRITE_CONV.
\ENDDOC
\DOC{REWRITE\_CONV}
\TYPE {\small\verb%REWRITE_CONV : (thm list -> conv)%}\egroup
\SYNOPSIS
Rewrites a term including built-in tautologies in the list of rewrites.
\DESCRIBE
Rewriting a term using {\small\verb%REWRITE_CONV%} utilizes as rewrites two sets
of theorems: the tautologies in the ML list {\small\verb%basic_rewrites%} and the
ones supplied by the user. The rule searches top-down and recursively
for subterms which match the left-hand side of any of the possible
rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.
Variants of this conversion allow changes in the set of equations used:
{\small\verb%PURE_REWRITE_CONV%} and others in its family do not rewrite with the
theorems in {\small\verb%basic_rewrites%}.
The top-down recursive search for matches may not be desirable, as
this may increase the number of inferences being made or may result in
divergence. In this case other rewriting tools such as
{\small\verb%ONCE_REWRITE_CONV%} and {\small\verb%GEN_REWRITE_CONV%} can be used, or the set of
theorems given may be reduced.
See {\small\verb%GEN_REWRITE_CONV%} for the general strategy for simplifying
theorems in HOL using equational theorems.
\FAILURE
Does not fail, but may diverge if the sequence of rewrites is
non-terminating.
\USES
Used to manipulate terms by rewriting them with theorems.
While resulting in high degree of automation, {\small\verb%REWRITE_CONV%} can
spawn a large number of inference steps. Thus, variants such
as {\small\verb%PURE_REWRITE_CONV%}, or other rules such as {\small\verb%SUBST_CONV%}, may be used
instead to improve efficiency.
\SEEALSO
basic_rewrites, GEN_REWRITE_CONV, ONCE_REWRITE_CONV,
PURE_REWRITE_CONV, REWR_CONV, SUBST_CONV.
\ENDDOC
\DOC{REWRITE\_RULE}
\TYPE {\small\verb%REWRITE_RULE : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Rewrites a theorem including built-in tautologies in the list of rewrites.
\DESCRIBE
Rewriting a theorem using {\small\verb%REWRITE_RULE%} utilizes as rewrites two sets
of theorems: the tautologies in the ML list {\small\verb%basic_rewrites%} and the
ones supplied by the user. The rule searches top-down and recursively
for subterms which match the left-hand side of any of the possible
rewrites, until none of the transformations are applicable. There is no
ordering specified among the set of rewrites.
Variants of this rule allow changes in the set of equations used:
{\small\verb%PURE_REWRITE_RULE%} and others in its family do not rewrite with the
theorems in {\small\verb%basic_rewrites%}. Rules such as {\small\verb%ASM_REWRITE_RULE%} add the
assumptions of the object theorem (or a specified subset of these assumptions)
to the set of possible rewrites.
The top-down recursive search for matches may not be desirable, as
this may increase the number of inferences being made or may result in
divergence. In this case other rewriting tools such as
{\small\verb%ONCE_REWRITE_RULE%} and {\small\verb%GEN_REWRITE_RULE%} can be used, or the set of
theorems given may be reduced.
See {\small\verb%GEN_REWRITE_RULE%} for the general strategy for simplifying
theorems in HOL using equational theorems.
\FAILURE
Does not fail, but may diverge if the sequence of rewrites is
non-terminating.
\USES
Used to manipulate theorems by rewriting them with other theorems.
While resulting in high degree of automation, {\small\verb%REWRITE_RULE%} can
spawn a large number of inference steps. Thus, variants such
as {\small\verb%PURE_REWRITE_RULE%}, or other rules such as {\small\verb%SUBST%}, may be used
instead to improve efficiency.
\SEEALSO
ASM_REWRITE_RULE, basic_rewrites, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWR_CONV, REWRITE_CONV, SUBST.
\ENDDOC
\DOC{REWRITE\_TAC}
\TYPE {\small\verb%REWRITE_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Rewrites a goal including built-in tautologies in the list of rewrites.
\DESCRIBE
Rewriting tactics in HOL provide a recursive left-to-right matching
and rewriting facility that automatically decomposes subgoals and
justifies segments of proof in which equational theorems are used,
singly or collectively. These include the unfolding of definitions,
and the substitution of equals for equals. Rewriting is used either
to advance or to complete the decomposition of subgoals.
{\small\verb%REWRITE_TAC%} transforms (or solves) a goal by using as rewrite rules
(i.e. as left-to-right replacement rules) the conclusions of the given
list of (equational) theorems, as well as a set of built-in theorems
(common tautologies) held in the ML variable {\small\verb%basic_rewrites%}.
Recognition of a tautology often terminates the subgoaling process
(i.e. solves the goal).
The equational rewrites generated are applied recursively and to
arbitrary depth, with matching and instantiation of variables and type
variables. A list of rewrites can set off an infinite rewriting
process, and it is not, of course, decidable in general whether a
rewrite set has that property. The order in which the rewrite theorems
are applied is unspecified, and the user should not depend on any
ordering.
See {\small\verb%GEN_REWRITE_TAC%} for more details on the rewriting process.
Variants of {\small\verb%REWRITE_TAC%} allow the use of a different set of
rewrites. Some of them, such as {\small\verb%PURE_REWRITE_TAC%}, exclude the basic
tautologies from the possible transformations. {\small\verb%ASM_REWRITE_TAC%} and
others include the assumptions at the goal in the set of possible
rewrites.
Still other tactics allow greater control over the search for
rewritable subterms. Several of them such as {\small\verb%ONCE_REWRITE_TAC%} do not
apply rewrites recursively. {\small\verb%GEN_REWRITE_TAC%} allows a rewrite to be
applied at a particular subterm.
\FAILURE
{\small\verb%REWRITE_TAC%} does not fail. Certain sets of rewriting theorems on
certain goals may cause a non-terminating sequence of rewrites.
Divergent rewriting behaviour results from a term {\small\verb%t%} being
immediately or eventually rewritten to a term containing {\small\verb%t%} as a
sub-term. The exact behaviour depends on the {\small\verb%HOL%} implementation; it
may be possible (unfortunately) to fall into Lisp in this event.
\EXAMPLE
The arithmetic theorem {\small\verb%GREATER%}, {\small\verb%|- !m n. m > n = n < m%}, is used
below to advance a goal:
{\par\samepage\setseps\small
\begin{verbatim}
#REWRITE_TAC[GREATER]([],"5 > 4");;
([([], "4 < 5")], -) : subgoals
\end{verbatim}
}
\noindent It is used below with the theorem {\small\verb%LESS_0%},
{\small\verb%|- !n. 0 < (SUC n)%}, to solve a goal:
{\par\samepage\setseps\small
\begin{verbatim}
#let gl,p = REWRITE_TAC[GREATER;LESS_0]([],"(SUC n) > 0");;
gl = [] : goal list
p = - : proof
#p[];;
|- (SUC n) > 0
\end{verbatim}
}
\USES
Rewriting is a powerful and general mechanism in HOL, and an
important part of many proofs. It relieves the user of the burden of
directing and justifying a large number of minor proof steps.
{\small\verb%REWRITE_TAC%} fits a forward proof sequence smoothly into the general
goal-oriented framework. That is, (within one subgoaling step) it
produces and justifies certain forward inferences, none of which are
necessarily on a direct path to the desired goal.
{\small\verb%REWRITE_TAC%} may be more powerful a tactic than is needed in certain
situations; if efficiency is at stake, alternatives might be
considered.
\SEEALSO
ASM_REWRITE_TAC, GEN_REWRITE_TAC, FILTER_ASM_REWRITE_TAC,
FILTER_ONCE_ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWR_CONV, REWRITE_CONV, SUBST_TAC.
\ENDDOC
\DOC{rhs}
\TYPE {\small\verb%rhs : (term -> term)%}\egroup
\SYNOPSIS
Returns the right-hand side of an equation.
\DESCRIBE
{\small\verb%rhs "t1 = t2"%} returns {\small\verb%"t2"%}.
\FAILURE
Fails with {\small\verb%rhs%} if term is not an equality.
\SEEALSO
lhs, dest_eq.
\ENDDOC
\DOC{RIGHT\_AND\_EXISTS\_CONV}
\TYPE {\small\verb%RIGHT_AND_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification of the right conjunct outwards through a
conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%P /\ (?x.Q)%}, the conversion
{\small\verb%RIGHT_AND_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- P /\ (?x.Q) = (?x'. P /\ (Q[x'/x]))
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%P /\ (?x.Q)%}.
\SEEALSO
AND_EXISTS_CONV, EXISTS_AND_CONV, LEFT_AND_EXISTS_CONV.
\ENDDOC
\DOC{RIGHT\_AND\_FORALL\_CONV}
\TYPE {\small\verb%RIGHT_AND_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification of the right conjunct outwards through a
conjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%P /\ (!x.Q)%}, the conversion
{\small\verb%RIGHT_AND_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- P /\ (!x.Q) = (!x'. P /\ (Q[x'/x]))
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%P /\ (!x.Q)%}.
\SEEALSO
AND_FORALL_CONV, FORALL_AND_CONV, LEFT_AND_FORALL_CONV.
\ENDDOC
\DOC{RIGHT\_BETA}
\TYPE {\small\verb%RIGHT_BETA : (thm -> thm)%}\egroup
\SYNOPSIS
Beta-reduces a top-level beta-redex on the right-hand side of an equation.
\DESCRIBE
When applied to an equational theorem, {\small\verb%RIGHT_BETA%} applies beta-reduction at
top level to the right-hand side (only). Variables are renamed if necessary to
avoid free variable capture.
{\par\samepage\setseps\small
\begin{verbatim}
A |- s = (\x. t1) t2
---------------------- RIGHT_BETA
A |- s = t1[t2/x]
\end{verbatim}
}
\FAILURE
Fails unless the theorem is equational, with its right-hand side being
a top-level beta-redex.
\SEEALSO
BETA_CONV, BETA_RULE, BETA_TAC, RIGHT_LIST_BETA.
\ENDDOC
\DOC{RIGHT\_CONV\_RULE}
\TYPE {\small\verb%RIGHT_CONV_RULE : (conv -> thm -> thm)%}\egroup
\SYNOPSIS
Applies a conversion to the right-hand side of an equational theorem.
\DESCRIBE
If {\small\verb%c%} is a conversion that maps a term {\small\verb%"t2"%} to the theorem {\small\verb%|- t2 = t2'%},
then the rule {\small\verb%RIGHT_CONV_RULE c%} infers {\small\verb%|- t1 = t2'%} from the theorem
{\small\verb%|- t1 = t2%}. That is, if {\small\verb%c "t2"%} returns {\small\verb%A' |- t2 = t2'%}, then:
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
--------------------- RIGHT_CONV_RULE c
A u A' |- t1 = t2'
\end{verbatim}
}
\noindent Note that if the conversion {\small\verb%c%} returns a theorem with assumptions,
then the resulting inference rule adds these to the assumptions of the
theorem it returns.
\FAILURE
{\small\verb%RIGHT_CONV_RULE c th%} fails if the conclusion of the theorem {\small\verb%th%} is not an
equation, or if {\small\verb%th%} is an equation but {\small\verb%c%} fails when applied its right-hand
side. The function returned by {\small\verb%RIGHT_CONV_RULE c%} will also fail if the ML
function {\small\verb%c:term->thm%} is not, in fact, a conversion (i.e. a function that maps
a term {\small\verb%t%} to a theorem {\small\verb%|- t = t'%}).
\SEEALSO
CONV_RULE.
\ENDDOC
\DOC{RIGHT\_IMP\_EXISTS\_CONV}
\TYPE {\small\verb%RIGHT_IMP_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification of the consequent outwards through an
implication.
\DESCRIBE
When applied to a term of the form {\small\verb%P ==> (?x.Q)%}, the conversion
{\small\verb%RIGHT_IMP_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- P ==> (?x.Q) = (?x'. P ==> (Q[x'/x]))
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%P ==> (?x.Q)%}.
\SEEALSO
EXISTS_IMP_CONV, LEFT_IMP_FORALL_CONV.
\ENDDOC
\DOC{RIGHT\_IMP\_FORALL\_CONV}
\TYPE {\small\verb%RIGHT_IMP_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification of the consequent outwards through an
implication.
\DESCRIBE
When applied to a term of the form {\small\verb%P ==> (!x.Q)%}, the conversion
{\small\verb%RIGHT_IMP_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- P ==> (!x.Q) = (!x'. P ==> (Q[x'/x]))
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%P ==> (!x.Q)%}.
\SEEALSO
FORALL_IMP_CONV, LEFT_IMP_EXISTS_CONV.
\ENDDOC
\DOC{RIGHT\_LIST\_BETA}
\TYPE {\small\verb%RIGHT_LIST_BETA : (thm -> thm)%}\egroup
\SYNOPSIS
Iteratively beta-reduces a top-level beta-redex on the right-hand side of an
equation.
\DESCRIBE
When applied to an equational theorem, {\small\verb%RIGHT_LIST_BETA%} applies beta-reduction
over a top-level chain of beta-redexes to the right hand side (only). Variables
are renamed if necessary to avoid free variable capture.
{\par\samepage\setseps\small
\begin{verbatim}
A |- s = (\x1...xn. t) t1 ... tn
---------------------------------- RIGHT_LIST_BETA
A |- s = t[t1/x1]...[tn/xn]
\end{verbatim}
}
\FAILURE
Fails unless the theorem is equational, with its right-hand side being
a top-level beta-redex.
\SEEALSO
BETA_CONV, BETA_RULE, BETA_TAC, LIST_BETA_CONV, RIGHT_BETA.
\ENDDOC
\DOC{RIGHT\_OR\_EXISTS\_CONV}
\TYPE {\small\verb%RIGHT_OR_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Moves an existential quantification of the right disjunct outwards through a
disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%P \/ (?x.Q)%}, the conversion
{\small\verb%RIGHT_OR_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- P \/ (?x.Q) = (?x'. P \/ (Q[x'/x]))
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%P \/ (?x.Q)%}.
\SEEALSO
OR_EXISTS_CONV, EXISTS_OR_CONV, LEFT_OR_EXISTS_CONV.
\ENDDOC
\DOC{RIGHT\_OR\_FORALL\_CONV}
\TYPE {\small\verb%RIGHT_OR_FORALL_CONV : conv%}\egroup
\SYNOPSIS
Moves a universal quantification of the right disjunct outwards through a
disjunction.
\DESCRIBE
When applied to a term of the form {\small\verb%P \/ (!x.Q)%}, the conversion
{\small\verb%RIGHT_OR_FORALL_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- P \/ (!x.Q) = (!x'. P \/ (Q[x'/x]))
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
the input term.
\FAILURE
Fails if applied to a term not of the form {\small\verb%P \/ (!x.Q)%}.
\SEEALSO
OR_FORALL_CONV, FORALL_OR_CONV, LEFT_OR_FORALL_CONV.
\ENDDOC
\DOC{root\_goal}
\TYPE {\small\verb%root_goal : tactic%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{rotate}
\TYPE {\small\verb%rotate : (int -> void)%}\egroup
\SYNOPSIS
Reorders the subgoals on top of the subgoal package goal stack.
\DESCRIBE
The function {\small\verb%rotate%} is part of the subgoal package. Calling {\small\verb%rotate n%} forms
a new proof state. It rotates, by {\small\verb%n%} steps, the subgoals in the top level of
the goal stack of the current proof state (i.e., those resulting from the
application of the most recent tactic). Goals are rotated upwards on the stack,
with the top goals being moved to the bottom of the level. If {\small\verb%n%} is greater
than the number of goals on the level, the rotation is performed modulo the
number of subgoals. The previous proof state is stored on the backup list, so
may be restored by a call to {\small\verb%backup%}. The subgoals of the level are printed
from the bottom of the stack. The function {\small\verb%rotate%} is abbreviated by the
function {\small\verb%r%}. For a description of the subgoal package, see {\small\verb%set_goal%}.
\FAILURE
{\small\verb%rotate%} will fail if no goal has been set or if the last goal set has been
completely proved. It will diverge if given a negative argument.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#rotate 1;;
evaluation failed rotate_goals
#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3]) /\ (HD (TL[1;2;3]) = 2)";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3]) /\ (HD(TL[1;2;3]) = 2)"
() : void
#e (REPEAT CONJ_TAC);;
OK..
3 subgoals
"HD(TL[1;2;3]) = 2"
"TL[1;2;3] = [2;3]"
"HD[1;2;3] = 1"
() : void
#rotate 1;;
3 subgoals
"HD[1;2;3] = 1"
"HD(TL[1;2;3]) = 2"
"TL[1;2;3] = [2;3]"
() : void
\end{verbatim}
}
\USES
Proving subgoals in a different order to that generated by the subgoal package.
The subgoals of a goal may be considered in any order. However,
subgoals deeper in the stack cannot be worked on, nor can subgoals higher in
the proof tree.
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
save_top_thm, set_goal, set_state, top_goal, top_thm.
\ENDDOC
\DOC{rotate\_goals}
\TYPE {\small\verb%rotate_goals : (subgoals -> subgoals)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{rotate\_top}
\TYPE {\small\verb%rotate_top : (int -> subgoals list -> subgoals list)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{RULE\_ASSUM\_TAC}
\TYPE {\small\verb%RULE_ASSUM_TAC : ((thm -> thm) -> tactic)%}\egroup
\SYNOPSIS
Maps an inference rule over the assumptions of a goal.
\DESCRIBE
When applied to an inference rule {\small\verb%f%} and a goal {\small\verb%({A1;...;An} ?- t)%},
the {\small\verb%RULE_ASSUM_TAC%} tactical applies the inference rule to each of the
{\small\verb%ASSUME%}d assumptions to give a new goal.
{\par\samepage\setseps\small
\begin{verbatim}
{A1,...,An} ?- t
==================================== RULE_ASSUM_TAC f
{f(A1 |- A1),...,f(An |- An)} ?- t
\end{verbatim}
}
\FAILURE
The application of {\small\verb%RULE_ASSUM_TAC f%} to a goal fails iff {\small\verb%f%} fails when
applied to any of the assumptions of the goal.
\COMMENTS
It does not matter if the goal has no assumptions, but in this case
{\small\verb%RULE_ASSUM_TAC%} has no effect.
\SEEALSO
ASSUM_LIST, MAP_EVERY, MAP_FIRST, POP_ASSUM_LIST.
\ENDDOC
\DOC{save}
\TYPE {\small\verb%save : (string -> void)%}\egroup
\SYNOPSIS
Saves an executable version of HOL in its current state.
\DESCRIBE
The call {\small\verb%save `image`%} will save an executable core image, called {\small\verb%image%}, of
HOL in its current state. This means that if this image is subsequently
executed instead of the normal HOL, any bindings set up will be preserved.
\FAILURE
Will fail only in system-dependent ways, such as running out of disk space.
\COMMENTS
Note that a HOL image is rather large; exactly how large depends on the version
of Lisp and other factors, but it is usually a good many megabytes.
\USES
Avoiding the need to re-execute certain initializations, in particular,
installation, every time HOL is run. Note that a {\small\verb%hol-init.ml%} file will be
executed automatically every time HOL is run, and is usually sufficient for
private initializations. See the DESCRIPTION for details.
\SEEALSO
install.
\ENDDOC
\DOC{save\_thm}
\TYPE {\small\verb%save_thm : ((string # thm) -> thm)%}\egroup
\SYNOPSIS
Stores a theorem in the current theory segment.
\DESCRIBE
The call {\small\verb%save_thm(`name`, th)%} adds the theorem {\small\verb%th%} to the current theory
segment under the name {\small\verb%name%}. The theorem is returned as a value. The call
can be made in both proof and draft mode. The name {\small\verb%name%} must be a distinct
name within the theory segment, but may be the same as for items within other
theory segments of the theory. If the current theory segment is named {\small\verb%thy%},
the theorem will be written to the file {\small\verb%thy.th%} in the directory from which
HOL was called. If the system is in draft mode, other changes made to the
current theory segment during the session will also be written to the theory
file. If the theory file does not exist, it will be created.
\FAILURE
A call to {\small\verb%save_thm%} will fail if the name given is the same as
the name of an existing fact in the current theory segment.
Saving the theorem involves writing to the file system. If the write fails for
any reason {\small\verb%save_thm%} will fail. For example, on start up the initial
theory is {\small\verb%HOL%}. The associated theory files are read-only so an attempt to
save a theorem in that theory segment will fail.
\USES
Adding theorems to the current theory. Saving theorems for retrieval
in later sessions. The theorem may be retrieved using the function
{\small\verb%theorem%}. Binding the result of {\small\verb%save_thm%} to an ML variable makes it easy to
access the theorem in the current terminal session.
\SEEALSO
new_theory, prove_thm, save_top_thm, theorem.
\ENDDOC
\DOC{save\_top\_thm}
\TYPE {\small\verb%save_top_thm : (string -> thm)%}\egroup
\SYNOPSIS
Stores the theorem just proved with the subgoal package in the current theory
segment.
\DESCRIBE
The function {\small\verb%save_top_thm%} is part of the subgoal package. A proof state of
the package consists of either goal and justification stacks if a proof is in
progress or a theorem if a proof has just been completed. If the proof state
consists of a theorem, the call {\small\verb%save_top_thm `name`%} adds that theorem to the
current theory segment under the name {\small\verb%name%}. The theorem is returned as a
value. The name {\small\verb%name%} must be a distinct name within the theory segment, but
may be the same as for items within other theory segments of the theory. If the
current theory segment is named {\small\verb%thy%}, the theorem will be written to the
file {\small\verb%thy.th%} in the directory from which HOL was called. If the system is in
draft mode, other changes made to the current theory segment during the
session will also be written to the theory file. If the theory file does not
exist, it will be created. The call can be made in both proof and draft mode.
For a description of the subgoal package, see {\small\verb%set_goal%}.
\FAILURE
A call to {\small\verb%save_top_thm%} will fail if the proof state does not hold a theorem.
This will be so either because no goal has been set or because a proof is in
progress with unproven subgoals. It will fail if the name given is the same as
the name of an existing fact in the current theory segment.
Storing the theorem involves writing to the file system. If the write fails for
any reason {\small\verb%save_top_thm%} will fail. For example, on start up the initial
theory is {\small\verb%HOL%}. The associated theory files are read-only so an attempt to
store a theorem in that theory segment will fail.
\USES
Adding theorems to the current theory. Saving theorems for retrieval
in later sessions. The theorem may be retrieved using the function
{\small\verb%theorem%}. Binding the result of {\small\verb%save_top_thm%} to an ML variable makes it
easy to access the theorem in the current terminal session.
\SEEALSO
get_state, new_theory, print_state, prove_thm, save_thm, set_goal, set_state,
theorem, top_thm.
\ENDDOC
\DOC{SCANL\_CONV}
\TYPE {\small\verb%SCANL_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a function to elements of a list.
\DESCRIBE
{\small\verb%SCANL_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
SCANL f e0 [x1;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- SCANL f e0 [x1;...xn] = [e0; e1; ...;en]
\end{verbatim}
}
\noindent where {\small\verb%ei%} is the result of applying the function {\small\verb%f%} to
the result of the previous iteration and the current element, i.e.,
{\small\verb%ei = f e(i-1) xi%}. The iteration starts from the left-hand side (the
head) of the list.
The user supplied conversion {\small\verb%conv%} is used to derive a theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- f e(i-1) xi = ei
\end{verbatim}
}
\noindent which is used in the next iteration.
\FAILURE
{\small\verb%SCANL_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above,
or failure occurs when evaluating {\small\verb%conv "f e(i-1) xi"%}.
\EXAMPLE
To sum the elements of a list and save the result at each step, one can evaluate
{\par\samepage\setseps\small
\begin{verbatim}
SCANL_CONV ADD_CONV "SCANL $+ 0 [1;2;3]";;
\end{verbatim}
}
\noindent which returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- SCANL $+ 0[1;2;3] = [0;1;3;6]
\end{verbatim}
}
\noindent In general, if the function {\small\verb%f%} is an explicit lambda abstraction
{\small\verb%(\x x'. t[x,x'])%}, the conversion should be in the form
{\par\samepage\setseps\small
\begin{verbatim}
((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv'))
\end{verbatim}
}
\noindent where {\small\verb%conv'%} applied to {\small\verb%t[x,x']%} returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|-t[x,x'] = e''.
\end{verbatim}
}
\SEEALSO
SCANR_CONV, FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{SCANR\_CONV}
\TYPE {\small\verb%SCANR_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a function to elements of a list.
\DESCRIBE
{\small\verb%SCANR_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
SCANR f e0 [xn;...;x1]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- SCANR f e0 [xn;...;x1] = [en; ...;e1;e0]
\end{verbatim}
}
\noindent where {\small\verb%ei%} is the result of applying the function {\small\verb%f%} to
the result of the previous iteration and the current element, i.e.,
{\small\verb%ei = f e(i-1) xi%}. The iteration starts from the right-hand side (the
tail) of the list.
The user supplied conversion {\small\verb%conv%} is used to derive a theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- f e(i-1) xi = ei
\end{verbatim}
}
\noindent which is used in the next iteration.
\FAILURE
{\small\verb%SCANR_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above,
or failure occurs when evaluating {\small\verb%conv "f e(i-1) xi"%}.
\EXAMPLE
To sum the elements of a list and save the result at each step, one can evaluate
{\par\samepage\setseps\small
\begin{verbatim}
SCANR_CONV ADD_CONV "SCANR $+ 0 [1;2;3]";;
\end{verbatim}
}
\noindent which returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- SCANR $+ 0[1;2;3] = [0;1;3;6]
\end{verbatim}
}
\noindent In general, if the function {\small\verb%f%} is an explicit lambda abstraction
{\small\verb%(\x x'. t[x,x'])%}, the conversion should be in the form
{\par\samepage\setseps\small
\begin{verbatim}
((RATOR_CONV BETA_CONV) THENC BETA_CONV THENC conv'))
\end{verbatim}
}
\noindent where {\small\verb%conv'%} applied to {\small\verb%t[x,x']%} returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|-t[x,x'] = e''.
\end{verbatim}
}
\SEEALSO
SCANL_CONV, FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{S}
\TYPE {\small\verb%S : ((* -> ** -> ***) -> (* -> **) -> * -> ***)%}\egroup
\SYNOPSIS
Performs function composition: {\small\verb%S f g x%} = {\small\verb%f x (g x)%} (the {\small\verb%S%} combinator).
\FAILURE
Never fails.
\SEEALSO
\#, B, C, CB, Co, I, K, KI, o, oo, W.
\ENDDOC
\DOC{search\_path}
\TYPE {\small\verb%search_path : (void -> string list)%}\egroup
\SYNOPSIS
Returns the internal search path use by HOL to find files.
\DESCRIBE
Evaluating {\small\verb%search_path()%} returns a list of strings representing the pathnames
of the directories that are searched when HOL makes access to files on disk
(using {\small\verb%load%}, {\small\verb%compile%}, {\small\verb%load_theory%}, etc.). Although the search path can be
set to an arbitrary list of strings, each string in the search path is normally
expected to be either empty ({\small\verb%``%}) or a pathname with `{\small\verb%/%}' as its final
character. When HOL looks for a file, the directories in the search path are
searched in the order in which they occur in the list returned by
{\small\verb%search_path%}.
\FAILURE
Never fails.
\EXAMPLE
A typical search path is the following:
{\par\samepage\setseps\small
\begin{verbatim}
#search_path();;
[``; `~/`; `/usr/lib/hol/theories/`] : string list
\end{verbatim}
}
\noindent With this search path, HOL first looks for a file in the current
working directory (the pathname represented by {\small\verb%``%}), then in the user`s home
directory {\small\verb%`~/`%}, and finally in the directory {\small\verb%`/usr/lib/hol/theories/`%} (the
directory containing HOL`s built-in theories).
\SEEALSO
help_search_path, install, set_help_search_path, set_search_path.
\ENDDOC
\DOC{SEG\_CONV}
\TYPE {\small\verb%SEG_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of taking a segment of a list.
\DESCRIBE
For any object language list of the form {\small\verb%"[x0;...x(n-1)]"%} ,
the result of evaluating
{\par\samepage\setseps\small
\begin{verbatim}
SEG_CONV "SEG m k [x0;...;x(n-1)]"
\end{verbatim}
}
\noindent is the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- SEG m k [x0;...;x(n-1)] = [xk;...;x(m+k-1)]
\end{verbatim}
}
\FAILURE
{\small\verb%SEG_CONV tm%} fails if {\small\verb%tm%} is not in the form described above or the
indexes {\small\verb%m%} and {\small\verb%k%} are not in the correct range, i.e., {\small\verb%m + k <= n%}.
\EXAMPLE
Evaluating the expression
{\par\samepage\setseps\small
\begin{verbatim}
SEG_CONV "SEG 2 3[0;1;2;3;4;5]";;
\end{verbatim}
}
returns the following theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- SEG 2 3[0;1;2;3;4;5] = [3;4]
\end{verbatim}
}
\SEEALSO
FIRSTN_CONV, LASTN_CONV, BUTFIRSTN_CONV, BUTLASTN_CONV,
LAST_CONV, BUTLAST_CONV.
\ENDDOC
\DOC{SELECT\_CONV}
\TYPE {\small\verb%SELECT_CONV : conv%}\egroup
\SYNOPSIS
Eliminates an epsilon term by introducing an existential quantifier.
\DESCRIBE
The conversion {\small\verb%SELECT_CONV%} expects a boolean term of the form
{\small\verb%"P[@x.P[x]/x]"%}, which asserts that the epsilon term {\small\verb%@x.P[x]%} denotes
a value, {\small\verb%x%} say, for which {\small\verb%P[x]%} holds. This assertion is equivalent
to saying that there exists such a value, and {\small\verb%SELECT_CONV%} applied to a
term of this form returns the theorem {\small\verb%|- P[@x.P[x]/x] = ?x. P[x]%}.
\FAILURE
Fails if applied to a term that is not of the form {\small\verb%"P[@x.P[x]/x]"%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#SELECT_CONV "(@n. n < m) < m";;
|- (@n. n < m) < m = (?n. n < m)
\end{verbatim}
}
\USES
Particularly useful in conjunction with {\small\verb%CONV_TAC%} for proving properties
of values denoted by epsilon terms. For example, suppose that one wishes
to prove the goal
{\par\samepage\setseps\small
\begin{verbatim}
["0 < m"], "(@n. n < m) < SUC m"
\end{verbatim}
}
\noindent Using the built-in arithmetic theorem
{\par\samepage\setseps\small
\begin{verbatim}
LESS_SUC |- !m n. m < n ==> m < (SUC n)
\end{verbatim}
}
\noindent this goal may be reduced by the tactic {\small\verb%MATCH_MP_TAC LESS_SUC%} to
the subgoal
{\par\samepage\setseps\small
\begin{verbatim}
["0 < m"], "(@n. n < m) < m"
\end{verbatim}
}
\noindent This is now in the correct form for using {\small\verb%CONV_TAC SELECT_CONV%} to
eliminate the epsilon term, resulting in the existentially quantified goal
{\par\samepage\setseps\small
\begin{verbatim}
["0 < m"], "?n. n < m"
\end{verbatim}
}
\noindent which is then straightforward to prove.
\SEEALSO
SELECT_ELIM, SELECT_INTRO, SELECT_RULE.
\ENDDOC
\DOC{SELECT\_ELIM}
\TYPE {\small\verb%SELECT_ELIM : (thm -> (term # thm) -> thm)%}\egroup
\SYNOPSIS
Eliminates an epsilon term, using deduction from a particular instance.
\DESCRIBE
{\small\verb%SELECT_ELIM%} expects two arguments, a theorem {\small\verb%th1%}, and a pair
{\small\verb%(v,th2):(term # thm)%}. The conclusion of {\small\verb%th1%} must have the form {\small\verb%P($@ P)%},
which asserts that the epsilon term {\small\verb%$@ P%} denotes some value at which
{\small\verb%P%} holds. The variable {\small\verb%v%} appears only in the assumption {\small\verb%P v%} of
the theorem {\small\verb%th2%}. The conclusion of the resulting theorem matches
that of {\small\verb%th2%}, and the hypotheses include the union of all hypotheses
of the premises excepting {\small\verb%P v%}.
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- P($@ P) A2 u {P v} |- t
----------------------------------- SELECT_ELIM th1 (v,th2)
A1 u A2 |- t
\end{verbatim}
}
\noindent where {\small\verb%v%} is not free in {\small\verb%A2%}. If {\small\verb%v%} appears in the conclusion of
{\small\verb%th2%}, the epsilon term will NOT be eliminated, and the conclusion will be
{\small\verb%t[$@ P/v]%}.
\FAILURE
Fails if the first theorem is not of the form {\small\verb%A1 |- P($@ P)%}, or if
the variable {\small\verb%v%} occurs free in any other assumption of {\small\verb%th2%}.
\EXAMPLE
If a property of functions is defined by:
{\par\samepage\setseps\small
\begin{verbatim}
INCR = |- !f. INCR f = (!t1 t2. t1 < t2 ==> (f t1) < (f t2))
\end{verbatim}
}
\noindent The following theorem can be proved.
{\par\samepage\setseps\small
\begin{verbatim}
th1 = |- INCR(@f. INCR f)
\end{verbatim}
}
\noindent Additionally, if such a function is assumed to exist, then one
can prove that there also exists a function which is injective (one-to-one) but
not surjective (onto).
{\par\samepage\setseps\small
\begin{verbatim}
th2 = [ INCR g ] |- ?h. ONE_ONE h /\ ~ONTO h
\end{verbatim}
}
\noindent These two results may be combined using {\small\verb%SELECT_ELIM%} to
give a new theorem:
{\par\samepage\setseps\small
\begin{verbatim}
#SELECT_ELIM th1 ("g:num->num", th2);;
|- ?h. ONE_ONE h /\ ~ONTO h
\end{verbatim}
}
\USES
This rule is rarely used. The equivalence of {\small\verb%P($@ P)%} and {\small\verb%$? P%}
makes this rule fundamentally similar to the {\small\verb%?%}-elimination rule {\small\verb%CHOOSE%}.
\SEEALSO
CHOOSE, SELECT_AX, SELECT_CONV, SELECT_INTRO, SELECT_RULE.
\ENDDOC
\DOC{SELECT\_EQ}
\TYPE {\small\verb%SELECT_EQ : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Applies epsilon abstraction to both terms of an equation.
\DESCRIBE
Effects the extensionality of the epsilon operator {\small\verb%@%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
------------------------ SELECT_EQ "x" [where x is not free in A]
A |- (@x.t1) = (@x.t2)
\end{verbatim}
}
\FAILURE
Fails if the conclusion of the theorem is not an equation, or if the
variable {\small\verb%x%} is free in {\small\verb%A%}.
\EXAMPLE
Given a theorem which shows the equivalence of two distinct forms of
defining the property of being an even number:
{\par\samepage\setseps\small
\begin{verbatim}
th = |- (x MOD 2 = 0) = (?y. x = 2 * y)
\end{verbatim}
}
\noindent A theorem giving the equivalence of the epsilon abstraction of each
form is obtained:
{\par\samepage\setseps\small
\begin{verbatim}
#SELECT_EQ "x:num" th;;
|- (@x. x MOD 2 = 0) = (@x. ?y. x = 2 * y)
\end{verbatim}
}
\SEEALSO
ABS, AP_TERM, EXISTS_EQ, FORALL_EQ, SELECT_AX, SELECT_CONV,
SELECT_ELIM, SELECT_INTRO.
\ENDDOC
\DOC{SELECT\_INTRO}
\TYPE {\small\verb%SELECT_INTRO : (thm -> thm)%}\egroup
\SYNOPSIS
Introduces an epsilon term.
\DESCRIBE
{\small\verb%SELECT_INTRO%} takes a theorem with an applicative conclusion, say
{\small\verb%P x%}, and returns a theorem with the epsilon term {\small\verb%$@ P%} in place
of the original operand {\small\verb%x%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- P x
-------------- SELECT_INTRO
A |- P($@ P)
\end{verbatim}
}
\noindent The returned theorem asserts that {\small\verb%$@ P%} denotes some value
at which {\small\verb%P%} holds.
\FAILURE
Fails if the conclusion of the theorem is not an application.
\EXAMPLE
Given the theorem
{\par\samepage\setseps\small
\begin{verbatim}
th1 = |- (\n. m = n)m
\end{verbatim}
}
\noindent applying {\small\verb%SELECT_INTRO%} replaces the second occurrence of {\small\verb%m%} with the
epsilon abstraction of the operator:
{\par\samepage\setseps\small
\begin{verbatim}
#let th2 = SELECT_INTRO th1;;
th2 = |- (\n. m = n)(@n. m = n)
\end{verbatim}
}
\noindent This theorem could now be used to derive a further result:
{\par\samepage\setseps\small
\begin{verbatim}
#EQ_MP(BETA_CONV(concl th2))th2;;
|- m = (@n. m = n)
\end{verbatim}
}
\SEEALSO
EXISTS, SELECT_AX, SELECT_CONV, SELECT_ELIM, SELECT_RULE.
\ENDDOC
\DOC{SELECT\_RULE}
\TYPE {\small\verb%SELECT_RULE : (thm -> thm)%}\egroup
\SYNOPSIS
Introduces an epsilon term in place of an existential quantifier.
\DESCRIBE
The inference rule {\small\verb%SELECT_RULE%} expects a theorem asserting the
existence of a value {\small\verb%x%} such that {\small\verb%P%} holds. The equivalent assertion
that the epsilon term {\small\verb%@x.P%} denotes a value of {\small\verb%x%} for
which {\small\verb%P%} holds is returned as a theorem.
{\par\samepage\setseps\small
\begin{verbatim}
A |- ?x. P
------------------ SELECT_RULE
A |- P[(@x.P)/x]
\end{verbatim}
}
\FAILURE
Fails if applied to a theorem the conclusion of which is not
existentially quantified.
\EXAMPLE
The axiom {\small\verb%INFINITY_AX%} in the theory {\small\verb%ind%} is of the form:
{\par\samepage\setseps\small
\begin{verbatim}
|- ?f. ONE_ONE f /\ ~ONTO f
\end{verbatim}
}
\noindent Applying {\small\verb%SELECT_RULE%} to this theorem returns the following.
{\par\samepage\setseps\small
\begin{verbatim}
#SELECT_RULE INFINITY_AX;;
|- ONE_ONE(@f. ONE_ONE f /\ ~ONTO f) /\ ~ONTO(@f. ONE_ONE f /\ ~ONTO f)
\end{verbatim}
}
\USES
May be used to introduce an epsilon term to permit rewriting with a
constant defined using the epsilon operator.
\SEEALSO
CHOOSE, SELECT_AX, SELECT_CONV, SELECT_ELIM, SELECT_INTRO.
\ENDDOC
\DOC{set\_equal}
\TYPE {\small\verb%set_equal : (* list -> * list -> bool)%}\egroup
\SYNOPSIS
Tests two `sets' for equality.
\DESCRIBE
{\small\verb%set_equal l1 l2%} returns {\small\verb%true%} if every element of {\small\verb%l1%} appears in {\small\verb%l2%} and
every element of {\small\verb%l2%} appears in {\small\verb%l1%}. Otherwise it returns {\small\verb%false%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#set_equal [1;2] [2;1;2];;
true : bool
#set_equal [1;2] [1;3];;
false : bool
\end{verbatim}
}
\SEEALSO
setify, union, intersect, subtract.
\ENDDOC
\DOC{set\_fail}
\TYPE {\small\verb%set_fail : (string -> (* -> **) -> * -> **)%}\egroup
\SYNOPSIS
Specifies the failure string for a function evaluation.
\DESCRIBE
When applied to a string {\small\verb%s%} and a function {\small\verb%f%}, the function {\small\verb%set_fail%}
gives a function which behaves identically to {\small\verb%f%} except that on failure, the
failure string is {\small\verb%s%}, regardless of what failure string {\small\verb%f%} itself gives rise
to.
\FAILURE
Never fails.
\EXAMPLE
The following example shows how a failure string can be customized either by
using {\small\verb%set_fail%} or by adding a toplevel error trap.
{\par\samepage\setseps\small
\begin{verbatim}
#BETA_CONV "1 + 1";;
evaluation failed BETA_CONV
#(set_fail `Term is not a beta-redex` BETA_CONV) "1 + 1";;
evaluation failed Term is not a beta-redex
#(BETA_CONV "1 + 1") ? failwith `Term is not a beta-redex`;;
evaluation failed Term is not a beta-redex
\end{verbatim}
}
\SEEALSO
set_fail_prefix.
\ENDDOC
\DOC{set\_fail\_prefix}
\TYPE {\small\verb%set_fail_prefix : (string -> (* -> **) -> * -> **)%}\egroup
\SYNOPSIS
Specifies a prefix to the failure string for a function evaluation.
\DESCRIBE
When applied to a string {\small\verb%s%} and a function {\small\verb%f%}, the function {\small\verb%set_fail_prefix%}
gives a function which behaves identically to {\small\verb%f%} except that on failure, the
failure string given by {\small\verb%f%} has {\small\verb%s%} and {\small\verb%`--`%} prepended.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#BETA_CONV "1 + 1";;
evaluation failed BETA_CONV
#(set_fail_prefix `Application to "1 + 1" ` BETA_CONV) "1 + 1";;
evaluation failed Application to "1 + 1" -- BETA_CONV
\end{verbatim}
}
\USES
Providing a traceback of failures through function applications.
\SEEALSO
set_fail.
\ENDDOC
\DOC{set\_flag}
\TYPE {\small\verb%set_flag : ((string # bool) -> bool)%}\egroup
\SYNOPSIS
Sets a named flag to a specific boolean value.
\DESCRIBE
The function {\small\verb%set_flag%} sets a flag to a given value. The previous value of the
flag is returned. The list of settable flags can be determined by executing
{\small\verb%flags ()%}.
\FAILURE
If the named string does not identify a settable flag.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#set_flag (`timing`, true);;
false : bool
Run time: 0.0s
\end{verbatim}
}
\SEEALSO
flags.
\ENDDOC
\DOC{set\_goal}
\TYPE {\small\verb%set_goal : (goal -> void)%}\egroup
\SYNOPSIS
Initializes the subgoal package with a new goal.
\DESCRIBE
The function {\small\verb%set_goal%} initializes the subgoal management package. A proof
state of the package consists of either a goal stack and a justification stack
if a proof is in progress, or a theorem if a proof has just been completed.
{\small\verb%set_goal%} sets a new proof state consisting of an empty justification stack
and a goal stack with the given goal as its sole goal. The goal is printed.
\FAILURE
Fails unless all terms in the goal are of type {\small\verb%bool%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#set_goal([], "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])");;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
\end{verbatim}
}
\USES
Starting an interactive proof session with the subgoal package.
The subgoal package implements a simple framework for interactive goal-directed
proof. When conducting a proof that involves many subgoals and
tactics, the user must keep track of all the justifications and compose them
in the correct order. While this is feasible even in large proofs, it is
tedious. The subgoal package provides a way of building and traversing the
tree of subgoals top-down, stacking the justifications and applying them
properly.
The package maintains a proof state consisting of either a goal stack of
outstanding goals and a justification stack, or a theorem. Tactics are used
to expand the current goal (the one on the top of the goal stack) into
subgoals and justifications. These are pushed onto the goal stack and
justification stack, respectively, to form a new proof state. Several
preceding proof states are saved and can be returned to if a mistake is made
in the proof. The goal stack is divided into levels, a new level being
created each time a tactic is successfully applied to give new subgoals. The
subgoals of the current level may be considered in any order.
If a tactic solves the current goal (returns an empty subgoal list), then
its justification is used to prove a corresponding theorem. This theorem is
then incorporated into the justification of the parent goal. If the subgoal
was the last subgoal of the level, the level is removed and the parent
goal is proved using its (new) justification. This process is repeated
until a level with unproven subgoals is reached.
The next goal on the goal stack then becomes the current goal.
If all the subgoals are proved, the resulting proof state consists
of the theorem proved by the justifications. This theorem may be accessed and
saved.
\COMMENTS
A more sophisticated subgoal management package will be implemented in the
future.
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_state, top_goal, top_thm.
\ENDDOC
\DOC{set\_help}
\TYPE {\small\verb%set_help : (string -> string)%}\egroup
\SYNOPSIS
Specifies a filter to pipe help output through.
\DESCRIBE
Evaluating {\small\verb%set_help `filter`%} will make future help output (generated in
response to a {\small\verb%help%} command) be piped through the program {\small\verb%filter%}. The
function returns the name of the previous filter. The default is {\small\verb%cat%}, so
output is just sent to the console. Previous versions of HOL used {\small\verb%more%} by
default.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#set_help `lpr`;;
`cat` : string
\end{verbatim}
}
\noindent This causes the help file to be printed instead of being displayed.
\SEEALSO
help, help_search_path, set_help_search_path
\ENDDOC
\DOC{set\_help\_search\_path}
\TYPE {\small\verb%set_help_search_path : (string list -> void)%}\egroup
\SYNOPSIS
Sets the internal search path use by HOL to find files.
\DESCRIBE
When applied to a list of strings {\small\verb%l%}, each of which represents the pathname
to a directory, {\small\verb%set_help_search_path%} sets the internal search path used when
the {\small\verb%help%} function searches for online help files to the list {\small\verb%l%}. Although
the help search path can be set to an arbitrary list of strings, each string is
normally expected to be either empty ({\small\verb%``%}) or a pathname with `{\small\verb%/%}' as its
final character. When {\small\verb%help%} looks for a help file, the directories in the
search path are searched in the order in which they occur in the list supplied
to {\small\verb%set_help_search_path%}.
\FAILURE
Never fails.
\SEEALSO
help_search_path, install, search_path, set_search_path.
\ENDDOC
\DOC{setify}
\TYPE {\small\verb%setify : (* list -> * list)%}\egroup
\SYNOPSIS
Removes repeated elements from a list. Makes a list into a `set'.
\DESCRIBE
{\small\verb%setify l%} removes repeated elements from {\small\verb%l%}, leaving the last occurrence of
each duplicate in the list.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#setify [1;2;3;1;4;3];;
[2; 1; 4; 3] : int list
\end{verbatim}
}
\COMMENTS
Perhaps the first occurrence of each duplicate should be left in the list, not
the last? However, other functions may rely on the ordering currently used.
\SEEALSO
distinct.
\ENDDOC
\DOC{set\_interface\_map}
\TYPE {\small\verb%set_interface_map : ((string # string) list -> (string # string) list)%}\egroup
\SYNOPSIS
Sets up a new interface map.
\DESCRIBE
A call {\small\verb%set_interface_map [(a1,c1);...;(an,cn)]%}, where the {\small\verb%c%}'s are the names
of existing constants, will set up the corresponding interface map, and return
the previous one. This means that a variable or constant with the name {\small\verb%ai%}
occurring in a quoted term will be translated into the corresponding {\small\verb%ci%}.
Furthermore, if the flag {\small\verb%interface_print%} is set, the transformation will be
reversed when terms are printed. For more details of interface maps, refer to
the DESCRIPTION. Note that each call of {\small\verb%set_interface_map%} starts from
scratch; it is not possible to augment a previous interface map by a second
call.
\FAILURE
The call will fail if the given map is invalid, for one of the following
reasons: if any of the {\small\verb%c%}'s are not the names of existing constants,
or if the map has multiple {\small\verb%c%}'s corresponding to a single {\small\verb%a%} or vice versa,
or if one of the {\small\verb%a%}'s is a constant name which is not redefined by the map
(this would create a confusing interface where two different constants would
have to be printed identically).
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#set_interface_map[`and`,`/\\`; `or`,`\\/`];;
[] : (string # string) list
#"T and F";;
"T and F" : term
#set_flag(`interface_print`,false);;
true : bool
#"T and F";;
"T /\ F" : term
\end{verbatim}
}
\SEEALSO
interface_map.
\ENDDOC
\DOC{set\_lambda}
\TYPE {\small\verb%set_lambda : (string -> string)%}\egroup
\SYNOPSIS
Sets the `lambda' symbol used in printing terms.
\DESCRIBE
If {\small\verb%s%} is a string, then {\small\verb%set_lambda s%} sets to {\small\verb%s%} the `lambda' symbol (by
default `{\small\verb%\%}') which is used to represent lambda-abstraction in terms.
The call returns the previous string used for this purpose. The call affects
the printing of terms, but the original symbol is still expected by the
quotation parser.
\FAILURE
Never fails.
\EXAMPLE
In the following, the lambda symbol is set to `{\small\verb%fn%}', and the effect on the
printing of a typical term is illustrated.
{\par\samepage\setseps\small
\begin{verbatim}
#set_lambda `fn`;;
`\` : string
#"\x. SUC x";;
"fn x. SUC x" : term
\end{verbatim}
}
\SEEALSO
set_prompt, set_turnstile.
\ENDDOC
\DOC{set\_library\_search\_path}
\TYPE {\small\verb%set_library_search_path : (string list -> void)%}\egroup
\SYNOPSIS
Sets the internal search path use by HOL to find libraries.
\DESCRIBE
When applied to a list of strings {\small\verb%l%}, each of which represents the pathname to
a directory, {\small\verb%set_library_search_path%} sets the internal search path used when
the {\small\verb%load_library%} function searches for library load files to the list {\small\verb%l%}.
Although the library search path can be set to an arbitrary list of strings,
each string is normally expected to be a pathname with `{\small\verb%/%}' as its final
character. When {\small\verb%load_library%} looks for a library load file, the directories
in the search path are searched in the order in which they occur in the list
supplied to {\small\verb%set_library_search_path%}.
\FAILURE
Never fails.
\EXAMPLE
The following call adds a user's local library directory {\small\verb%~/hol/lib/%} to the
library search path:
{\par\samepage\setseps\small
\begin{verbatim}
set_library_search_path (union [`~/hol/lib/`] (library_search_path()));;
\end{verbatim}
}
\noindent Users with local libraries would typically have a line of this form
in their {\small\verb%hol-init%} file. Note that the function {\small\verb%union%} is used to avoid
multiple occurrences of the same pathname in the library search path.
\SEEALSO
library_pathname, library_search_path, load_library.
\ENDDOC
\DOC{set\_margin}
\TYPE {\small\verb%set_margin : (int -> int)%}\egroup
\SYNOPSIS
Changes the limit on the width of the output produced by the pretty-printer.
\DESCRIBE
{\small\verb%set_margin i%} sets the limit on the width of the output produced by the
pretty-printer to the integer {\small\verb%i%}. The pretty-printer will try to avoid
exceeding this limit by breaking the text into multiple lines. However it can
only break at points specified by the functions that send text to it. The
result of a call to {\small\verb%set_margin%} is the value to which the margin was
previously set.
\FAILURE
Never fails.
\USES
Obtaining readable output when using a text window of non-standard width.
It is a good idea to set the margin to a few characters less than the actual
width of the window; for example the default is 72 for an 80 character wide
display.
\SEEALSO
print_begin, print_end, print_newline, print_break.
\ENDDOC
\DOC{set\_pretty\_mode}
\TYPE {\small\verb%set_pretty_mode : (bool -> void)%}\egroup
\SYNOPSIS
Initializes the pretty-printer.
\DESCRIBE
{\small\verb%set_pretty_mode true%} causes all remaining text in the print queue to be
printed, and then the pretty-printer is reinitialized.
\FAILURE
Never fails.
\COMMENTS
{\small\verb%set_pretty_mode false%} should turn the pretty-printer off after printing all
text in the queue, but the current implementation does not do this.
\SEEALSO
print_begin, print_end, print_newline.
\ENDDOC
\DOC{set\_prompt}
\TYPE {\small\verb%set_prompt : (string -> string)%}\egroup
\SYNOPSIS
Changes the ML prompt string.
\DESCRIBE
If {\small\verb%s%} is a string, then {\small\verb%set_prompt s%} sets the ML prompt (which is `{\small\verb%#%}' by
default) to the string {\small\verb%s%}, and returns the previous prompt string. The string
may contain newlines, or be null (although {\small\verb%prompt false%} is a cleaner way of
completely eliminating the prompt).
\FAILURE
Never fails.
\EXAMPLE
In the following session, the prompt is set to {\small\verb%`Ready`%} on a line of its own,
then reset to its original state.
{\par\samepage\setseps\small
\begin{verbatim}
#let oldprompt = set_prompt `Ready\
#`;;
oldprompt = `#` : string
Ready
do set_prompt oldprompt;;
() : void
# ...more ML...
\end{verbatim}
}
\SEEALSO
prompt, set_lambda, set_turnstile.
\ENDDOC
\DOC{set\_search\_path}
\TYPE {\small\verb%set_search_path : (string list -> void)%}\egroup
\SYNOPSIS
Sets the internal search path used by HOL to find files.
\DESCRIBE
When applied to a list of strings {\small\verb%l%}, each of which represents a directory
pathname, {\small\verb%set_search_path%} sets the internal search path used when HOL makes
access to files on disk to the list {\small\verb%l%}. Although the search path can be set to
an arbitrary list of strings, each string in the search path is normally
expected to be either empty ({\small\verb%``%}) or a pathname with `{\small\verb%/%}' as its final
character. When HOL looks for a file, the directories in the search path are
searched in the order in which they occur in the list supplied to
{\small\verb%set_search_path%}.
\FAILURE
Never fails.
\EXAMPLE
A typical search path is the following:
{\par\samepage\setseps\small
\begin{verbatim}
#search_path();;
[``; `~/`; `/usr/lib/hol/theories/`] : string list
\end{verbatim}
}
\noindent With this search path, HOL first looks for a file in the current
working directory (the pathname represented by {\small\verb%``%}), then in the user`s home
directory {\small\verb%`~/`%}, and finally in the directory {\small\verb%`/usr/lib/hol/theories/`%} (the
directory containing HOL`s built-in theories).
One might augment this search path by doing:
{\par\samepage\setseps\small
\begin{verbatim}
#set_search_path(`/foo/bar/` . search_path());;
() : void
\end{verbatim}
}
\noindent so that the directory {\small\verb%/foo/bar/%} is also searched, and searched
first, when HOL tries to find a file.
\SEEALSO
help_search_path, install, search_path, set_help_search_path.
\ENDDOC
\DOC{set\_state}
\TYPE {\small\verb%set_state : (goalstack -> void)%}\egroup
\SYNOPSIS
Sets the current proof state of the subgoal package to the one given.
\DESCRIBE
The function {\small\verb%set_state%} is part of the subgoal package. It restores the
current proof state to one previously saved (using {\small\verb%get_state%}). The restored
state will include all unproven subgoals or, if the original goal had been
proved before the state was saved, the corresponding theorem. The old proof
state is placed on the backup list. For a description of the subgoal package,
see {\small\verb%set_goal%}.
\USES
Providing additional backup. Pausing in the proof of a goal to allow lemmas to
be proved. {\small\verb%set_state%} is used in conjunction with {\small\verb%get_state%}.
\EXAMPLE
The current state may be bound to an ML variable ({\small\verb%main_proof%} in this
example) using {\small\verb%get_state%}.
{\par\samepage\setseps\small
\begin{verbatim}
#g "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
#let main_proof = get_state();;
main_proof = - : goalstack
\end{verbatim}
}
\noindent Other goals may now be set and proved. The proof state may later be
restored using {\small\verb%set_state%} and the original proof continued.
{\par\samepage\setseps\small
\begin{verbatim}
#set_state main_proof;;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"
() : void
\end{verbatim}
}
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, top_goal, top_thm.
\ENDDOC
\DOC{set\_sticky\_type}
\TYPE {\small\verb%set_sticky_type : ((string # type) -> void)%}\egroup
\SYNOPSIS
Gives a particular sticky type to a named variable.
\DESCRIBE
A call {\small\verb%set_sticky_type(`name`,":ty")%} will give the name {\small\verb%name%} a sticky type
{\small\verb%ty%}. This means that if {\small\verb%name%} occurs in a quotation with a completely
unconstrained type (in particular, the sticky type will not be used if the name
is that of a constant), the type {\small\verb%ty%} is automatically inferred. For further
details of the sticky type mechanism, refer to the DESCRIPTION.
\FAILURE
Never fails, even if the name could not be the name of a variable or constant.
It is permissible to redefine a sticky type.
\EXAMPLE
The following shows how the sticky type is used only when the type of the
variable is unconstrained by context.
{\par\samepage\setseps\small
\begin{verbatim}
#set_sticky_type(`n`,":num");;
() : void
#"n = n";;
"n = n" : term
#type_of (snd (dest_eq it));;
":num" : type
#"HD [F] = n";;
"HD[F] = n" : term
#type_of (snd (dest_eq it));;
":bool" : type
\end{verbatim}
}
\COMMENTS
If the flag {\small\verb%sticky%} is set, the name is liable to have its sticky type
changed automatically, just like any other name.
\SEEALSO
remove_sticky_type, sticky_list.
\ENDDOC
\DOC{set\_string\_escape}
\TYPE {\small\verb%set_string_escape : (int -> int)%}\egroup
\SYNOPSIS
Changes the escape character inside strings.
\DESCRIBE
{\small\verb%set_string_escape n%} changes the escape character in strings to be the
character with ascii code {\small\verb%n%}. The previous character code is returned.
Initially the escape is ascii 92 (i.e. `{\small\verb%\%}'). If {\small\verb%n%} is not an ascii code
then there is no escape character available.
\FAILURE
Never fails (not even if the supplied code is not an ascii code).
\ENDDOC
\DOC{set\_thm\_count}
\TYPE {\small\verb%set_thm_count : (int -> int)%}\egroup
\SYNOPSIS
Sets the theorem-counter to the given value.
\DESCRIBE
HOL maintains a counter which is incremented every time a primitive inference
is performed (including when an axiom or definition set up). A call to
{\small\verb%set_thm_count%} sets the counter to a particular value, returning the previous
value.
\FAILURE
Never fails.
\SEEALSO
thm_count, timer.
\ENDDOC
\DOC{set\_turnstile}
\TYPE {\small\verb%set_turnstile : (string -> string)%}\egroup
\SYNOPSIS
Sets the `turnstile' symbol used in printing theorems.
\DESCRIBE
If {\small\verb%s%} is a string, then {\small\verb%set_turnstile s%} sets to {\small\verb%s%} the `turnstile' symbol
(by default `{\small\verb%|- %}') which is used to represent entailment, i.e. to separate
assumptions from conclusion when printing a theorem. The call returns the
previous string used for the turnstile.
\FAILURE
Never fails.
\EXAMPLE
The following shows the turnstile being set to `{\small\verb%|= %}'. A space is necessary
at the end to separate the conclusion neatly, but not at the beginning.
{\par\samepage\setseps\small
\begin{verbatim}
#set_turnstile `|= `;;
`|- ` : string
#ASSUME "F";;
. |= F
\end{verbatim}
}
\SEEALSO
set_lambda, set_prompt.
\ENDDOC
\DOC{show\_types}
\TYPE {\small\verb%show_types : (bool -> bool)%}\egroup
\SYNOPSIS
Turns printing of HOL types (in terms) on/off.
\DESCRIBE
Normally HOL types in terms are not printed, since this makes terms hard to
read. Type printing is enabled by {\small\verb%show_types true%}, and disabled by
{\small\verb%show_types false%}. When printing of types is enabled, not all variables and
constants are annotated with a type. The intention is to provide sufficient
type information to remove any ambiguities without swamping the term with type
information.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#BOOL_CASES_AX;;
|- !t. (t = T) \/ (t = F)
#show_types true;;
false : bool
#BOOL_CASES_AX;;
|- !(t:bool). (t = T) \/ (t = F)
\end{verbatim}
}
\COMMENTS
It is possible to construct an abstraction in which the bound variable has the
same name but a different type to a variable in the body. In such a case the
two variables are considered to be distinct. Without type information such a
term can be very misleading, so it might be a good idea to provide type
information for the free variable whether or not printing of types is enabled.
\SEEALSO
print_term.
\ENDDOC
\DOC{SKOLEM\_CONV}
\TYPE {\small\verb%SKOLEM_CONV : conv%}\egroup
\SYNOPSIS
Proves the existence of a Skolem function.
\DESCRIBE
When applied to an argument of the form {\small\verb%!x1...xn. ?y. P%}, the conversion
{\small\verb%SKOLEM_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x1...xn. ?y. P) = (?y'. !x1...xn. P[y' x1 ... xn/y])
\end{verbatim}
}
\noindent where {\small\verb%y'%} is a primed variant of {\small\verb%y%} not free in the input term.
\FAILURE
{\small\verb%SKOLEM_CONV tm%} fails unless {\small\verb%tm%} is a term of the form {\small\verb%!x1...xn. ?y. P%},
with at least one universally quantified variable.
\SEEALSO
X_SKOLEM_CONV.
\ENDDOC
\DOC{snd}
\TYPE {\small\verb%snd : ((* # **) -> **)%}\egroup
\SYNOPSIS
Extracts the second component of a pair.
\DESCRIBE
{\small\verb%snd (x,y)%} returns {\small\verb%y%}.
\FAILURE
Never fails.
\SEEALSO
fst, pair.
\ENDDOC
\DOC{SNOC\_CONV}
\TYPE {\small\verb%SNOC_CONV : conv%}\egroup
\SYNOPSIS
Computes by inference the result of adding an element to the tail end of a list.
\DESCRIBE
{\small\verb%SNOC_CONV%} a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
SNOC x [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- SNOC x [x0;...xn] = [x0;...xn;x]
\end{verbatim}
}
\noindent where the right-hand side is the list in the canonical form,
i.e., constructed with only the constructor {\small\verb%CONS%}.
\FAILURE
{\small\verb%SNOC_CONV tm%} fails if {\small\verb%tm%} is not of the form described above.
\EXAMPLE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
SNOC_CONV "SNOC 5[0;1;2;3;4]";;
\end{verbatim}
}
\noindent returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- SNOC 5[0;1;2;3;4] = [0;1;2;3;4;5]
\end{verbatim}
}
\SEEALSO
FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{SNOC\_INDUCT\_TAC}
\TYPE {\small\verb%SNOC_INDUCT_TAC : tactic%}\egroup
\SYNOPSIS
Performs tactical proof by structural induction on lists.
\DESCRIBE
{\small\verb%SNOC_INDUCT_TAC%} reduces a goal {\small\verb%!l.P[l]%}, where {\small\verb%l%} ranges over lists, to two
subgoals corresponding to the base and step cases in a proof by structural
induction on {\small\verb%l%} from the tail end. The induction hypothesis appears
among the assumptions of the subgoal for the step case. The
specification of {\small\verb%SNOC_INDUCT_TAC%} is:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !l. P
===================================================== SNOC_INDUCT_TAC
A |- P[NIL/l] A u {P[l'/l]} ?- !x. P[SNOC x l'/l]
\end{verbatim}
}
\noindent where {\small\verb%l'%} is a primed variant of {\small\verb%l%} that does not appear free in
the assumptions {\small\verb%A%} (usually, {\small\verb%l'%} is just {\small\verb%l%}). When {\small\verb%SNOC_INDUCT_TAC%} is
applied to a goal of the form {\small\verb%!l.P%}, where {\small\verb%l%} does not appear free in {\small\verb%P%},
the subgoals are just {\small\verb%A ?- P%} and {\small\verb%A u {P} ?- !h.P%}.
\FAILURE
{\small\verb%SNOC_INDUCT_TAC g%} fails unless the conclusion of the goal {\small\verb%g%} has the form
{\small\verb%!l.t%}, where the variable {\small\verb%l%} has type {\small\verb%(ty)list%} for some type {\small\verb%ty%}.
\SEEALSO
LIST_INDUCT, LIST_INDUCT_TAC.
\ENDDOC
\DOC{SOME\_EL\_CONV}
\TYPE {\small\verb%SOME_EL_CONV : conv -> conv%}\egroup
\SYNOPSIS
Computes by inference the result of applying a predicate to elements of a list.
\DESCRIBE
{\small\verb%SOME_EL_CONV%} takes a conversion {\small\verb%conv%} and a term {\small\verb%tm%} in the following form:
{\par\samepage\setseps\small
\begin{verbatim}
SOME_EL P [x0;...xn]
\end{verbatim}
}
\noindent It returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- SOME_EL P [x0;...xn] = F
\end{verbatim}
}
\noindent if for every {\small\verb%xi%} occurred in the list, {\small\verb%conv "P xi"%}
returns a theorem {\small\verb%|- P xi = F%}, otherwise, if for at least one {\small\verb%xi%},
evaluating {\small\verb%conv "P xi"%} returns the theorem {\small\verb%|- P xi = T%}, then it returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
|- SOME_EL P [x0;...xn] = T
\end{verbatim}
}
\FAILURE
{\small\verb%SOME_EL_CONV conv tm%} fails if {\small\verb%tm%} is not of the form described above, or
failure occurs when evaluating {\small\verb%conv "P xi"%} for some {\small\verb%xi%}.
\EXAMPLE
Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
SOME_EL_CONV bool_EQ_CONV "SOME_EL ($= T) [T;F;T]";;
\end{verbatim}
}
\noindent returns the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- SOME_EL($= T)[T;F;T] = T
\end{verbatim}
}
\noindent In general, if the predicate {\small\verb%P%} is an explicit lambda abstraction
{\small\verb%(\x. P x)%}, the conversion should be in the form
{\par\samepage\setseps\small
\begin{verbatim}
(BETA_CONV THENC conv')
\end{verbatim}
}
\SEEALSO
ALL_EL_CONV, IS_EL_CONV, FOLDL_CONV, FOLDR_CONV, list_FOLD_CONV.
\ENDDOC
\DOC{sort}
\TYPE {\small\verb%sort : (((* # *) -> bool) -> * list -> * list)%}\egroup
\SYNOPSIS
Sorts a list using a given transitive `ordering' relation.
\DESCRIBE
The call
{\par\samepage\setseps\small
\begin{verbatim}
sort op list
\end{verbatim}
}
\noindent where {\small\verb%op%} is an (uncurried) transitive relation on the elements of
{\small\verb%list%}, will topologically sort the list, i.e. will permute it such that if
{\small\verb%x op y%} but not {\small\verb%y op x%} then {\small\verb%x%} will occur to the left of {\small\verb%y%} in the
sorted list. In particular if {\small\verb%op%} is a total order, the list will be sorted in
the usual sense of the word.
\FAILURE
Never fails.
\EXAMPLE
A simple example is:
{\par\samepage\setseps\small
\begin{verbatim}
#sort $< [3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9];;
[1; 1; 2; 3; 3; 4; 5; 5; 5; 6; 7; 8; 9; 9; 9] : int list
\end{verbatim}
}
\noindent The following example is a little more complicated. Note
that the `ordering' is not antisymmetric.
{\par\samepage\setseps\small
\begin{verbatim}
#sort ($< o (fst # fst)) [(1,3); (7,11); (3,2); (3,4); (7,2); (5,1)];;
[(1, 3); (3, 4); (3, 2); (5, 1); (7, 2); (7, 11)] : (int # int) list
\end{verbatim}
}
\ENDDOC
\DOC{SPEC\_ALL}
\TYPE {\small\verb%SPEC_ALL : (thm -> thm)%}\egroup
\SYNOPSIS
Specializes the conclusion of a theorem with its own quantified variables.
\DESCRIBE
When applied to a theorem {\small\verb%A |- !x1...xn. t%}, the inference rule {\small\verb%SPEC_ALL%}
returns the theorem {\small\verb%A |- t[x1'/x1]...[xn'/xn]%} where the {\small\verb%xi'%} are distinct
variants of the corresponding {\small\verb%xi%}, chosen to avoid clashes with any variables
free in the assumption list and with the names of constants. Normally {\small\verb%xi'%} is
just {\small\verb%xi%}, in which case {\small\verb%SPEC_ALL%} simply removes all universal quantifiers.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x1...xn. t
--------------------------- SPEC_ALL
A |- t[x1'/x1]...[xn'/xn]
\end{verbatim}
}
\FAILURE
Never fails.
\EXAMPLE
The following example shows how variables are also renamed to avoid clashing
with the names of constants.
{\par\samepage\setseps\small
\begin{verbatim}
#let v=mk_var(`T`,":bool") in ASSUME "!^v. ^v \/ ~^v";;
!T. T \/ ~T |- !T. T \/ ~T
#SPEC_ALL it;;
!T. T \/ ~T |- T' \/ ~T'
\end{verbatim}
}
\SEEALSO
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.
\ENDDOC
\DOC{SPEC}
\TYPE {\small\verb%SPEC : (term -> thm -> thm)%}\egroup
\SYNOPSIS
Specializes the conclusion of a theorem.
\DESCRIBE
When applied to a term {\small\verb%u%} and a theorem {\small\verb%A |- !x. t%}, then {\small\verb%SPEC%} returns
the theorem {\small\verb%A |- t[u/x]%}. If necessary, variables will be renamed prior
to the specialization to ensure that {\small\verb%u%} is free for {\small\verb%x%} in {\small\verb%t%}, that is,
no variables free in {\small\verb%u%} become bound after substitution.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x. t
-------------- SPEC "u"
A |- t[u/x]
\end{verbatim}
}
\FAILURE
Fails if the theorem's conclusion is not universally quantified, or if {\small\verb%x%} and
{\small\verb%u%} have different types.
\EXAMPLE
The following example shows how {\small\verb%SPEC%} renames bound variables if necessary,
prior to substitution: a straightforward substitution would result in the
clearly invalid theorem {\small\verb%|- ~y ==> (!y. y ==> ~y)%}.
{\par\samepage\setseps\small
\begin{verbatim}
#let xv = "x:bool" and yv="y:bool" in
# (GEN xv o DISCH xv o GEN yv o DISCH yv) (ASSUME xv);;
|- !x. x ==> (!y. y ==> x)
#SPEC "~y" it;;
|- ~y ==> (!y'. y' ==> ~y)
\end{verbatim}
}
\SEEALSO
ISPEC, SPECL, SPEC_ALL, SPEC_VAR, GEN, GENL, GEN_ALL.
\ENDDOC
\DOC{special\_symbols}
\TYPE {\small\verb%special_symbols : (void -> string list)%}\egroup
\SYNOPSIS
Returns a list of special symbols.
\DESCRIBE
An identifier, at the ML or object level, is either alphanumeric, e.g. {\small\verb%true%}
or {\small\verb%T%}, or consists of a special symbol which starts with a non-alphanumeric
character, e.g. {\small\verb%==>%} or {\small\verb%+%}. It is a consequence of the non-backtracking
implementation of lexical analysis that any (non-null) initial segment of a
special symbol is also a special symbol, so from the above we know that {\small\verb%==%}
and {\small\verb%=%} are. The function {\small\verb%special_symbols%} returns a list of special symbols;
all non-null initial prefixes of them are also special symbols.
\FAILURE
Never fails.
\SEEALSO
new_special_symbol.
\ENDDOC
\DOC{SPECL}
\TYPE {\small\verb%SPECL : (term list -> thm -> thm)%}\egroup
\SYNOPSIS
Specializes zero or more variables in the conclusion of a theorem.
\DESCRIBE
When applied to a term list {\small\verb%[u1;...;un]%} and a theorem
{\small\verb%A |- !x1...xn. t%}, the inference rule {\small\verb%SPECL%} returns the theorem
{\small\verb%A |- t[u1/x1]...[un/xn]%}, where the substitutions are made
sequentially left-to-right in the same way as for {\small\verb%SPEC%}, with the same
sort of alpha-conversions applied to {\small\verb%t%} if necessary to ensure that no
variables which are free in {\small\verb%ui%} become bound after substitution.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x1...xn. t
-------------------------- SPECL "[u1;...;un]"
A |- t[u1/x1]...[un/xn]
\end{verbatim}
}
\noindent It is permissible for the term-list to be empty, in which case
the application of {\small\verb%SPECL%} has no effect.
\FAILURE
Fails unless each of the terms is of the same as that of the
appropriate quantified variable in the original theorem.
\EXAMPLE
The following is a specialization of a theorem from theory {\small\verb%arithmetic%}.
{\par\samepage\setseps\small
\begin{verbatim}
#let t = theorem `arithmetic` `LESS_EQ_LESS_EQ_MONO`;;
t = |- !m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q)
#SPECL ["1"; "2"; "3"; "4"] t;;
|- 1 <= 3 /\ 2 <= 4 ==> (1 + 2) <= (3 + 4)
\end{verbatim}
}
\SEEALSO
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPEC_ALL, SPEC_TAC.
\ENDDOC
\DOC{SPEC\_TAC}
\TYPE {\small\verb%SPEC_TAC : ((term # term) -> tactic)%}\egroup
\SYNOPSIS
Generalizes a goal.
\DESCRIBE
When applied to a pair of terms {\small\verb%(u,x)%}, where {\small\verb%x%} is just a variable,
and a goal {\small\verb%A ?- t%}, the tactic {\small\verb%SPEC_TAC%} generalizes the goal to
{\small\verb%A ?- !x. t[x/u]%}, that is, all instances of {\small\verb%u%} are turned into {\small\verb%x%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
================= SPEC_TAC ("u","x")
A ?- !x. t[x/u]
\end{verbatim}
}
\FAILURE
Fails unless {\small\verb%x%} is a variable with the same type as {\small\verb%u%}.
\USES
Removing unnecessary speciality in a goal, particularly as a prelude to
an inductive proof.
\SEEALSO
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, STRIP_TAC.
\ENDDOC
\DOC{SPEC\_VAR}
\TYPE {\small\verb%SPEC_VAR : (thm -> (term # thm))%}\egroup
\SYNOPSIS
Specializes the conclusion of a theorem, returning the chosen variant.
\DESCRIBE
When applied to a theorem {\small\verb%A |- !x. t%}, the inference rule {\small\verb%SPEC_VAR%} returns
the term {\small\verb%x'%} and the theorem {\small\verb%A |- t[x'/x]%}, where {\small\verb%x'%} is a variant
of {\small\verb%x%} chosen to avoid free variable capture.
{\par\samepage\setseps\small
\begin{verbatim}
A |- !x. t
-------------- SPEC_VAR
A |- t[x'/x]
\end{verbatim}
}
\FAILURE
Fails unless the theorem's conclusion is universally quantified.
\COMMENTS
This rule is very similar to plain {\small\verb%SPEC%}, except that it returns the
variant chosen, which may be useful information under some circumstances.
\SEEALSO
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL.
\ENDDOC
\DOC{split}
\TYPE {\small\verb%split : ((* # **) list -> (* list # ** list))%}\egroup
\SYNOPSIS
Converts a list of pairs into a pair of lists.
\DESCRIBE
{\small\verb%split [(x1,y1);...;(xn,yn)]%} returns {\small\verb%([x1;...;xn],[y1;...;yn])%}.
\FAILURE
Never fails.
\SEEALSO
combine, com.
\ENDDOC
\DOC{splitp}
\TYPE {\small\verb%splitp : ((* -> bool) -> * list -> (* list # * list))%}\egroup
\SYNOPSIS
Splits a list into a pair of lists according to a predicate.
\DESCRIBE
{\small\verb%splitp P [x1;...;xk;...;xn]%} returns {\small\verb%([x1;...;x(k-1)],[xk;...;xn])%}
where {\small\verb%xk%} is the first element satisfying the predicate {\small\verb%P%}.
If no element satisfies {\small\verb%P%}, {\small\verb%([x1;...;xn],[])%} is returned.
\FAILURE
Never fails.
\SEEALSO
split, partition, chop_list.
\ENDDOC
\DOC{sticky\_list}
\TYPE {\small\verb%sticky_list : (void -> (string # type) list)%}\egroup
\SYNOPSIS
Returns a list of the current sticky type settings.
\DESCRIBE
A call {\small\verb%sticky_list()%} will return a list of names and the associated sticky
types. This list can be changed explicitly via {\small\verb%set_sticky_type%} and
{\small\verb%remove_sticky_type%}, or if the flag {\small\verb%sticky%} is set, will be changed behind
the scenes as terms are parsed. For more details of the sticky type mechanism,
refer to the DESCRIPTION.
\FAILURE
Never fails.
\SEEALSO
remove_sticky_type, set_sticky_type.
\ENDDOC
\DOC{store\_binders}
\TYPE {\small\verb%store_binders : (term list -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{store\_definition}
\TYPE {\small\verb%store_definition : ((string # term) -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{string\_of\_int}
\TYPE {\small\verb%string_of_int : (int -> string)%}\egroup
\SYNOPSIS
Maps an integer to the corresponding decimal string.
\DESCRIBE
When given an integer, {\small\verb%string_of_int%} returns a string representing
the number in standard decimal notation, with a leading minus sign
if the number is negative, and no leading zeros.
\FAILURE
Never fails.
\SEEALSO
ascii, ascii_code, int_of_string.
\ENDDOC
\DOC{strip\_abs}
\TYPE {\small\verb%strip_abs : (term -> goal)%}\egroup
\SYNOPSIS
Iteratively breaks apart abstractions.
\DESCRIBE
{\small\verb%strip_abs "\x1 ... xn. t"%} returns {\small\verb%(["x1";...;"xn"],"t")%}. Note that
{\par\samepage\setseps\small
\begin{verbatim}
strip_abs(list_mk_abs(["x1";...;"xn"],"t"))
\end{verbatim}
}
\noindent will not return {\small\verb%(["x1";...;"xn"],"t")%} if {\small\verb%t%} is an abstraction.
\FAILURE
Never fails.
\SEEALSO
list_mk_abs, dest_abs.
\ENDDOC
\DOC{STRIP\_ASSUME\_TAC}
\TYPE {\small\verb%STRIP_ASSUME_TAC : thm_tactic%}\egroup
\SYNOPSIS
Splits a theorem into a list of theorems and then adds them to the assumptions.
\DESCRIBE
Given a theorem {\small\verb%th%} and a goal {\small\verb%(A,t)%}, {\small\verb%STRIP_ASSUME_TAC th%} splits {\small\verb%th%} into
a list of theorems. This is done by recursively breaking conjunctions into
separate conjuncts, cases-splitting disjunctions, and eliminating existential
quantifiers by choosing arbitrary variables. Schematically, the following
rules are applied:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
====================== STRIP_ASSUME_TAC (A' |- v1 /\ ... /\ vn)
A u {v1,...,vn} ?- t
A ?- t
================================= STRIP_ASSUME_TAC (A' |- v1 \/ ... \/ vn)
A u {v1} ?- t ... A u {vn} ?- t
A ?- t
==================== STRIP_ASSUME_TAC (A' |- ?x.v)
A u {v[x'/x]} ?- t
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a variant of {\small\verb%x%}.
If the conclusion of {\small\verb%th%} is not a conjunction, a disjunction or an
existentially quantified term, the whole theorem {\small\verb%th%} is added to the
assumptions.
As assumptions are generated, they are examined to see if they solve the goal
(either by being alpha-equivalent to the conclusion of the goal or by deriving
a contradiction).
The assumptions of the theorem being split are not added to the assumptions of
the goal(s), but they are recorded in the proof. This means that if {\small\verb%A'%} is
not a subset of the assumptions {\small\verb%A%} of the goal (up to alpha-conversion),
{\small\verb%STRIP_ASSUME_TAC (A'|-v)%} results in an invalid tactic.
\FAILURE
Never fails.
\EXAMPLE
When solving the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- m = 0 + m
\end{verbatim}
}
\noindent assuming the clauses for addition with
{\small\verb%STRIP_ASSUME_TAC ADD_CLAUSES%} results in the goal
{\par\samepage\setseps\small
\begin{verbatim}
{m + (SUC n) = SUC(m + n), (SUC m) + n = SUC(m + n),
m + 0 = m, 0 + m = m, m = 0 + m} ?- m = 0 + m
\end{verbatim}
}
\noindent while the same tactic directly solves the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- 0 + m = m
\end{verbatim}
}
\USES
{\small\verb%STRIP_ASSUME_TAC%} is used when applying a previously proved theorem to solve
a goal, or
when enriching its assumptions so that resolution, rewriting with assumptions
and other operations involving assumptions have more to work with.
\SEEALSO
ASSUME_TAC, CHOOSE_TAC, CHOOSE_THEN, CONJUNCTS_THEN, DISJ_CASES_TAC,
DISJ_CASES_THEN.
\ENDDOC
\DOC{strip\_comb}
\TYPE {\small\verb%strip_comb : (term -> (term # term list))%}\egroup
\SYNOPSIS
Iteratively breaks apart combinations (function applications).
\DESCRIBE
{\small\verb%strip_comb "t t1 ... tn"%} returns {\small\verb%("t",["t1";...;"tn"])%}. Note that
{\par\samepage\setseps\small
\begin{verbatim}
strip_comb(list_mk_comb("t",["t1";...;"tn"]))
\end{verbatim}
}
\noindent will not return {\small\verb%("t",["t1";...;"tn"])%} if {\small\verb%t%} is a combination.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#strip_comb "x /\ y";;
("$/\", ["x"; "y"]) : (term # term list)
#strip_comb "T";;
("T", []) : (term # term list)
\end{verbatim}
}
\SEEALSO
list_mk_comb, dest_comb.
\ENDDOC
\DOC{strip\_exists}
\TYPE {\small\verb%strip_exists : (term -> goal)%}\egroup
\SYNOPSIS
Iteratively breaks apart existential quantifications.
\DESCRIBE
{\small\verb%strip_exists "?x1 ... xn. t"%} returns {\small\verb%(["x1";...;"xn"],"t")%}. Note that
{\par\samepage\setseps\small
\begin{verbatim}
strip_exists(list_mk_exists(["x1";...;"xn"],"t"))
\end{verbatim}
}
\noindent will not return {\small\verb%(["x1";...;"xn"],"t")%} if {\small\verb%t%} is an existential
quantification.
\FAILURE
Never fails.
\SEEALSO
list_mk_exists, dest_exists.
\ENDDOC
\DOC{strip\_forall}
\TYPE {\small\verb%strip_forall : (term -> goal)%}\egroup
\SYNOPSIS
Iteratively breaks apart universal quantifications.
\DESCRIBE
{\small\verb%strip_forall "!x1 ... xn. t"%} returns {\small\verb%(["x1";...;"xn"],"t")%}. Note that
{\par\samepage\setseps\small
\begin{verbatim}
strip_forall(list_mk_forall(["x1";...;"xn"],"t"))
\end{verbatim}
}
\noindent will not return {\small\verb%(["x1";...;"xn"],"t")%} if {\small\verb%t%} is a universal
quantification.
\FAILURE
Never fails.
\SEEALSO
list_mk_forall, dest_forall.
\ENDDOC
\DOC{STRIP\_GOAL\_THEN}
\TYPE {\small\verb%STRIP_GOAL_THEN : (thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Splits a goal by eliminating one outermost connective, applying the
given theorem-tactic to the antecedents of implications.
\DESCRIBE
Given a theorem-tactic {\small\verb%ttac%} and a goal {\small\verb%(A,t)%}, {\small\verb%STRIP_GOAL_THEN%} removes one
outermost occurrence of one of the connectives {\small\verb%!%}, {\small\verb%==>%}, {\small\verb%~%} or {\small\verb%/\%} from the
conclusion of the goal {\small\verb%t%}. If {\small\verb%t%} is a universally quantified term, then
{\small\verb%STRIP_GOAL_THEN%} strips off the quantifier:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x.u
============== STRIP_GOAL_THEN ttac
A ?- u[x'/x]
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant that does not appear free in the
assumptions {\small\verb%A%}. If {\small\verb%t%} is a conjunction, then {\small\verb%STRIP_GOAL_THEN%} simply splits
the conjunction into two subgoals:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- v /\ w
================= STRIP_GOAL_THEN ttac
A ?- v A ?- w
\end{verbatim}
}
\noindent If {\small\verb%t%} is an implication {\small\verb%"u ==> v"%} and if:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- v
=============== ttac (u |- u)
A' ?- v'
\end{verbatim}
}
\noindent then:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- u ==> v
==================== STRIP_GOAL_THEN ttac
A' ?- v'
\end{verbatim}
}
\noindent Finally, a negation {\small\verb%~t%} is treated as the implication {\small\verb%t ==> F%}.
\FAILURE
{\small\verb%STRIP_GOAL_THEN ttac (A,t)%} fails if {\small\verb%t%} is not a universally quantified term,
an implication, a negation or a conjunction. Failure also occurs if the
application of {\small\verb%ttac%} fails, after stripping the goal.
\EXAMPLE
When solving the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- (n = 1) ==> (n * n = n)
\end{verbatim}
}
\noindent a possible initial step is to apply
{\par\samepage\setseps\small
\begin{verbatim}
STRIP_GOAL_THEN SUBST1_TAC
\end{verbatim}
}
\noindent thus obtaining the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- 1 * 1 = 1
\end{verbatim}
}
\USES
{\small\verb%STRIP_GOAL_THEN%} is used when manipulating intermediate results (obtained by
stripping outer connectives from a goal) directly, rather than as assumptions.
\SEEALSO
CONJ_TAC, DISCH_THEN, FILTER_STRIP_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_TAC.
\ENDDOC
\DOC{strip\_imp}
\TYPE {\small\verb%strip_imp : (term -> goal)%}\egroup
\SYNOPSIS
Iteratively breaks apart implications.
\DESCRIBE
{\small\verb%strip_imp "t1 ==> ( ... (tn ==> t)...)"%} returns {\small\verb%(["t1";...;"tn"],"t")%}.
Note that
{\par\samepage\setseps\small
\begin{verbatim}
strip_imp(list_mk_imp(["t1";...;"tn"],"t"))
\end{verbatim}
}
\noindent will not return {\small\verb%(["t1";...;"tn"],"t")%} if {\small\verb%t%} is an implication.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#strip_imp "(T ==> F) ==> (T ==> F)";;
(["T ==> F"; "T"], "F") : goal
\end{verbatim}
}
\SEEALSO
list_mk_imp, dest_imp.
\ENDDOC
\DOC{strip\_pair}
\TYPE {\small\verb%strip_pair : (term -> term list)%}\egroup
\SYNOPSIS
Iteratively breaks apart tuples.
\DESCRIBE
{\small\verb%strip_pair("(t1,...,tn)")%} returns {\small\verb%["t1";...;"tn"]%}.
A term that is not a tuple is simply returned as the sole element of a list.
Note that
{\par\samepage\setseps\small
\begin{verbatim}
strip_pair(list_mk_pair ["t1";...;"tn"])
\end{verbatim}
}
\noindent will not return {\small\verb%["t1";...;"tn"]%} if {\small\verb%tn%} is a pair or a tuple.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#list_mk_pair ["(1,2)";"(3,4)";"(5,6)"];;
"(1,2),(3,4),5,6" : term
#strip_pair it;;
["1,2"; "3,4"; "5"; "6"] : term list
#strip_pair "1";;
["1"] : term list
\end{verbatim}
}
\SEEALSO
list_mk_pair, dest_pair.
\ENDDOC
\DOC{STRIP\_TAC}
\TYPE {\small\verb%STRIP_TAC : tactic%}\egroup
\SYNOPSIS
Splits a goal by eliminating one outermost connective.
\DESCRIBE
Given a goal {\small\verb%(A,t)%}, {\small\verb%STRIP_TAC%} removes one outermost occurrence of one of the
connectives {\small\verb%!%}, {\small\verb%==>%}, {\small\verb%~%} or {\small\verb%/\%} from the conclusion of the goal {\small\verb%t%}. If
{\small\verb%t%} is a universally quantified term, then {\small\verb%STRIP_TAC%} strips off the
quantifier:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x.u
============== STRIP_TAC
A ?- u[x'/x]
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant that does not appear free in the
assumptions {\small\verb%A%}. If {\small\verb%t%} is a conjunction, then {\small\verb%STRIP_TAC%} simply splits the
conjunction into two subgoals:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- v /\ w
================= STRIP_TAC
A ?- v A ?- w
\end{verbatim}
}
\noindent If {\small\verb%t%} is an implication, {\small\verb%STRIP_TAC%} moves the antecedent into the
assumptions, stripping conjunctions, disjunctions and existential
quantifiers according to the following rules:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================
A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v
A ?- ?x.w ==> v
====================
A u {w[x'/x]} ?- v
\end{verbatim}
}
\noindent where {\small\verb%x'%} is a primed variant of {\small\verb%x%} that does not appear free in
{\small\verb%A%}. Finally, a negation {\small\verb%~t%} is treated as the implication {\small\verb%t ==> F%}.
\FAILURE
{\small\verb%STRIP_TAC (A,t)%} fails if {\small\verb%t%} is not a universally quantified term,
an implication, a negation or a conjunction.
\EXAMPLE
Applying {\small\verb%STRIP_TAC%} twice to the goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- !n. m <= n /\ n <= m ==> (m = n)
\end{verbatim}
}
\noindent results in the subgoal:
{\par\samepage\setseps\small
\begin{verbatim}
{n <= m, m <= n} ?- m = n
\end{verbatim}
}
\USES
When trying to solve a goal, often the best thing to do first
is {\small\verb%REPEAT STRIP_TAC%} to split the goal up into manageable pieces.
\SEEALSO
CONJ_TAC, DISCH_TAC, DISCH_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_GOAL_THEN.
\ENDDOC
\DOC{STRIP\_THM\_THEN}
\TYPE {\small\verb%STRIP_THM_THEN : thm_tactical%}\egroup
\SYNOPSIS
{\small\verb%STRIP_THM_THEN%} applies the given theorem-tactic using the result of
stripping off one outer connective from the given theorem.
\DESCRIBE
Given a theorem-tactic {\small\verb%ttac%}, a theorem {\small\verb%th%} whose conclusion is a
conjunction, a disjunction or an existentially quantified term, and a goal
{\small\verb%(A,t)%}, {\small\verb%STRIP_THM_THEN ttac th%} first strips apart the conclusion of {\small\verb%th%},
next applies {\small\verb%ttac%} to the theorem(s) resulting from the stripping and then
applies the resulting tactic to the goal.
In particular, when stripping a conjunctive theorem {\small\verb%A'|- u /\ v%}, the tactic
{\par\samepage\setseps\small
\begin{verbatim}
ttac(u|-u) THEN ttac(v|-v)
\end{verbatim}
}
\noindent resulting from applying {\small\verb%ttac%} to the conjuncts, is applied to the
goal. When stripping a disjunctive theorem {\small\verb%A'|- u \/ v%}, the tactics
resulting from applying {\small\verb%ttac%} to the disjuncts, are applied to split the goal
into two cases. That is, if
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t A ?- t
========= ttac (u|-u) and ========= ttac (v|-v)
A ?- t1 A ?- t2
\end{verbatim}
}
\noindent then:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
================== STRIP_THM_THEN ttac (A'|- u \/ v)
A ?- t1 A ?- t2
\end{verbatim}
}
\noindent When stripping an existentially quantified theorem {\small\verb%A'|- ?x.u%}, the
tactic {\small\verb%ttac(u|-u)%}, resulting from applying {\small\verb%ttac%} to the body of the
existential quantification, is applied to the goal. That is, if:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
========= ttac (u|-u)
A ?- t1
\end{verbatim}
}
\noindent then:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============= STRIP_THM_THEN ttac (A'|- ?x. u)
A ?- t1
\end{verbatim}
}
The assumptions of the theorem being split are not added to the assumptions of
the goal(s) but are recorded in the proof. If {\small\verb%A'%} is not a subset of the
assumptions {\small\verb%A%} of the goal (up to alpha-conversion), {\small\verb%STRIP_THM_THEN ttac th%}
results in an invalid tactic.
\FAILURE
{\small\verb%STRIP_THM_THEN ttac th%} fails if the conclusion of {\small\verb%th%} is not a conjunction,
a disjunction or an existentially quantified term. Failure also occurs if the
application of {\small\verb%ttac%} fails, after stripping the outer connective from the
conclusion of {\small\verb%th%}.
\USES
{\small\verb%STRIP_THM_THEN%} is used enrich the assumptions of a goal with a stripped
version of a previously-proved theorem.
\SEEALSO
CHOOSE_THEN, CONJUNCTS_THEN, DISJ_CASES_THEN, STRIP_ASSUME_TAC.
\ENDDOC
\DOC{STRUCT\_CASES\_TAC}
\TYPE {\small\verb%STRUCT_CASES_TAC : thm_tactic%}\egroup
\SYNOPSIS
Performs very general structural case analysis.
\DESCRIBE
When it is applied to a theorem of the form:
{\par\samepage\setseps\small
\begin{verbatim}
th = A' |- ?y11...y1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/
?yn1...ynp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)
\end{verbatim}
}
\noindent in which there may be no existential quantifiers where a `vector' of
them is shown above, {\small\verb%STRUCT_CASES_TAC th%} splits a goal {\small\verb%A ?- s%} into {\small\verb%n%}
subgoals as follows:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- s
===============================================================
A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]
\end{verbatim}
}
\noindent that is, performs a case split over the possible constructions (the
{\small\verb%ti%}) of a term, providing as assumptions the given constraints, having
split conjoined constraints into separate assumptions. Note that unless {\small\verb%A'%}
is a subset of {\small\verb%A%}, this is an invalid tactic.
\FAILURE
Fails unless the theorem has the above form, namely a conjunction of
(possibly multiply existentially quantified) terms which assert the equality
of the same variable {\small\verb%x%} and the given terms.
\EXAMPLE
Suppose we have the goal:
{\par\samepage\setseps\small
\begin{verbatim}
?- ~(l:(*)list = []) ==> (LENGTH l) > 0
\end{verbatim}
}
\noindent then we can get rid of the universal quantifier from the
inbuilt list theorem {\small\verb%list_CASES%}:
{\par\samepage\setseps\small
\begin{verbatim}
list_CASES = !l. (l = []) \/ (?t h. l = CONS h t)
\end{verbatim}
}
\noindent and then use {\small\verb%STRUCT_CASES_TAC%}. This amounts to applying the
following tactic:
{\par\samepage\setseps\small
\begin{verbatim}
STRUCT_CASES_TAC (SPEC_ALL list_CASES)
\end{verbatim}
}
\noindent which results in the following two subgoals:
{\par\samepage\setseps\small
\begin{verbatim}
?- ~(CONS h t = []) ==> (LENGTH(CONS h t)) > 0
?- ~([] = []) ==> (LENGTH[]) > 0
\end{verbatim}
}
\noindent Note that this is a rather simple case, since there are no
constraints, and therefore the resulting subgoals have no assumptions.
\USES
Generating a case split from the axioms specifying a structure.
\SEEALSO
ASM_CASES_TAC, BOOL_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC.
\ENDDOC
\DOC{SUB\_CONV}
\TYPE {\small\verb%SUB_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion to the top-level subterms of a term.
\DESCRIBE
For any conversion {\small\verb%c%}, the function returned by {\small\verb%SUB_CONV c%} is a conversion
that applies {\small\verb%c%} to all the top-level subterms of a term. If the conversion
{\small\verb%c%} maps {\small\verb%t%} to {\small\verb%|- t = t'%}, then {\small\verb%SUB_CONV c%} maps an abstraction {\small\verb%"\x.t"%} to
the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (\x.t) = (\x.t')
\end{verbatim}
}
\noindent That is, {\small\verb%SUB_CONV c "\x.t"%} applies {\small\verb%c%} to the body of the
abstraction {\small\verb%"\x.t"%}. If {\small\verb%c%} is a conversion that maps {\small\verb%"t1"%} to the theorem
{\small\verb%|- t1 = t1'%} and {\small\verb%"t2"%} to the theorem {\small\verb%|- t2 = t2'%}, then the conversion
{\small\verb%SUB_CONV c%} maps an application {\small\verb%"t1 t2"%} to the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (t1 t2) = (t1' t2')
\end{verbatim}
}
\noindent That is, {\small\verb%SUB_CONV c "t1 t2"%} applies {\small\verb%c%} to the both the operator
{\small\verb%t1%} and the operand {\small\verb%t2%} of the application {\small\verb%"t1 t2"%}. Finally, for any
conversion {\small\verb%c%}, the function returned by {\small\verb%SUB_CONV c%} acts as the identity
conversion on variables and constants. That is, if {\small\verb%"t"%} is a variable or
constant, then {\small\verb%SUB_CONV c "t"%} returns {\small\verb%|- t = t%}.
\FAILURE
{\small\verb%SUB_CONV c tm%} fails if {\small\verb%tm%} is an abstraction {\small\verb%"\x.t"%} and the conversion {\small\verb%c%}
fails when applied to {\small\verb%t%}, or if {\small\verb%tm%} is an application {\small\verb%"t1 t2"%} and the
conversion {\small\verb%c%} fails when applied to either {\small\verb%t1%} or {\small\verb%t2%}. The function
returned by {\small\verb%SUB_CONV c%} may also fail if the ML function {\small\verb%c:term->thm%} is not,
in fact, a conversion (i.e. a function that maps a term {\small\verb%t%} to a theorem
{\small\verb%|- t = t'%}).
\SEEALSO
ABS_CONV, RAND_CONV, RATOR_CONV.
\ENDDOC
\DOC{SUBGOAL\_THEN}
\TYPE {\small\verb%SUBGOAL_THEN : (term -> thm_tactic -> tactic)%}\egroup
\SYNOPSIS
Allows the user to introduce a lemma.
\DESCRIBE
The user proposes a lemma and is then invited to prove it under
the current assumptions.
The lemma is then used with the {\small\verb%thm_tactic%} to simplify the goal.
That is, if
{\par\samepage\setseps\small
\begin{verbatim}
A1 ?- t1
========== f (u |- u)
A2 ?- t2
\end{verbatim}
}
\noindent then
{\par\samepage\setseps\small
\begin{verbatim}
A1 ?- t1
==================== SUBGOAL_THEN "u" f
A1 ?- u A2 ?- t2
\end{verbatim}
}
\FAILURE
{\small\verb%SUBGOAL_THEN%} will fail with {\small\verb%`ASSUME`%} if an attempt is made to use a
nonboolean term as a lemma.
\USES
When combined with {\small\verb%rotate%}, {\small\verb%SUBGOAL_THEN%} allows the user to defer some
part of a proof and to continue with another part.
{\small\verb%SUBGOAL_THEN%} is most convenient when the tactic solves the original goal,
leaving only the subgoal.
For example, suppose the user wishes top prove the goal
{\par\samepage\setseps\small
\begin{verbatim}
{n = SUC m} ?- (0 = n) ==> t
\end{verbatim}
}
Using {\small\verb%SUBGOAL_THEN%} to focus on the case in which {\small\verb%~(n = 0)%},
rewriting establishes it truth, leaving only the proof that {\small\verb%~(n = 0)%}.
That is,
{\par\samepage\setseps\small
\begin{verbatim}
SUBGOAL_THEN "~(0 = n)" (\th:thm. REWRITE_TAC [th])
\end{verbatim}
}
\noindent generates the following subgoals:
{\par\samepage\setseps\small
\begin{verbatim}
{n = SUC m} ?- ~(0 = n)
?- T
\end{verbatim}
}
\COMMENTS
Some users may expect the generated tactic to be {\small\verb%f (A1 |- u)%}, rather than
{\small\verb%f (u |- u)%}.
\ENDDOC
\DOC{SUBS}
\TYPE {\small\verb%SUBS : (thm list -> thm -> thm)%}\egroup
\SYNOPSIS
Makes simple term substitutions in a theorem using a given list of theorems.
\DESCRIBE
Term substitution in HOL is performed by replacing free subterms according to
the transformations specified by a list of equational theorems. Given a list
of theorems {\small\verb%A1|-t1=v1,...,An|-tn=vn%} and a theorem {\small\verb%A|-t%}, {\small\verb%SUBS%}
simultaneously replaces each free occurrence of {\small\verb%ti%} in {\small\verb%t%} with {\small\verb%vi%}:
{\par\samepage\setseps\small
\begin{verbatim}
A1|-t1=v1 ... An|-tn=vn A|-t
--------------------------------------------- SUBS[A1|-t1=v1;...;An|-tn=vn]
A1 u ... u An u A |- t[v1,...,vn/t1,...,tn] (A|-t)
\end{verbatim}
}
\noindent No matching is involved; the occurrence of each {\small\verb%ti%} being
substituted for must be a free in {\small\verb%t%} (see {\small\verb%SUBST_MATCH%}). An occurrence which
is not free can be substituted by using rewriting rules such as {\small\verb%REWRITE_RULE%},
{\small\verb%PURE_REWRITE_RULE%} and {\small\verb%ONCE_REWRITE_RULE%}.
\FAILURE
{\small\verb%SUBS [th1;...;thn] (A|-t)%} fails if the conclusion of each theorem in the list
is not an equation. No change is made to the theorem {\small\verb%A |- t%} if no occurrence
of any left-hand side of the supplied equations appears in {\small\verb%t%}.
\EXAMPLE
Substitutions are made with the theorems
{\par\samepage\setseps\small
\begin{verbatim}
#let thm1 = SPECL ["m:num"; "n:num"] ADD_SYM
#and thm2 = CONJUNCT1 ADD_CLAUSES;;
thm1 = |- m + n = n + m
thm2 = |- 0 + m = m
\end{verbatim}
}
\noindent depending on the occurrence of free subterms
{\par\samepage\setseps\small
\begin{verbatim}
#SUBS [thm1; thm2] (ASSUME "(n + 0) + (0 + m) = m + n");;
. |- (n + 0) + m = n + m
#SUBS [thm1; thm2] (ASSUME "!n. (n + 0) + (0 + m) = m + n");;
. |- !n. (n + 0) + m = m + n
\end{verbatim}
}
\USES
{\small\verb%SUBS%} can sometimes be used when rewriting (for example, with {\small\verb%REWRITE_RULE%})
would diverge and term instantiation is not needed. Moreover, applying the
substitution rules is often much faster than using the rewriting rules.
\SEEALSO
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE, SUBST, SUBST_MATCH,
SUBS_OCCS.
\ENDDOC
\DOC{SUBS\_OCCS}
\TYPE {\small\verb%SUBS_OCCS : ((int list # thm) list -> thm -> thm)%}\egroup
\SYNOPSIS
Makes substitutions in a theorem at specific occurrences of a term, using a
list of equational theorems.
\DESCRIBE
Given a list {\small\verb%(l1,A1|-t1=v1),...,(ln,An|-tn=vn)%} and a theorem
{\small\verb%(A|-t)%}, {\small\verb%SUBS_OCCS%} simultaneously replaces each {\small\verb%ti%} in {\small\verb%t%} with {\small\verb%vi%},
at the occurrences specified by the integers
in the list {\small\verb%li = [o1;...;ok]%} for each theorem {\small\verb%Ai|-ti=vi%}.
{\par\samepage\setseps\small
\begin{verbatim}
(l1,A1|-t1=v1) ... (ln,An|-tn=vn) A|-t
------------------------------------------- SUBS_OCCS[(l1,A1|-t1=v1);...;
A1 u ... An u A |- t[v1,...,vn/t1,...,tn] (ln,An|-tn=vn)] (A|-t)
\end{verbatim}
}
\FAILURE
{\small\verb%SUBS_OCCS [(l1,th1);...;(ln,thn)] (A|-t)%} fails if
the conclusion of any theorem in the list is not an equation.
No change is made to the theorem if the supplied occurrences {\small\verb%li%} of the
left-hand side of the conclusion of {\small\verb%thi%} do not appear in {\small\verb%t%}.
\EXAMPLE
The commutative law for addition
{\par\samepage\setseps\small
\begin{verbatim}
#let thm = SPECL ["m:num"; "n:num"] ADD_SYM;;
thm = |- m + n = n + m
\end{verbatim}
}
\noindent can be used for substituting only the second occurrence of
the subterm {\small\verb%m + n%}
{\par\samepage\setseps\small
\begin{verbatim}
#SUBS_OCCS [([2],thm)] (ASSUME "(n + m) + (m + n) = (m + n) + (m + n)");;
. |- (n + m) + (m + n) = (n + m) + (m + n)
\end{verbatim}
}
\USES
{\small\verb%SUBS_OCCS%} is used when rewriting at specific occurrences of a term, and rules
such as {\small\verb%REWRITE_RULE%}, {\small\verb%PURE_REWRITE_RULE%}, {\small\verb%ONCE_REWRITE_RULE%}, and {\small\verb%SUBS%}
are too extensive or would diverge.
\SEEALSO
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE, SUBS, SUBST, SUBST_MATCH.
\ENDDOC
\DOC{SUBST1\_TAC}
\TYPE {\small\verb%SUBST1_TAC : thm_tactic%}\egroup
\SYNOPSIS
Makes a simple term substitution in a goal using a single equational theorem.
\DESCRIBE
Given a theorem {\small\verb%A'|-u=v%} and a goal {\small\verb%(A,t)%}, the tactic
{\small\verb%SUBST1_TAC (A'|-u=v)%} rewrites the term {\small\verb%t%} into {\small\verb%t[v/u]%}, by substituting
{\small\verb%v%} for each free occurrence of {\small\verb%u%} in {\small\verb%t%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============= SUBST1_TAC (A'|-u=v)
A ?- t[v/u]
\end{verbatim}
}
\noindent The assumptions of the theorem used to substitute with are not added
to the assumptions of the goal but are recorded in the proof. If {\small\verb%A'%} is not a
subset of the assumptions {\small\verb%A%} of the goal (up to alpha-conversion), then
{\small\verb%SUBST1_TAC (A'|-u=v)%} results in an invalid tactic.
{\small\verb%SUBST1_TAC%} automatically renames bound variables to prevent free variables in
{\small\verb%v%} becoming bound after substitution.
\FAILURE
{\small\verb%SUBST1_TAC th (A,t)%} fails if the conclusion of {\small\verb%th%} is not an equation.
No change is made to the goal if no free occurrence of the left-hand side
of {\small\verb%th%} appears in {\small\verb%t%}.
\EXAMPLE
When trying to solve the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- m * n = (n * (m - 1)) + n
\end{verbatim}
}
\noindent substituting with the commutative law for multiplication
{\par\samepage\setseps\small
\begin{verbatim}
SUBST1_TAC (SPECL ["m:num"; "n:num"] MULT_SYM)
\end{verbatim}
}
\noindent results in the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- n * m = (n * (m - 1)) + n
\end{verbatim}
}
\USES
{\small\verb%SUBST1_TAC%} is used when rewriting with a single theorem using tactics such as
{\small\verb%REWRITE_TAC%} is too expensive or would diverge. Applying {\small\verb%SUBST1_TAC%} is also
much faster than using rewriting tactics.
\SEEALSO
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_ALL_TAC, SUBST_TAC.
\ENDDOC
\DOC{SUBST\_ALL\_TAC}
\TYPE {\small\verb%SUBST_ALL_TAC : thm_tactic%}\egroup
\SYNOPSIS
Substitutes using a single equation in both the assumptions and conclusion of a
goal.
\DESCRIBE
{\small\verb%SUBST_ALL_TAC%} breaches the style of natural deduction, where the assumptions
are kept fixed. Given a theorem {\small\verb%A|-u=v%} and a goal {\small\verb%([t1;...;tn], t)%},
{\small\verb%SUBST_ALL_TAC (A|-u=v)%} transforms the assumptions {\small\verb%t1%},...,{\small\verb%tn%} and the term
{\small\verb%t%} into {\small\verb%t1[v/u]%},...,{\small\verb%tn[v/u]%} and {\small\verb%t[v/u]%} respectively, by substituting {\small\verb%v%}
for each free occurrence of {\small\verb%u%} in both the assumptions and the conclusion of
the goal.
{\par\samepage\setseps\small
\begin{verbatim}
{t1,...,tn} ?- t
================================= SUBST_ALL_TAC (A|-u=v)
{t1[v/u],...,tn[v/u]} ?- t[v/u]
\end{verbatim}
}
\noindent The assumptions of the theorem used to substitute with are not added
to the assumptions of the goal, but they are recorded in the proof. If {\small\verb%A%} is
not a subset of the assumptions of the goal (up to alpha-conversion), then
{\small\verb%SUBST_ALL_TAC (A|-u=v)%} results in an invalid tactic.
{\small\verb%SUBST_ALL_TAC%} automatically renames bound variables to prevent
free variables in {\small\verb%v%} becoming bound after substitution.
\FAILURE
{\small\verb%SUBST_ALL_TAC th (A,t)%} fails if the conclusion of {\small\verb%th%} is not an equation.
No change is made to the goal if no occurrence of the left-hand side of
{\small\verb%th%} appears free in {\small\verb%(A,t)%}.
\EXAMPLE
Simplifying both the assumption and the term in the goal
{\par\samepage\setseps\small
\begin{verbatim}
{0 + m = n} ?- 0 + (0 + m) = n
\end{verbatim}
}
\noindent by substituting with the theorem {\small\verb%|- 0 + m = m%} for addition
{\par\samepage\setseps\small
\begin{verbatim}
SUBST_ALL_TAC (CONJUNCT1 ADD_CLAUSES)
\end{verbatim}
}
\noindent results in the goal
{\par\samepage\setseps\small
\begin{verbatim}
{m = n} ?- 0 + m = n
\end{verbatim}
}
\SEEALSO
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST1_TAC, SUBST_TAC.
\ENDDOC
\DOC{SUBST\_CONV}
\TYPE {\small\verb%SUBST_CONV : ((thm # term) list -> term -> conv)%}\egroup
\SYNOPSIS
Makes substitutions in a term at selected occurrences of subterms, using a list
of theorems.
\DESCRIBE
{\small\verb%SUBST_CONV%} implements the following rule of simultaneous substitution
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 = v1 ... An |- tn = vn
------------------------------------------------------------------
A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]
\end{verbatim}
}
\noindent The first argument to {\small\verb%SUBST_CONV%} is a list
{\small\verb%[(A1|-t1=v1, x1);...;(An|-tn=vn, xn)]%}.
The second argument is a template term {\small\verb%t[x1,...,xn]%}, in which
the variables {\small\verb%x1,...,xn%} are used to mark those places where
occurrences of {\small\verb%t1,...,tn%} are to be replaced with the terms
{\small\verb%v1,...,vn%}, respectively.
Thus, evaluating
{\par\samepage\setseps\small
\begin{verbatim}
SUBST_CONV [(A1|-t1=v1, x1);...;(An|-tn=vn, xn)]
t[x1,...,xn]
t[t1,...,tn/x1,...,xn]
\end{verbatim}
}
\noindent returns the theorem
{\par\samepage\setseps\small
\begin{verbatim}
A1 u ... u An |- t[t1,...,tn/x1,...,xn] = t[v1,...,vn/x1,...,xn]
\end{verbatim}
}
The occurrence of {\small\verb%ti%} at the places marked by the variable
{\small\verb%xi%} must be free (i.e. {\small\verb%ti%} must not contain any bound variables).
{\small\verb%SUBST_CONV%} automatically renames bound variables to prevent free
variables in {\small\verb%vi%} becoming bound after substitution.
\FAILURE
{\small\verb%SUBST_CONV [(th1,x1);...;(thn,xn)] t[x1,...,xn] t'%} fails if the conclusion of
any theorem {\small\verb%thi%} in the list is not an equation; or if the template
{\small\verb%t[x1,...,xn]%} does not match the term {\small\verb%t'%}; or if and term {\small\verb%ti%} in {\small\verb%t'%}
marked by the variable {\small\verb%xi%} in the template, is not identical to the left-hand
side of the conclusion of the theorem {\small\verb%thi%}.
\EXAMPLE
The theorems
{\par\samepage\setseps\small
\begin{verbatim}
#let thm0 = SPEC "0" ADD1 and thm1 = SPEC "1" ADD1;;
thm0 = |- SUC 0 = 0 + 1
thm1 = |- SUC 1 = 1 + 1
\end{verbatim}
}
\noindent can be used to substitute selected occurrences of the terms {\small\verb%SUC 0%}
and {\small\verb%SUC 1%}
{\par\samepage\setseps\small
\begin{verbatim}
#SUBST_CONV [(thm0,"x:num");(thm1,"y:num")]
# "(x + y) > SUC 1"
# "(SUC 0 + SUC 1) > SUC 1";;
|- ((SUC 0) + (SUC 1)) > (SUC 1) = ((0 + 1) + (1 + 1)) > (SUC 1)
\end{verbatim}
}
\USES
{\small\verb%SUBST_CONV%} is used when substituting at selected occurrences of terms
and using rewriting rules/conversions is too extensive.
\SEEALSO
REWR_CONV, SUBS, SUBST, SUBS_OCCS.
\ENDDOC
\DOC{subst}
\TYPE {\small\verb%subst : ((term # term) list -> term -> term)%}\egroup
\SYNOPSIS
Substitutes terms in a term.
\DESCRIBE
Given a list of term pairs {\small\verb%[("a_1","b_1"),...,("a_n","b_n")]%}
and a term {\small\verb%"c"%}, {\small\verb%subst%} attempts to substitute all free occurrences of
{\small\verb%"b_i"%} in {\small\verb%"c"%} by {\small\verb%"a_i"%} for all {\small\verb%i%} ranging between {\small\verb%1%} and {\small\verb%n%}.
\FAILURE
Failure occurs if for some {\small\verb%i%} ranging between {\small\verb%1%} and {\small\verb%n%}, the substitution
of {\small\verb%"b_i"%} by {\small\verb%"a_i"%} fails.
The substitution of {\small\verb%"b_i"%} by {\small\verb%"a_i"%} fails for some {\small\verb%i%},
if the types of {\small\verb%"a_i"%} and {\small\verb%"b_i"%} are not the same.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#subst [("1","SUC 0")] "SUC(SUC 0)";;
"SUC 1" : term
#subst [("1","SUC 0");("2","SUC 1")] "SUC(SUC 0)";;
"SUC 1" : term
#subst [("1","SUC 0");("2","SUC 1")] "SUC(SUC 0) = SUC 1";;
"SUC 1 = 2" : term
#subst [("b:num","a:num")] "\a:num. (b:num)";;
"\a. b" : term
#subst [("foo:*","flip:*")] "waddle:*";;
"waddle" : term
\end{verbatim}
}
\ENDDOC
\DOC{SUBST}
\TYPE {\small\verb%SUBST : ((thm # term) list -> term -> thm -> thm)%}\egroup
\SYNOPSIS
Makes a set of parallel substitutions in a theorem.
\DESCRIBE
Implements the following rule of simultaneous substitution
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 = u1 , ... , An |- tn = un , A |- t[t1,...,tn]
-------------------------------------------------------------
A u A1 u ... u An |- t[ui]
\end{verbatim}
}
\noindent Evaluating
{\par\samepage\setseps\small
\begin{verbatim}
SUBST [((A1 |- t1=u1), x1); ... ;((An |- tn=un), xn)]
t[x1,...,xn]
(A |- t[t1,...,tn])
\end{verbatim}
}
\noindent returns the theorem {\small\verb%A |- t[u1,...,un]%}. The term argument
{\small\verb%t[x1,...,xn]%} is a template which should match the conclusion of the theorem
being substituted into, with the variables {\small\verb%x1%}, ... , {\small\verb%xn%} marking those
places where occurrences of {\small\verb%t1%}, ... , {\small\verb%tn%} are to be replaced by the terms
{\small\verb%u1%}, ... , {\small\verb%un%}, respectively. The occurrence of {\small\verb%ti%} at the places marked by
{\small\verb%xi%} must be free (i.e. {\small\verb%ti%} must not contain any bound variables). {\small\verb%SUBST%}
automatically renames bound variables to prevent free variables in {\small\verb%ui%}
becoming bound after substitution.
{\small\verb%SUBST%} is a complex primitive because it performs both parallel simultaneous
substitution and renaming of variables. This is for efficiency reasons, but it
would be logically cleaner if {\small\verb%SUBST%} were simpler.
\FAILURE
If the template does not match the conclusion of the hypothesis, or the terms
in the conclusion marked by the variables {\small\verb%x1%}, ... , {\small\verb%xn%} in the template are
not identical to the left hand sides of the supplied equations (i.e. the terms
{\small\verb%t1%}, ... , {\small\verb%tn%}).
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#let th0 = SPEC "0" ADD1 and th1 = SPEC "1" ADD1;;
th0 = |- SUC 0 = 0 + 1
th1 = |- SUC 1 = 1 + 1
#SUBST [(th0,"x:num");(th1,"y:num")]
# "(x+y) > SUC 0"
# (ASSUME "(SUC 0 + SUC 1) > SUC 0");;
. |- ((0 + 1) + (1 + 1)) > (SUC 0)
#SUBST [(th0,"x:num");(th1,"y:num")]
# "(SUC 0 + y) > SUC 0"
# (ASSUME "(SUC 0 + SUC 1) > SUC 0");;
. |- ((SUC 0) + (1 + 1)) > (SUC 0)
#SUBST [(th0,"x:num");(th1,"y:num")]
# "(x+y) > x"
# (ASSUME "(SUC 0 + SUC 1) > SUC 0");;
. |- ((0 + 1) + (1 + 1)) > (0 + 1)
\end{verbatim}
}
\USES
For substituting at selected occurrences. Often useful
for writing special purpose derived inference rules.
\SEEALSO
SUBS.
\ENDDOC
\DOC{SUBST\_MATCH}
\TYPE {\small\verb%SUBST_MATCH : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Substitutes in one theorem using another, equational, theorem.
\DESCRIBE
Given the theorems {\small\verb%A|-u=v%} and {\small\verb%A'|-t%}, {\small\verb%SUBST_MATCH (A|-u=v) (A'|-t)%}
searches for one free instance of {\small\verb%u%} in {\small\verb%t%}, according to a top-down
left-to-right search strategy, and then substitutes the corresponding instance
of {\small\verb%v%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- u=v A' |- t
-------------------- SUBST_MATCH (A|-u=v) (A'|-t)
A u A' |- t[v/u]
\end{verbatim}
}
\noindent {\small\verb%SUBST_MATCH%} allows only a free instance of {\small\verb%u%} to be substituted
for in {\small\verb%t%}. An instance which contain bound variables can be substituted for by
using rewriting rules such as {\small\verb%REWRITE_RULE%}, {\small\verb%PURE_REWRITE_RULE%} and
{\small\verb%ONCE_REWRITE_RULE%}.
\FAILURE
{\small\verb%SUBST_MATCH th1 th2%} fails if the conclusion of the theorem {\small\verb%th1%} is not an
equation. Moreover, {\small\verb%SUBST_MATCH (A|-u=v) (A'|-t)%} fails if no instance of {\small\verb%u%}
occurs in {\small\verb%t%}, since the matching algorithm fails. No change is made to the
theorem {\small\verb%(A'|-t)%} if instances of {\small\verb%u%} occur in {\small\verb%t%}, but they are not free (see
{\small\verb%SUBS%}).
\EXAMPLE
The commutative law for addition
{\par\samepage\setseps\small
\begin{verbatim}
#let thm1 = SPECL ["m:num"; "n:num"] ADD_SYM;;
thm1 = |- m + n = n + m
\end{verbatim}
}
\noindent is used to apply substitutions, depending on the occurrence of free
instances
{\par\samepage\setseps\small
\begin{verbatim}
#SUBST_MATCH thm1 (ASSUME "(n + 1) + (m - 1) = m + n");;
. |- (m - 1) + (n + 1) = m + n
#SUBST_MATCH thm1 (ASSUME "!n. (n + 1) + (m - 1) = m + n");;
. |- !n. (n + 1) + (m - 1) = m + n
\end{verbatim}
}
\USES
{\small\verb%SUBST_MATCH%} is used when rewriting with the rules such as {\small\verb%REWRITE_RULE%},
using a single theorem is too extensive or would diverge. Moreover, applying
{\small\verb%SUBST_MATCH%} can be much faster than using the rewriting rules.
\SEEALSO
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE, SUBS, SUBST.
\ENDDOC
\DOC{subst\_occs}
\TYPE {\small\verb%subst_occs : (int list list -> (term # term) list -> term -> term)%}\egroup
\SYNOPSIS
Substitutes for particular occurrences of subterms of a given term.
\DESCRIBE
For each substitution pair {\small\verb%("a_i","b_i")%} in the second argument,
there should be a corresponding integer list {\small\verb%l_i%} in the first argument
that specifies which free occurrences of {\small\verb%"b_i"%} in the third argument should
be substituted by {\small\verb%"a_i"%}.
\FAILURE
Failure occurs if any substitution fails, or if the size of
the first argument is not equal to the size of the second argument. In
other words, every substitution pair should be accompanied by a list specifying
when the substitution is applicable.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#subst_occs [[1;3]] [("1","SUC 0")] "SUC 0 + SUC 0 = SUC(SUC 0)";;
"1 + (SUC 0) = SUC 1" : term
#subst_occs [[1];[1]] [("1","SUC 0");("2","SUC 1")] "SUC(SUC 0) = SUC 1";;
"SUC 1 = 2" : term
#subst_occs
#[[1];[1]] [("2","SUC(SUC 0)");("1","SUC 0")] "SUC(SUC 0) = SUC 0";;
"2 = 1" : term
\end{verbatim}
}
\SEEALSO
subst
\ENDDOC
\DOC{SUBST\_OCCS\_TAC}
\TYPE {\small\verb%SUBST_OCCS_TAC : ((int list # thm) list -> tactic)%}\egroup
\SYNOPSIS
Makes substitutions in a goal at specific occurrences of a term, using a list
of theorems.
\DESCRIBE
Given a list {\small\verb%(l1,A1|-t1=u1),...,(ln,An|-tn=un)%} and a goal {\small\verb%(A,t)%},
{\small\verb%SUBST_OCCS_TAC%} replaces each {\small\verb%ti%} in {\small\verb%t%} with {\small\verb%ui%}, simultaneously,
at the occurrences specified by the integers in the list {\small\verb%li = [o1;...;ok]%}
for each theorem {\small\verb%Ai|-ti=ui%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============================= SUBST_OCCS_TAC [(l1,A1|-t1=u1);...;
A ?- t[u1,...,un/t1,...,tn] (ln,An|-tn=un)]
\end{verbatim}
}
\noindent The assumptions of the theorems used to substitute with are not
added to the assumptions {\small\verb%A%} of the goal, but they are recorded in the proof.
If any {\small\verb%Ai%} is not a subset of {\small\verb%A%} (up to alpha-conversion),
{\small\verb%SUBST_OCCS_TAC [(l1,A1|-t1=u1);...;(ln,An|-tn=un)]%}
results in an invalid tactic.
{\small\verb%SUBST_OCCS_TAC%} automatically renames bound variables to prevent
free variables in {\small\verb%ui%} becoming bound after substitution.
\FAILURE
{\small\verb%SUBST_OCCS_TAC [(l1,th1);...;(ln,thn)] (A,t)%} fails if the conclusion of any
theorem in the list is not an equation. No change is made to the goal if the
supplied occurrences {\small\verb%li%} of the left-hand side of the conclusion of {\small\verb%thi%} do
not appear in {\small\verb%t%}.
\EXAMPLE
When trying to solve the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- (m + n) + (n + m) = (m + n) + (m + n)
\end{verbatim}
}
\noindent applying the commutative law for addition on the third occurrence of
the subterm {\small\verb%m + n%}
{\par\samepage\setseps\small
\begin{verbatim}
SUBST_OCCS_TAC [([3],SPECL ["m:num"; "n:num"] ADD_SYM)]
\end{verbatim}
}
\noindent results in the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- (m + n) + (n + m) = (m + n) + (n + m)
\end{verbatim}
}
\USES
{\small\verb%SUBST_OCCS_TAC%} is used when rewriting a goal at specific occurrences
of a term,
and rewriting tactics such as {\small\verb%REWRITE_TAC%}, {\small\verb%PURE_REWRITE_TAC%},
{\small\verb%ONCE_REWRITE_TAC%}, {\small\verb%SUBST_TAC%}, etc. are too extensive or would diverge.
\SEEALSO
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST1_TAC, SUBST_TAC.
\ENDDOC
\DOC{SUBST\_TAC}
\TYPE {\small\verb%SUBST_TAC : (thm list -> tactic)%}\egroup
\SYNOPSIS
Makes term substitutions in a goal using a list of theorems.
\DESCRIBE
Given a list of theorems {\small\verb%A1|-u1=v1,...,An|-un=vn%} and a goal {\small\verb%(A,t)%},
{\small\verb%SUBST_TAC%} rewrites the term {\small\verb%t%} into the term {\small\verb%t[v1,...,vn/u1,...,un]%} by
simultaneously substituting {\small\verb%vi%} for each occurrence of {\small\verb%ui%} in {\small\verb%t%} with {\small\verb%vi%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
============================= SUBST_TAC [A1|-u1=v1;...;An|-un=vn]
A ?- t[v1,...,vn/u1,...,un]
\end{verbatim}
}
\noindent The assumptions of the theorems used to substitute with are not added
to the assumptions {\small\verb%A%} of the goal, while they are recorded in the proof. If
any {\small\verb%Ai%} is not a subset of {\small\verb%A%} (up to alpha-conversion), then {\small\verb%SUBST_TAC
[A1|-u1=v1;...;An|-un=vn]%} results in an invalid tactic.
{\small\verb%SUBST_TAC%} automatically renames bound variables to prevent free variables in
{\small\verb%vi%} becoming bound after substitution.
\FAILURE
{\small\verb%SUBST_TAC [th1;...;thn] (A,t)%} fails if the conclusion of any theorem in the
list is not an equation. No change is made to the goal if no occurrence of the
left-hand side of the conclusion of {\small\verb%thi%} appears in {\small\verb%t%}.
\EXAMPLE
When trying to solve the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- (n + 0) + (0 + m) = m + n
\end{verbatim}
}
\noindent by substituting with the theorems
{\par\samepage\setseps\small
\begin{verbatim}
#let thm1 = SPECL ["m:num"; "n:num"] ADD_SYM
#and thm2 = CONJUNCT1 ADD_CLAUSES;;
thm1 = |- m + n = n + m
thm2 = |- 0 + m = m
\end{verbatim}
}
\noindent applying {\small\verb%SUBST_TAC [thm1; thm2]%} results in the goal
{\par\samepage\setseps\small
\begin{verbatim}
?- (n + 0) + m = n + m
\end{verbatim}
}
\USES
{\small\verb%SUBST_TAC%} is used when rewriting (for example, with {\small\verb%REWRITE_TAC%}) is
extensive or would diverge. Substituting is also much faster than rewriting.
\SEEALSO
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST1_TAC, SUBST_ALL_TAC.
\ENDDOC
\DOC{subtract}
\TYPE {\small\verb%subtract : (* list -> * list -> * list)%}\egroup
\SYNOPSIS
Computes the set-theoretic difference of two `sets'.
\DESCRIBE
{\small\verb%subtract l1 l2%} returns a list consisting of those elements of {\small\verb%l1%} that do
not appear in {\small\verb%l2%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#subtract [1;2;3] [3;5;4;1];;
[2] : int list
#subtract [1;2;4;1] [4;5];;
[1; 2; 1] : int list
\end{verbatim}
}
\SEEALSO
setify, set_equal, union, intersect.
\ENDDOC
\DOC{suspend\_recording}
\TYPE {\small\verb%suspend_recording : void -> void%}\egroup
\SYNOPSIS
Suspend proof recording temporarily.
\DESCRIBE
A proof is a list of inference steps. After the proof recorder is
enabled, every inference performed by the system is recorded and
cumulated in an internal buffer. When a proof is completed, the raw
records can then be processed and output to a disk file.
{\small\verb%suspend_recording%} is a low level user function for managing the proof
recorder. It pauses the proof recorder until the function
{\small\verb%resume_recording%} is called. When the proof recorder is suspended,
any inference carried out by the system will not be recorded.
The internal buffer for storing the inference steps will not be
cleared. When the proof recorder is resumed, the steps will be
appended to what have been saved in the buffer.
The current state of the proof recorder can interrogated using the
function {\small\verb%is_recording_proof%}. A value of {\small\verb%false%} indicates the proof
recorder is disabled.
\FAILURE
Never fail.
\COMMENTS
This function is used to implement higher level user functions for
recording proof in the library {\small\verb%record_proof%}. It is much more
convenient to use those functions than the low level functions
such as {\small\verb%suspend_recording%} directly.
\SEEALSO
record_proof, is_recording_proof, RecordStep, get_steps, resume_recording,
current_proof, current_proof_file,
new_proof_file, close_proof_file, begin_proof, end_proof,
TAC_PROOF, PROVE, prove, prove_thm
\ENDDOC
\DOC{SWAP\_EXISTS\_CONV}
\TYPE {\small\verb%SWAP_EXISTS_CONV : conv%}\egroup
\SYNOPSIS
Interchanges the order of two existentially quantified variables.
\DESCRIBE
When applied to a term argument of the form {\small\verb%?x y. P%}, the conversion
{\small\verb%SWAP_EXISTS_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (?x y. P) = (?y x. P)
\end{verbatim}
}
\FAILURE
{\small\verb%SWAP_EXISTS_CONV%} fails if applied to a term that is not of the form
{\small\verb%?x y. P%}.
\ENDDOC
\DOC{SYM\_CONV}
\TYPE {\small\verb%SYM_CONV : conv%}\egroup
\SYNOPSIS
Interchanges the left and right-hand sides of an equation.
\DESCRIBE
When applied to an equational term {\small\verb%t1 = t2%}, the conversion
{\small\verb%SYM_CONV%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (t1 = t2) = (t2 = t1)
\end{verbatim}
}
\FAILURE
Fails if applied to a term that is not an equation.
\SEEALSO
SYM.
\ENDDOC
\DOC{SYM}
\TYPE {\small\verb%SYM : (thm -> thm)%}\egroup
\SYNOPSIS
Swaps left-hand and right-hand sides of an equation.
\DESCRIBE
When applied to a theorem {\small\verb%A |- t1 = t2%}, the inference rule {\small\verb%SYM%} returns
{\small\verb%A |- t2 = t1%}.
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 = t2
-------------- SYM
A |- t2 = t1
\end{verbatim}
}
\FAILURE
Fails unless the theorem is equational.
\SEEALSO
GSYM, NOT_EQ_SYM, REFL.
\ENDDOC
\DOC{syserror}
\TYPE {\small\verb%syserror : (string -> *)%}\egroup
\SYNOPSIS
Prints an error message issued by the {\small\verb%ML%} system.
\DESCRIBE
Given a string {\small\verb%`error message`%}, {\small\verb%syserror%} returns an {\small\verb%ML%} system
error with diagnostics {\small\verb%`error message`%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#syserror `in ML function`;;
ML system error in ML function
evaluation failed syserror
\end{verbatim}
}
\ENDDOC
\DOC{system}
\TYPE {\small\verb%system : (string -> int)%}\egroup
\SYNOPSIS
Executes a shell command.
\DESCRIBE
Escapes from {\small\verb%HOL%} temporarily to execute a named shell command. The integer
value returned is an error code: zero indicates successful completion of the
shell command.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#system `zap`;;
zap: Command not found.
1 : int
system `ls`;;
file_a file_b file_c
0:int
\end{verbatim}
}
\ENDDOC
\DOC{TAC\_PROOF}
\TYPE {\small\verb%TAC_PROOF : ((goal # tactic) -> thm)%}\egroup
\SYNOPSIS
Attempts to prove a goal using a given tactic.
\DESCRIBE
When applied to a goal-tactic pair {\small\verb%(A ?- t,tac)%}, the {\small\verb%TAC_PROOF%} function
attempts to prove the goal {\small\verb%A ?- t%}, using the tactic {\small\verb%tac%}. If it succeeds, it
returns the theorem {\small\verb%A' |- t%} corresponding to the goal, where the assumption
list {\small\verb%A'%} may be a proper superset of {\small\verb%A%} unless the tactic is valid; there
is no inbuilt validity checking.
\FAILURE
Fails unless the goal has hypotheses and conclusions all of type {\small\verb%bool%},
and the tactic can solve the goal.
\SEEALSO
PROVE, prove_thm, VALID.
\ENDDOC
\DOC{term\_of\_int}
\TYPE {\small\verb%term_of_int : (int -> term)%}\egroup
\SYNOPSIS
Maps an ML integer to the corresponding numeric term.
\DESCRIBE
When given a non-negative integer, {\small\verb%term_of_int%} returns a logical
term of type {\small\verb%:num%} representing the number.
\FAILURE
Fails if the argument is less than 0.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#term_of_int 2;;
"2" : term
#term_of_int (-2);;
evaluation failed mk_const: -2 not a constant
\end{verbatim}
}
\SEEALSO
int_of_term, int_of_string, string_of_int.
\ENDDOC
\DOC{THENC}
\TYPE {\small\verb%$THENC : (conv -> conv -> conv)%}\egroup
\SYNOPSIS
Applies two conversions in sequence.
\DESCRIBE
If the conversion {\small\verb%c1%} returns {\small\verb%|- t = t'%} when applied to a term {\small\verb%"t"%}, and
{\small\verb%c2%} returns {\small\verb%|- t' = t''%} when applied to {\small\verb%"t'"%}, then the composite
conversion {\small\verb%(c1 THENC c2) "t"%} returns {\small\verb%|- t = t''%}. That is, {\small\verb%(c1 THENC c2)
"t"%} has the effect of transforming the term {\small\verb%"t"%} first with the conversion
{\small\verb%c1%} and then with the conversion {\small\verb%c2%}.
\FAILURE
{\small\verb%(c1 THENC c2) "t"%} fails if either the conversion {\small\verb%c1%} fails when applied to
{\small\verb%"t"%}, or if {\small\verb%c1 "t"%} succeeds and returns {\small\verb%|- t = t'%} but {\small\verb%c2%} fails when
applied to {\small\verb%"t'"%}. {\small\verb%(c1 THENC c2) "t"%} may also fail if either of {\small\verb%c1%} or {\small\verb%c2%}
is not, in fact, a conversion (i.e. a function that maps a term {\small\verb%t%} to a
theorem {\small\verb%|- t = t'%}).
\SEEALSO
EVERY_CONV.
\ENDDOC
\DOC{THEN}
\TYPE {\small\verb%$THEN : (tactic -> tactic -> tactic)%}\egroup
\SYNOPSIS
Applies two tactics in sequence.
\DESCRIBE
If {\small\verb%T1%} and {\small\verb%T2%} are tactics, {\small\verb%T1 THEN T2%} is a tactic which applies {\small\verb%T1%} to a
goal, then applies the tactic {\small\verb%T2%} to all the subgoals generated. If {\small\verb%T1%}
solves the goal then {\small\verb%T2%} is never applied.
\FAILURE
The application of {\small\verb%THEN%} to a pair of tactics never fails.
The resulting tactic fails if {\small\verb%T1%} fails when applied to the goal, or if
{\small\verb%T2%} does when applied to any of the resulting subgoals.
\COMMENTS
Although normally used to sequence tactics which generate a single subgoal,
it is worth remembering that it is sometimes useful to apply the same tactic
to multiple subgoals; sequences like the following:
{\par\samepage\setseps\small
\begin{verbatim}
EQ_TAC THENL [ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]
\end{verbatim}
}
\noindent can be replaced by the briefer:
{\par\samepage\setseps\small
\begin{verbatim}
EQ_TAC THEN ASM_REWRITE_TAC[]
\end{verbatim}
}
\SEEALSO
EVERY, ORELSE, THENL.
\ENDDOC
\DOC{THENL}
\TYPE {\small\verb%$THENL : (tactic -> tactic list -> tactic)%}\egroup
\SYNOPSIS
Applies a list of tactics to the corresponding subgoals generated by a tactic.
\DESCRIBE
If {\small\verb%T,T1,...,Tn%} are tactics, {\small\verb%T THENL [T1;...;Tn]%} is a tactic which applies
{\small\verb%T%} to a goal, and if it does not fail, applies the tactics {\small\verb%T1,...,Tn%} to the
corresponding subgoals, unless {\small\verb%T%} completely solves the goal.
\FAILURE
The application of {\small\verb%THENL%} to a tactic and tactic list never fails.
The resulting tactic fails if {\small\verb%T%} fails when applied to the goal, or if
the goal list is not empty and its length is not the same as that of the
tactic list, or finally if {\small\verb%Ti%} fails when applied to the {\small\verb%i%}'th subgoal
generated by {\small\verb%T%}.
\USES
Applying different tactics to different subgoals.
\SEEALSO
EVERY, ORELSE, THEN.
\ENDDOC
\DOC{THEN\_TCL}
\TYPE {\small\verb%$THEN_TCL : (thm_tactical -> thm_tactical -> thm_tactical)%}\egroup
\SYNOPSIS
Composes two theorem-tacticals.
\DESCRIBE
If {\small\verb%ttl1%} and {\small\verb%ttl2%} are two theorem-tacticals, {\small\verb%ttl1 THEN_TCL ttl2%} is
a theorem-tactical which composes their effect; that is, if:
{\par\samepage\setseps\small
\begin{verbatim}
ttl1 ttac th1 = ttac th2
\end{verbatim}
}
\noindent and
{\par\samepage\setseps\small
\begin{verbatim}
ttl2 ttac th2 = ttac th3
\end{verbatim}
}
\noindent then
{\par\samepage\setseps\small
\begin{verbatim}
(ttl1 THEN_TCL ttl2) ttac th1 = ttac th3
\end{verbatim}
}
\FAILURE
The application of {\small\verb%THEN_TCL%} to a pair of theorem-tacticals never fails.
\SEEALSO
EVERY_TCL, FIRST_TCL, ORELSE_TCL.
\ENDDOC
\DOC{theorem}
\TYPE {\small\verb%theorem : (string -> string -> thm)%}\egroup
\SYNOPSIS
Reads a derived theorem from a given theory segment of the current theory.
\DESCRIBE
A call of {\small\verb%theorem `thy` `th`%} returns the theorem named {\small\verb%th%} from the
theory segment {\small\verb%thy%}. The theory segment {\small\verb%thy%} must be part of the current
theory. The name {\small\verb%th%} is the name given to the theorem by the user when it
was originally added to the theory segment (by, for example, a call to
{\small\verb%save_thm%}). The name of the current theory segment can be abbreviated by {\small\verb%`-`%}.
\FAILURE
The call {\small\verb%theorem `thy` `th`%} will fail if the theory segment {\small\verb%thy%} is not
part of the current theory.
It will fail if there does not exist a derived theorem {\small\verb%th%} in theory
segment {\small\verb%thy%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#theorem `arithmetic` `ADD_SYM`;;
|- !m n. m + n = n + m
\end{verbatim}
}
\SEEALSO
axiom, definition, load_theorem, load_theorems, print_theory, save_thm,
theorems.
\ENDDOC
\DOC{theorem\_lfn}
\TYPE {\small\verb%theorem_lfn : (string list -> thm)%}\egroup
\SYNOPSIS
Loads a given theorem from a given theory.
\DESCRIBE
If {\small\verb%thy%} is an ancestor theory, and {\small\verb%th%} one of its theorems, then the call
{\par\samepage\setseps\small
\begin{verbatim}
theorem_lfn [`thy`;`th`]
\end{verbatim}
}
\noindent will return that theorem.
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%th%} is not one of its
theorems.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#theorem_lfn [`num`;`NOT_SUC`];;
|- !n. ~(SUC n = 0)
\end{verbatim}
}
\COMMENTS
This call has the same effect as {\small\verb%theorem `thy` `th`%}.
\SEEALSO
theorem, theorems, theorem_msg_lfn, load_theorem, load_theorems.
\ENDDOC
\DOC{theorem\_msg\_lfn}
\TYPE {\small\verb%theorem_msg_lfn : (string list -> thm)%}\egroup
\SYNOPSIS
Loads a given theorem from a given theory, with an autoload message.
\DESCRIBE
If {\small\verb%thy%} is an ancestor theory, and {\small\verb%th%} one of its theorems, then the call
{\par\samepage\setseps\small
\begin{verbatim}
theorem_msg_lfn [`thy`;`th`]
\end{verbatim}
}
\noindent will print a message of the form
{\par\samepage\setseps\small
\begin{verbatim}
Theorem th autoloaded from theory `thy`
\end{verbatim}
}
\noindent and cancel any autoloading action associated with the name {\small\verb%th%},
and will then return that theorem.
\FAILURE
Fails if {\small\verb%thy%} is not an ancestor theory, or if {\small\verb%th%} is not one of its
theorems.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#theorem_msg_lfn [`num`; `INV_SUC`];;
Theorem INV_SUC autoloaded from theory `num`.
|- !m n. (SUC m = SUC n) ==> (m = n)
\end{verbatim}
}
\SEEALSO
autoload, autoload_theory, theorem, theorems, theorem_lfn, load_theorem,
load_theorems, undo_autoload.
\ENDDOC
\DOC{theorems}
\TYPE {\small\verb%theorems : (string -> (string # thm) list)%}\egroup
\SYNOPSIS
Returns the derived theorems of a given theory segment of the current theory.
\DESCRIBE
A call of {\small\verb%theorems `thy`%} returns the derived theorems of the theory segment
{\small\verb%thy%} together with their names. The theory segment {\small\verb%thy%} must be part of
the current theory. The names are those given to the theorems by the user when
they were originally added to the theory segment (by, for example, a call to
{\small\verb%save_thm%}). The name of the current theory segment can be abbreviated by {\small\verb%`-`%}.
\FAILURE
The call {\small\verb%theorems `thy`%} will fail if the theory segment {\small\verb%thy%} is not part
of the current theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#theorems `bool`;;
[(`PAIR_EQ`, |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b));
(`SND`, |- !x y. SND(x,y) = y);
(`FST`, |- !x y. FST(x,y) = x);
(`PAIR`, |- !x. FST x,SND x = x);
(`PAIR_EXISTS`, |- ?p. IS_PAIR p)]
: (string # thm) list
\end{verbatim}
}
\SEEALSO
axioms, definitions, load_theorem, load_theorems, print_theory, save_thm,
theorem.
\ENDDOC
\DOC{thm\_count}
\TYPE {\small\verb%thm_count : (void -> int)%}\egroup
\SYNOPSIS
Returns the current value of the theorem counter.
\DESCRIBE
HOL maintains a counter which is incremented every time a primitive inference
is performed (or an axiom or definition set up). A call to {\small\verb%thm_count()%}
returns the current value of this counter
\FAILURE
Never fails.
\SEEALSO
set_thm_count, timer.
\ENDDOC
\DOC{thm\_frees}
\TYPE {\small\verb%thm_frees : (thm -> term list)%}\egroup
\SYNOPSIS
Returns a list of the variables free in a theorem's assumptions and conclusion.
\DESCRIBE
When applied to a theorem, {\small\verb%A |- t%}, the function {\small\verb%thm_frees%} returns a list,
without repetitions, of those variables which are free either in {\small\verb%t%} or in
some member of the assumption list {\small\verb%A%}.
\FAILURE
Never fails.
\EXAMPLE
When applied to the following theorem:
{\par\samepage\setseps\small
\begin{verbatim}
(SUC m) < (SUC n) |- m < n
\end{verbatim}
}
\noindent {\small\verb%thm_frees%} returns the list {\small\verb%["m"; "n"]%}. The term {\small\verb%SUC%} is a
constant, not a variable, so that is not included.
\SEEALSO
frees, freesl, free_in.
\ENDDOC
\DOC{timer}
\TYPE {\small\verb%timer : (bool -> bool)%}\egroup
\SYNOPSIS
Switches timing and inference-counting on or off.
\DESCRIBE
A call {\small\verb%timer true%} switches on timing and inference-counting; {\small\verb%timer false%}
switches it off. In either case, the previous on/off setting ({\small\verb%true%} means on)
is returned. When switched on, the CPU (and, if relevant, garbage collection)
time and the number of intermediate theorems generated is displayed.
\FAILURE
Never fails.
\EXAMPLE
This example was run from a state with timings initially switched off:
{\par\samepage\setseps\small
\begin{verbatim}
#let th = SPEC "x:num" (theorem `arithmetic` `ADD1`);;
th = |- SUC x = x + 1
Run time: 0.0s
Intermediate theorems generated: 1
#ONCE_REWRITE_RULE[EQ_SYM_EQ] th;;
|- x + 1 = SUC x
Run time: 0.1s
Intermediate theorems generated: 11
#SYM th;;
|- x + 1 = SUC x
Run time: 0.0s
Intermediate theorems generated: 1
\end{verbatim}
}
\USES
Guiding the optimization of important proofs.
\COMMENTS
The same effect can be achieved by setting the flag {\small\verb%timing%}.
\SEEALSO
set_flag, set_thm_count, thm_count.
\ENDDOC
\DOC{tl}
\TYPE {\small\verb%tl : (* list -> * list)%}\egroup
\SYNOPSIS
Computes the tail of a list (the original list less the first element).
\DESCRIBE
{\small\verb%tl [x1;...;xn]%} returns {\small\verb%[x2;...;xn]%}.
\FAILURE
Fails with {\small\verb%tl%} if the list is empty.
\SEEALSO
hd, el, null.
\ENDDOC
\DOC{TOP\_DEPTH\_CONV}
\TYPE {\small\verb%TOP_DEPTH_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Applies a conversion top-down to all subterms, retraversing changed ones.
\DESCRIBE
{\small\verb%TOP_DEPTH_CONV c tm%} repeatedly applies the conversion {\small\verb%c%} to all the subterms
of the term {\small\verb%tm%}, including the term {\small\verb%tm%} itself. The supplied conversion {\small\verb%c%}
is applied to the subterms of {\small\verb%tm%} in top-down order and is applied repeatedly
(zero or more times, as is done by {\small\verb%REPEATC%}) at each subterm until it fails.
If a subterm {\small\verb%t%} is changed (up to alpha-equivalence) by virtue of the
application of {\small\verb%c%} to its own subterms, then the term into which {\small\verb%t%} is
transformed is retraversed by applying {\small\verb%TOP_DEPTH_CONV c%} to it.
\FAILURE
{\small\verb%TOP_DEPTH_CONV c tm%} never fails but can diverge.
\COMMENTS
The implementation of this function uses failure to avoid rebuilding
unchanged subterms. That is to say, during execution the failure string
{\small\verb%`QCONV`%} may be generated and later trapped. The behaviour of the function
is dependent on this use of failure. So, if the conversion given as argument
happens to generate a failure with string {\small\verb%`QCONV`%}, the operation of
{\small\verb%TOP_DEPTH_CONV%} will be unpredictable.
\SEEALSO
DEPTH_CONV, ONCE_DEPTH_CONV, REDEPTH_CONV, REW_DEPTH_CONV.
\ENDDOC
\DOC{top\_goal}
\TYPE {\small\verb%top_goal : (void -> goal)%}\egroup
\SYNOPSIS
Returns the current goal of the subgoal package.
\DESCRIBE
The function {\small\verb%top_goal%} is part of the subgoal package. It returns the top goal
of the goal stack in the current proof state. For a description of the subgoal
package, see {\small\verb%set_goal%}.
\FAILURE
A call to {\small\verb%top_goal%} will fail if there are no unproven goals. This could be
because no goal has been set using {\small\verb%set_goal%} or because the last goal set has
been completely proved.
\USES
Examining the proof state after a proof fails.
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_thm.
\ENDDOC
\DOC{top\_print}
\TYPE {\small\verb%top_print : ((* -> **) -> (* -> **))%}\egroup
\SYNOPSIS
Allows user-supplied functions to be used for printing ML datatypes
(including types, terms and theorems).
\DESCRIBE
{\small\verb%top_print%} is not a proper ML function, but an ML construct. It can only
be used at top-level; otherwise an error will result. The type given above for
it is therefore somewhat bogus. Its argument should normally be a printing
function {\small\verb%f:ty->void%}. {\small\verb%top_print f%} then instructs the system to use the
function {\small\verb%f%} whenever it has a value of type {\small\verb%ty%} to print. The `call' to
{\small\verb%top_print%} returns {\small\verb%f%} as its result.
\FAILURE
Fails if used anywhere other than at top-level.
\EXAMPLE
The following example illustrates how values of an abstract type can be made
to print nicely using {\small\verb%top_print%}. For brevity, most of the functions that
would really be defined in the abstract type have been omitted.
{\par\samepage\setseps\small
\begin{verbatim}
#abstype rat = int # int
#with mk_rat (n,d) = abs_rat (n,d)
#and print_rat r =
# let (n,d) = rep_rat r
# in if (d = 1)
# then print_int n
# else do (print_int n; print_string `/`; print_int d);;
mk_rat = - : ((int # int) -> rat)
print_rat = - : (rat -> void)
#mk_rat (2,3);;
- : rat
#top_print print_rat;;
- : (rat -> void)
#mk_rat (2,3);;
2/3 : rat
#mk_rat (3,1);;
3 : rat
\end{verbatim}
}
\USES
Useful for defining the printing of abstract types, including terms, theorems
and types. In particular, calling {\small\verb%top_print%} with {\small\verb%print_all_thm%} as argument
will cause the hypotheses of theorems to be printed in full, rather than
simply as a period (dot, full-stop).
\SEEALSO
assignable_print_term, new_syntax_block.
\ENDDOC
\DOC{top\_proof}
\TYPE {\small\verb%top_proof : (subgoals list -> thm)%}\egroup
\SYNOPSIS
This function is for internal use only and is to be deleted from a future
version of the system. It should not be used.
\ENDDOC
\DOC{top\_thm}
\TYPE {\small\verb%top_thm : (void -> thm)%}\egroup
\SYNOPSIS
Returns the theorem just proved using the subgoal package.
\DESCRIBE
The function {\small\verb%top_thm%} is part of the subgoal package. A proof state of the
package consists of either goal and justification stacks if a proof is in
progress or a theorem if a proof has just been completed. If the proof state
consists of a theorem, {\small\verb%top_thm%} returns that theorem. For a description of the
subgoal package, see {\small\verb%set_goal%}.
\FAILURE
{\small\verb%top_thm%} will fail if the proof state does not hold a theorem. This will be
so either because no goal has been set or because a proof is in progress with
unproven subgoals.
\USES
Accessing the result of an interactive proof session with the subgoal package.
\SEEALSO
b, backup, backup_limit, e, expand, expandf, g, get_state, p, print_state, r,
rotate, save_top_thm, set_goal, set_state, top_goal.
\ENDDOC
\DOC{TRANS}
\TYPE {\small\verb%$TRANS : (thm -> thm -> thm)%}\egroup
\SYNOPSIS
Uses transitivity of equality on two equational theorems.
\DESCRIBE
When applied to a theorem {\small\verb%A1 |- t1 = t2%} and a theorem {\small\verb%A2 |- t2 = t3%}, the
inference rule {\small\verb%TRANS%} returns the theorem {\small\verb%A1 u A2 |- t1 = t3%}. Note that
{\small\verb%TRANS%} can also be used as a infix (see example below).
{\par\samepage\setseps\small
\begin{verbatim}
A1 |- t1 = t2 A2 |- t2 = t3
------------------------------- TRANS
A1 u A2 |- t1 = t3
\end{verbatim}
}
\FAILURE
Fails unless the theorems are equational, with the right side of the first
being the same as the left side of the second.
\EXAMPLE
The following shows identical uses of {\small\verb%TRANS%}, one as a prefix, one an infix.
{\par\samepage\setseps\small
\begin{verbatim}
#let t1 = ASSUME "a:bool = b" and t2 = ASSUME "b:bool = c";;
t1 = . |- a = b
t2 = . |- b = c
#TRANS t1 t2;;
.. |- a = c
#t1 TRANS t2;;
.. |- a = c
\end{verbatim}
}
\SEEALSO
EQ_MP, IMP_TRANS, REFL, SYM.
\ENDDOC
\DOC{TRY\_CONV}
\TYPE {\small\verb%TRY_CONV : (conv -> conv)%}\egroup
\SYNOPSIS
Attempts to apply a conversion; applies identity conversion in case of failure.
\DESCRIBE
{\small\verb%TRY_CONV c "t"%} attempts to apply the conversion {\small\verb%c%} to the term {\small\verb%"t"%}; if
this fails, then the identity conversion applied instead. That is, if {\small\verb%c%} is a
conversion that maps a term {\small\verb%"t"%} to the theorem {\small\verb%|- t = t'%}, then the
conversion {\small\verb%TRY_CONV c%} also maps {\small\verb%"t"%} to {\small\verb%|- t = t'%}. But if {\small\verb%c%} fails when
applied to {\small\verb%"t"%}, then {\small\verb%TRY_CONV c "t"%} returns {\small\verb%|- t = t%}.
\FAILURE
Never fails.
\SEEALSO
ALL_CONV.
\ENDDOC
\DOC{TRY}
\TYPE {\small\verb%TRY : (tactic -> tactic)%}\egroup
\SYNOPSIS
Makes a tactic have no effect rather than fail.
\DESCRIBE
For any tactic {\small\verb%T%}, the application {\small\verb%TRY T%} gives a new tactic
which has the same effect as {\small\verb%T%} if that succeeds, and otherwise has
no effect.
\FAILURE
The application of {\small\verb%TRY%} to a tactic never fails. The resulting
tactic never fails.
\SEEALSO
CHANGED_TAC, VALID.
\ENDDOC
\DOC{tryfind}
\TYPE {\small\verb%tryfind : ((* -> **) -> * list -> **)%}\egroup
\SYNOPSIS
Returns the result of the first successful application of a function to the
elements of a list.
\DESCRIBE
{\small\verb%tryfind f [x1;...;xn]%} returns {\small\verb%(f xi)%} for the first {\small\verb%xi%} in the list for
which application of {\small\verb%f%} succeeds.
\FAILURE
Fails with {\small\verb%tryfind%} if the application of the function fails for all elements
in the list. This will always be the case if the list is empty.
\SEEALSO
find, mem, exists, forall, assoc, rev_assoc.
\ENDDOC
\DOC{tty\_read}
\TYPE {\small\verb%tty_read : (void -> string)%}\egroup
\SYNOPSIS
Reads a single character from the standard input.
\DESCRIBE
The call {\small\verb%tty_read()%} will read a single character from the standard input,
which in an interactive HOL session will normally be the terminal.
\FAILURE
Will only fail under obscure system-dependent circumstances.
\EXAMPLE
The following example shows how a check on the deletion of a file might be
implemented:
{\par\samepage\setseps\small
\begin{verbatim}
#tty_write `Delete GONK.th (y/n)?`;
#tty_read()=`y` => unlink `GONK.th` | ();;
Delete GONK.th (y/n)?n
() : void
Run time: 0.0s
\end{verbatim}
}
\COMMENTS
Only one character is read per call of {\small\verb%tty_read()%}, and remaining characters
will be passed to the ML interpreter as usual. It is of course possible to make
multiple calls to {\small\verb%tty_read()%} (e.g. via a {\small\verb%while%} loop) to read in a longer
string.
\SEEALSO
append_openw, close, openi, openw, read, tty_write, write.
\ENDDOC
\DOC{tty\_write}
\TYPE {\small\verb%tty_write : (string -> void)%}\egroup
\SYNOPSIS
Writes a string to the standard output.
\DESCRIBE
The call {\small\verb%tty_write s%} will write the string {\small\verb%s%} to the standard output, which
in an interactive HOL session will normally be the screen.
\FAILURE
Will only fail under unusual system-dependent circumstances, for example if the
standard output cannot be written.
\SEEALSO
append_openw, close, openi, openw, read, tty_read, write.
\ENDDOC
\DOC{type\_abbrevs}
\TYPE {\small\verb%type_abbrevs : (string -> (string # type) list)%}\egroup
\SYNOPSIS
Lists the type abbreviations in a named theory.
\DESCRIBE
Given the name of a theory, {\small\verb%type_abbrevs%} returns a list of pairs; each
pair contains the abbreviation and the actual type it denotes.
\FAILURE
Fails if the named theory is not an ancestor of the current theory.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#load_library `string`;;
Loading library `string` ...
Updating search path
.Updating help search path
.Declaring theory string a new parent
Theory string loaded
......
Library `string` loaded.
() : void
#type_abbrevs `string`;;
[(`tok`, ":string")] : (string # type) list
\end{verbatim}
}
\SEEALSO
new_type_abbrev
\ENDDOC
\DOC{type\_in}
\TYPE {\small\verb%type_in : (type -> term -> bool)%}\egroup
\SYNOPSIS
Determines whether any subterm of a given term has a particular type.
\DESCRIBE
The predicate {\small\verb%type_in%} returns {\small\verb%true%} if a subterm of the second argument
has the type specified by the first argument.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#type_in ":num" "5 = 4 + 1";;
true : bool
#type_in ":bool" "5 = 4 + 1";;
true : bool
#type_in ":(num)list" "SUC 0";;
false : bool
\end{verbatim}
}
\SEEALSO
find_term, find_terms, type_in_type, type_tyvars.
\ENDDOC
\DOC{type\_in\_type}
\TYPE {\small\verb%type_in_type : (type -> type -> bool)%}\egroup
\SYNOPSIS
Determines whether a given type is a subtype of another.
\DESCRIBE
The predicate {\small\verb%type_in_type%} returns {\small\verb%true%} if the type
given as the first argument is a subtype of the second.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#type_in_type ":num" ":num # bool";;
true : bool
#type_in_type ":num" ":(num)list";;
true :bool
#type_in_type ":bool" ":num + bool";;
true : bool
\end{verbatim}
}
\SEEALSO
find_term, find_terms, type_in
\ENDDOC
\DOC{type\_of}
\TYPE {\small\verb%type_of : (term -> type)%}\egroup
\SYNOPSIS
Returns the type of a term.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#type_of "T";;
":bool" : type
\end{verbatim}
}
\ENDDOC
\DOC{types}
\TYPE {\small\verb%types : (string -> (int # string) list)%}\egroup
\SYNOPSIS
Lists the types in the named theory.
\DESCRIBE
The function {\small\verb%types%} should be applied to a string which is the name of an
ancestor theory (including the current theory; the special string {\small\verb%`-`%} is
always interpreted as the current theory). It returns a list of all the
type constructors declared in the named theory, in the form of arity-name
pairs.
\FAILURE
Fails unless the named theory is an ancestor.
\EXAMPLE
The theory {\small\verb%HOL%} has no types declared:
{\par\samepage\setseps\small
\begin{verbatim}
#types `HOL`;;
[] : (int # string) list
\end{verbatim}
}
\noindent but its ancestors have the following types declared:
{\par\samepage\setseps\small
\begin{verbatim}
#itlist union (map types (ancestors `HOL`)) [];;
[(2, `fun`);
(2, `prod`);
(0, `bool`);
(0, `ind`);
(0, `num`);
(1, `list`);
(0, `tree`);
(1, `ltree`);
(2, `sum`);
(0, `one`)]
: (int # string) list
\end{verbatim}
}
\SEEALSO
ancestors, axioms, constants, definitions, infixes, new_type, new_type_abbrev,
new_type_definition, parents.
\ENDDOC
\DOC{type\_tyvars}
\TYPE {\small\verb%type_tyvars : (type -> type list)%}\egroup
\SYNOPSIS
Determines the type variables of a given type.
\DESCRIBE
The function {\small\verb%type_tyvars%} returns a list of type variables
used to construct the given type.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#type_tyvars ":bool";;
[] : type list
#type_tyvars ":(* -> **) -> (bool # ***) -> (** + num)";;
[":*"; ":**"; ":***"] : type list
\end{verbatim}
}
\SEEALSO
type_abbrevs, type_in, type_in_type.
\ENDDOC
\DOC{tyvars}
\TYPE {\small\verb%tyvars : (term -> type list)%}\egroup
\SYNOPSIS
Returns a list of the type variables free in a term.
\DESCRIBE
When applied to a term, {\small\verb%tyvars%} returns a list (possibly empty) of the type
variables which are free in the term.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#PAIR;;
|- !x. FST x,SND x = x
#tyvars (concl PAIR);;
[":*"; ":**"] : type list
#tyvars "x + 1 = SUC x";;
[] : type list
\end{verbatim}
}
\COMMENTS
In the current HOL logic, there is no binding operation for types, so `is free
in' is synonymous with `appears in'.
\SEEALSO
tyvarsl.
\ENDDOC
\DOC{tyvarsl}
\TYPE {\small\verb%tyvarsl : (term list -> type list)%}\egroup
\SYNOPSIS
Returns a list of the type variables free in a list of terms.
\DESCRIBE
When applied to a list of terms, {\small\verb%tyvarsl%} returns a list (possibly empty) of
the type variables which are free in any of those terms.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#tyvarsl ["!x. x = 1"; "!x:*. x = x"];;
[":*"] : type list
\end{verbatim}
}
\USES
Finding all the free type variables in the assumptions of a theorem, as a check
on the validity of certain inferences.
\COMMENTS
In the current HOL logic, there is no binding operation for types, so `is free
in' is synonymous with `appears in'.
\SEEALSO
tyvars.
\ENDDOC
\DOC{uncurry}
\TYPE {\small\verb%uncurry : ((* -> ** -> ***) -> (* # **) -> ***)%}\egroup
\SYNOPSIS
Converts a function taking two arguments into a function taking a single
paired argument.
\DESCRIBE
The application {\small\verb%uncurry f%} returns {\small\verb%\(x,y). f x y%}, so that
{\par\samepage\setseps\small
\begin{verbatim}
uncurry f (x,y) = f x y
\end{verbatim}
}
\FAILURE
Never fails.
\SEEALSO
curry.
\ENDDOC
\DOC{UNDISCH\_ALL}
\TYPE {\small\verb%UNDISCH_ALL : (thm -> thm)%}\egroup
\SYNOPSIS
Iteratively undischarges antecedents in a chain of implications.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 ==> ... ==> tn ==> t
------------------------------ UNDISCH_ALL
A, t1, ..., tn |- t
\end{verbatim}
}
\noindent Note that {\small\verb%UNDISCH_ALL%} treats {\small\verb%"~u"%} as {\small\verb%"u ==> F"%}.
\FAILURE
Unlike {\small\verb%UNDISCH%}, {\small\verb%UNDISCH_ALL%} will,
when called on something other than an implication or negation,
return its argument unchanged rather than failing.
\COMMENTS
Identical terms which are repeated in {\small\verb%A, "t1", ..., "tn"%} will
not be duplicated in the hypotheses of the resulting theorem.
However, if two or more alpha-equivalent terms appear in {\small\verb%A, "t1", ..., "tn"%},
then each distinct term will appear in the result.
\SEEALSO
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, NEG_DISCH, FILTER_DISCH_TAC,
FILTER_DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_TAC.
\ENDDOC
\DOC{UNDISCH}
\TYPE {\small\verb%UNDISCH : (thm -> thm)%}\egroup
\SYNOPSIS
Undischarges the antecedent of an implicative theorem.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A |- t1 ==> t2
---------------- UNDISCH
A, t1 |- t2
\end{verbatim}
}
\noindent Note that {\small\verb%UNDISCH%} treats {\small\verb%"~u"%} as {\small\verb%"u ==> F"%}.
\FAILURE
{\small\verb%UNDISCH%} will fail on theorems which are not implications or negations.
\COMMENTS
If the antecedent already appears in the hypotheses, it will not be duplicated.
However, unlike {\small\verb%DISCH%},
if the antecedent is alpha-equivalent to one of the hypotheses,
it will still be added to the hypotheses.
\SEEALSO
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, FILTER_DISCH_TAC, FILTER_DISCH_THEN,
NEG_DISCH, STRIP_TAC, UNDISCH_ALL, UNDISCH_TAC.
\ENDDOC
\DOC{UNDISCH\_TAC}
\TYPE {\small\verb%UNDISCH_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Undischarges an assumption.
\DESCRIBE
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
==================== UNDISCH_TAC "v"
A - {v} ?- v ==> t
\end{verbatim}
}
\FAILURE
{\small\verb%UNDISCH_TAC%} will fail if {\small\verb%"v"%} is not an assumption.
\COMMENTS
{\small\verb%UNDISCH%}arging {\small\verb%"v"%} will remove all assumptions which are identical to {\small\verb%"v"%},
but those which are alpha-equivalent will remain.
\SEEALSO
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, NEG_DISCH, FILTER_DISCH_TAC,
FILTER_DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL.
\ENDDOC
\DOC{undo\_autoload}
\TYPE {\small\verb%undo_autoload : (string -> bool)%}\egroup
\SYNOPSIS
Cancels the autoloading action associated with a name.
\DESCRIBE
A call {\small\verb%undo_autoload `name`%} cancels any autoloading action associated with
the identifier {\small\verb%name%}, whether this was specified by the general {\small\verb%autoload%}
function, or the more specialized {\small\verb%autoload_theory%}. For more details of the
autoloading mechanism, see the reference entries for those functions, or the
DESCRIPTION. The call to {\small\verb%undo_autoload%} returns {\small\verb%true%} if there was an
autoload action associated with that name, and {\small\verb%false%} otherwise.
\FAILURE
Never fails.
\SEEALSO
autoload, autoload_theory, let_after, let_before.
\ENDDOC
\DOC{unhide\_constant}
\TYPE {\small\verb%unhide_constant : (string -> void)%}\egroup
\SYNOPSIS
Restores recognition of a constant by the quotation parser.
\DESCRIBE
A call {\small\verb%unhide_constant `c`%}, where {\small\verb%c%} is a hidden constant, will unhide the
constant, that is, will make the quotation parser recognize it as such rather
than parsing it as a variable. It reverses the effect of the call
{\small\verb%hide_constant name%}.
\FAILURE
Fails unless the given name is a hidden constant in the current theory.
\COMMENTS
The hiding of a constant only affects the quotation parser; the constant is
still there in a theory, and may not be redefined.
\SEEALSO
hide_constant.
\ENDDOC
\DOC{union}
\TYPE {\small\verb%union : (* list -> * list -> * list)%}\egroup
\SYNOPSIS
Computes the union of two `sets'.
\DESCRIBE
{\small\verb%union l1 l2%} returns a list consisting of {\small\verb%l1%} concatenated with those
elements of {\small\verb%l2%} which are not in {\small\verb%l1%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#union [1;2;3] [1;5;4;3];;
[1; 2; 3; 5; 4] : int list
#union [1;1;1] [1;2;3;2];;
[1; 1; 1; 2; 3; 2] : int list
\end{verbatim}
}
\SEEALSO
setify, set_equal, intersect, subtract.
\ENDDOC
\DOC{unlink}
\TYPE {\small\verb%unlink : (string -> void)%}\egroup
\SYNOPSIS
Deletes a file.
\DESCRIBE
If {\small\verb%name%} is the name of an existing file, then {\small\verb%unlink `name`%} will remove
that file (if there are other links to the file, this will merely remove a
single link). Under Unix, the effect is the same as the {\small\verb%rm%} command.
\FAILURE
A call to {\small\verb%unlink%} may fail in various system-related ways, in particular if
{\small\verb%name%} does not exist or the user does not have write permission for the
current directory.
\COMMENTS
This call is somewhat Unix-related, and may behave differently under other
operating systems.
\SEEALSO
link, system.
\ENDDOC
\DOC{VALID}
\TYPE {\small\verb%VALID : (tactic -> tactic)%}\egroup
\SYNOPSIS
Tries to ensure that a tactic is valid.
\DESCRIBE
For any tactic {\small\verb%T%}, the application {\small\verb%VALID T%} gives a new tactic which when
applied to a goal, checks that {\small\verb%T%} as applied to that goal is valid, i.e. the
subgoals produced, if proved, can be used by the justification function given
by {\small\verb%T%} to construct a theorem corresponding to the original goal.
This check is performed by actually creating, using {\small\verb%mk_thm%}, theorems
corresponding to the subgoals, and seeing if the result of applying the
justification function to them gives a theorem corresponding to the original
goal. If it does, then {\small\verb%VALID T%} simply applies {\small\verb%T%}, and if not it fails.
The method by which theorems are created from goals can be changed by rebinding
the assignable variable {\small\verb%chktac%} - see its documentation entry for details.
\FAILURE
The application of {\small\verb%VALID%} to a tactic never fails. The resulting
tactic fails either if the original tactic fails or is invalid.
\COMMENTS
The use of {\small\verb%mk_thm%} is a possible, though improbable, loophole
in the general security of the theorem abstract type, since it does
create possibly spurious theorems; however these should remain anonymous
in the absence of other bugs in the system.
By default the same validity checking procedure, {\small\verb%check_valid%}, is
invoked by the subgoal package, but it can be switched off.
It is not checked whether the tactic is strongly valid, i.e. the
subgoals are provable; clearly this is not possible in general.
\SEEALSO
CHANGED_TAC, check_valid, chktac, e, expand, TRY.
\ENDDOC
\DOC{variant}
\TYPE {\small\verb%variant : (term list -> term -> term)%}\egroup
\SYNOPSIS
Modifies a variable name to avoid clashes.
\DESCRIBE
When applied to a list of variables to avoid clashing with, and a variable to
modify, {\small\verb%variant%} returns a variant of the variable to modify, that is, it
changes the name as intuitively as possible to make it distinct from any
variables in the list, or any (non-hidden) constants. This is normally done by
adding primes to the name.
The exact form of the variable name should not be relied on, except that the
original variable will be returned unmodified unless it is itself in the list
to avoid clashing with.
\FAILURE
{\small\verb%variant l t%} fails if any term in the list {\small\verb%l%} is not a variable or if
{\small\verb%t%} is neither a variable nor a constant.
\EXAMPLE
The following shows a couple of typical cases:
{\par\samepage\setseps\small
\begin{verbatim}
#variant ["y:bool"; "z:bool"] "x:bool";;
"x" : term
#variant ["x:bool"; "x':num"; "x'':num"] "x:bool";;
"x'''" : term
\end{verbatim}
}
\noindent while the following shows that clashes with the names of constants
are also avoided:
{\par\samepage\setseps\small
\begin{verbatim}
#variant [] (mk_var(`T`,":bool"));;
"T'" : term
\end{verbatim}
}
\USES
The function {\small\verb%variant%} is extremely useful for complicated derived rules which
need to rename variables to avoid free variable capture while still making the
role of the variable obvious to the user.
\SEEALSO
genvar, hide_constant.
\ENDDOC
\DOC{vars}
\TYPE {\small\verb%vars : (term -> term list)%}\egroup
\SYNOPSIS
Determines the variables used in a given term.
\DESCRIBE
Given a term argument, {\small\verb%vars%} returns a list of variables that occur
in that term.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#vars "\a:bool. a";;
["a"] : term list
#vars "\b:*. SUC 0";;
["b"] : term list
#vars "(a:num) + (b:num)";;
["a"; "b"] : term list
\end{verbatim}
}
\SEEALSO
varsl.
\ENDDOC
\DOC{varsl}
\TYPE {\small\verb%varsl : (term list -> term list)%}\egroup
\SYNOPSIS
Returns the union of the variables that occur in a given list of terms.
\DESCRIBE
Given a list of terms, {\small\verb%varsl%} returns a list of all the variables that occur
in the list of terms.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#varsl ["\a:bool. a"];;
["a"] : term list
#vars "[(a:num) + (b:num); 3 + (a:num) + SUC n]";;
["a"; "b"; "n"] : term list
\end{verbatim}
}
\SEEALSO
vars.
\ENDDOC
\DOC{version}
\TYPE {\small\verb%version : (void -> int)%}\egroup
\SYNOPSIS
Returns the version number of the {\small\verb%HOL%} system being run.
\DESCRIBE
The number is imagined to have a `decimal point' before its last two digits to
give the actual version number.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
_ _ __ _ __ __
|___ |__| | | | |__| |__|
| | | |__| |__ |__| |__|
Version 2 (Sun4/Allegro 4.0), built on 22/6/91
#version();;
200 : int
\end{verbatim}
}
\ENDDOC
\DOC{W}
\TYPE {\small\verb%W : ((* -> * -> **) -> * -> **)%}\egroup
\SYNOPSIS
Duplicates function argument : {\small\verb%W f x%} = {\small\verb%f x x%}.
\FAILURE
Never fails.
\SEEALSO
\#, B, C, CB, Co, I, K, KI, o, oo, S.
\ENDDOC
\DOC{words2}
\TYPE {\small\verb%words2 : (string -> string -> string list)%}\egroup
\SYNOPSIS
Splits a string into a list of substrings, breaking at occurrences of a
specified character.
\DESCRIBE
{\small\verb%words2 char s%} splits the string {\small\verb%s%} into a list of substrings. Splitting
occurs at each occurrence of a sequence of the character {\small\verb%char%}. The {\small\verb%char%}
characters do not appear in the list of substrings. Leading and trailing
occurrences of {\small\verb%char%} are also thrown away. If {\small\verb%char%} is not a
single-character string (its length is not 1), then {\small\verb%s%} will not be split and
so the result will be the list {\small\verb%[s]%}.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#words2 `/` `/the/cat//sat/on//the/mat/`;;
[`the`; `cat`; `sat`; `on`; `the`; `mat`] : string list
#words2 `//` `/the/cat//sat/on//the/mat/`;;
[`/the/cat//sat/on//the/mat/`] : string list
\end{verbatim}
}
\SEEALSO
words, word_separators, explode.
\ENDDOC
\DOC{words}
\TYPE {\small\verb%words : (string -> string list)%}\egroup
\SYNOPSIS
Splits a string into a list of words.
\DESCRIBE
{\small\verb%words s%} splits the string {\small\verb%s%} into a list of substrings. Splitting occurs
at each sequence of blanks and carriage returns (white space). This white
space does not appear in the list of substrings. Leading and trailing white
space in the input string is also thrown away.
\FAILURE
Never fails.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#words ` the cat sat on the mat `;;
[`the`; `cat`; `sat`; `on`; `the`; `mat`] : string list
\end{verbatim}
}
\USES
Useful when wanting to map a function over a list of constant strings.
Instead of using {\small\verb%[`string1`;...;`stringn`]%} one can use:
{\par\samepage\setseps\small
\begin{verbatim}
(words `string1 ... stringn`)
\end{verbatim}
}
\SEEALSO
words2, word_separators, maptok, explode.
\ENDDOC
\DOC{word\_separators}
\TYPE {\small\verb%word_separators : string list%}\egroup
\SYNOPSIS
A list of white-space characters used when splitting a string into words.
\DESCRIBE
{\small\verb%word_separators%} is a two-element list of single-character strings. The
two characters are the space character (or blank) and the carriage-return
character. These are the characters that are considered to be word
separators by the function {\small\verb%words%}.
\EXAMPLE
{\par\samepage\setseps\small
\begin{verbatim}
#word_separators;;
[` `; `
`] : string list
\end{verbatim}
}
\SEEALSO
words.
\ENDDOC
\DOC{write}
\TYPE {\small\verb%write : ((string # string) -> void)%}\egroup
\SYNOPSIS
Writes characters to a file.
\DESCRIBE
The call {\small\verb%write(port,`characters`)%}, where {\small\verb%characters%} is a string of
characters to write, and {\small\verb%port%} is a string describing a port (a port is the
standard ML file descriptor, normally obtained from a call to {\small\verb%openw%} or
{\small\verb%append_openw%}), will write the given characters to the file corresponding to
the port.
\FAILURE
May fail or hang in system-dependent ways when given an invalid port
descriptor.
\EXAMPLE
The following assumes that HOL is being run under Unix. It will overwrite any
existing file {\small\verb%test-file%} in the current directory. Notice that the actual
string returned by {\small\verb%openw%} may vary on other systems.
{\par\samepage\setseps\small
\begin{verbatim}
#let port = openw `test-file`;;
port = `%test-file` : string
#write(port,`Hello world`);;
() : void
#close port;;
() : void
#system `cat test-file`;;
Hello world0 : int
\end{verbatim}
}
\SEEALSO
append_openw, close, openi, openw, read, tty_read, tty_write.
\ENDDOC
\DOC{X\_CASES\_THEN}
\TYPE {\small\verb%X_CASES_THEN : (term list list -> thm_tactical)%}\egroup
\SYNOPSIS
Applies a theorem-tactic to all disjuncts of a theorem, choosing witnesses.
\DESCRIBE
Let {\small\verb%[yl1;...;yln]%} represent a list of variable lists,
each of length zero or more, and {\small\verb%xl1,...,xln%} each represent a
vector of zero or more variables, so that the variables in each of
{\small\verb%yl1...yln%} have the same types as the corresponding {\small\verb%xli%}.
{\small\verb%X_CASES_THEN%} expects such a list of variable lists, {\small\verb%[yl1;...;yln]%}, a tactic
generating function {\small\verb%f:thm->tactic%}, and a disjunctive theorem,
where each disjunct may be existentially quantified:
{\par\samepage\setseps\small
\begin{verbatim}
th = |-(?xl1.B1) \/...\/ (?xln.Bn)
\end{verbatim}
}
\noindent each disjunct having the form {\small\verb%(?xi1 ... xim. Bi)%}. If
applying {\small\verb%f%} to the theorem obtained by introducing witness variables {\small\verb%yli%}
for the objects {\small\verb%xli%} whose existence is asserted by each disjunct, typically
{\small\verb%({Bi[yli/xli]} |- Bi[yli/xli])%}, produce the following results when
applied to a goal {\small\verb%(A ?- t)%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
========= f ({B1[yl1/xl1]} |- B1[yl1/xl1])
A ?- t1
...
A ?- t
========= f ({Bn[yln/xln]} |- Bn[yln/xln])
A ?- tn
\end{verbatim}
}
\noindent then applying {\small\verb%(X_CHOOSE_THEN [yl1;...;yln] f th)%}
to the goal {\small\verb%(A ?- t)%} produces {\small\verb%n%} subgoals.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======================= X_CHOOSE_THEN [yl1;...;yln] f th
A ?- t1 ... A ?- tn
\end{verbatim}
}
\FAILURE
Fails (with {\small\verb%X_CHOOSE_THEN%}) if any {\small\verb%yli%} has more variables than the
corresponding {\small\verb%xli%}, or (with {\small\verb%SUBST%}) if corresponding variables have
different types. Failures may arise in the tactic-generating
function. An invalid tactic is produced if any variable in any of the
{\small\verb%yli%} is free in the corresponding {\small\verb%Bi%} or in {\small\verb%t%}, or if the theorem
has any hypothesis which is not alpha-convertible to an assumption of
the goal.
\EXAMPLE
Given the goal {\small\verb%?- (x MOD 2) <= 1%}, the following theorem may be
used to split into 2 cases:
{\par\samepage\setseps\small
\begin{verbatim}
th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)
\end{verbatim}
}
\noindent by the tactic {\small\verb%X_CASES_THEN [["n:num"];["n:num"]] ASSUME_TAC th%}
to produce the subgoals:
{\par\samepage\setseps\small
\begin{verbatim}
{x = (2 * n) + 1} ?- (x MOD 2) <= 1
{x = 2 * n} ?- (x MOD 2) <= 1
\end{verbatim}
}
\SEEALSO
DISJ_CASES_THENL, X_CASES_THENL, X_CHOOSE_THEN.
\ENDDOC
\DOC{X\_CASES\_THENL}
\TYPE {\small\verb%X_CASES_THENL : (term list list -> thm_tactic list -> thm_tactic)%}\egroup
\SYNOPSIS
Applies theorem-tactics to corresponding disjuncts of a theorem, choosing
witnesses.
\DESCRIBE
Let {\small\verb%[yl1;...;yln]%} represent a list of variable lists, each of length zero or
more, and {\small\verb%xl1,...,xln%} each represent a vector of zero or more variables, so
that the variables in each of {\small\verb%yl1...yln%} have the same types as the
corresponding {\small\verb%xli%}. The function {\small\verb%X_CASES_THENL%} expects a list of variable
lists, {\small\verb%[yl1;...;yln]%}, a list of tactic-generating functions
{\small\verb%[f1;...;fn]:(thm->tactic)list%}, and a disjunctive theorem, where each disjunct
may be existentially quantified:
{\par\samepage\setseps\small
\begin{verbatim}
th = |-(?xl1.B1) \/...\/ (?xln.Bn)
\end{verbatim}
}
\noindent each disjunct having the form {\small\verb%(?xi1 ... xim. Bi)%}. If applying each
{\small\verb%fi%} to the theorem obtained by introducing witness variables {\small\verb%yli%} for the
objects {\small\verb%xli%} whose existence is asserted by the {\small\verb%i%}th disjunct,
{\small\verb%({Bi[yli/xli]} |- Bi[yli/xli])%}, produces the following results when applied
to a goal {\small\verb%(A ?- t)%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
========= f1 ({B1[yl1/xl1]} |- B1[yl1/xl1])
A ?- t1
...
A ?- t
========= fn ({Bn[yln/xln]} |- Bn[yln/xln])
A ?- tn
\end{verbatim}
}
\noindent then applying {\small\verb%X_CASES_THENL [yl1;...;yln] [f1;...;fn] th%}
to the goal {\small\verb%(A ?- t)%} produces {\small\verb%n%} subgoals.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
======================= X_CASES_THENL [yl1;...;yln] [f1;...;fn] th
A ?- t1 ... A ?- tn
\end{verbatim}
}
\FAILURE
Fails (with {\small\verb%X_CASES_THENL%}) if any {\small\verb%yli%} has more variables than the
corresponding {\small\verb%xli%}, or (with {\small\verb%SUBST%}) if corresponding variables have
different types, or (with {\small\verb%combine%}) if the number of theorem tactics
differs from the number of disjuncts. Failures may arise in the
tactic-generating function. An invalid tactic is produced if any
variable in any of the {\small\verb%yli%} is free in the corresponding {\small\verb%Bi%} or in
{\small\verb%t%}, or if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.
\EXAMPLE
Given the goal {\small\verb%?- (x MOD 2) <= 1%}, the following theorem may be
used to split into 2 cases:
{\par\samepage\setseps\small
\begin{verbatim}
th = |- (?m. x = 2 * m) \/ (?m. x = (2 * m) + 1)
\end{verbatim}
}
\noindent by the tactic
{\small\verb%X_CASES_THENL [["n:num"];["n:num"]] [ASSUME_TAC; SUBST1_TAC] th%}
to produce the subgoals:
{\par\samepage\setseps\small
\begin{verbatim}
?- (((2 * n) + 1) MOD 2) <= 1
{x = 2 * n} ?- (x MOD 2) <= 1
\end{verbatim}
}
\SEEALSO
DISJ_CASES_THEN, X_CASES_THEN, X_CHOOSE_THEN.
\ENDDOC
\DOC{X\_CHOOSE\_TAC}
\TYPE {\small\verb%X_CHOOSE_TAC : (term -> thm_tactic)%}\egroup
\SYNOPSIS
Assumes a theorem, with existentially quantified variable replaced by a given
witness.
\DESCRIBE
{\small\verb%X_CHOOSE_TAC%} expects a variable {\small\verb%y%} and theorem with an existentially
quantified conclusion. When applied to a goal, it adds a new
assumption obtained by introducing the variable {\small\verb%y%} as a witness for
the object {\small\verb%x%} whose existence is asserted in the theorem.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
=================== X_CHOOSE_TAC "y" (A1 |- ?x. w)
A u {w[y/x]} ?- t ("y" not free anywhere)
\end{verbatim}
}
\FAILURE
Fails if the theorem's conclusion is not existentially quantified, or if
the first argument is not a variable. Failures may arise in the
tactic-generating function. An invalid tactic is produced if the
introduced variable is free in {\small\verb%w%} or {\small\verb%t%}, or if the theorem has any
hypothesis which is not alpha-convertible to an assumption of the
goal.
\EXAMPLE
Given a goal of the form
{\par\samepage\setseps\small
\begin{verbatim}
{n < m} ?- ?x. m = n + (x + 1)
\end{verbatim}
}
\noindent the following theorem may be applied:
{\par\samepage\setseps\small
\begin{verbatim}
th = ["n < m"] |- ?p. m = n + p
\end{verbatim}
}
\noindent by the tactic {\small\verb%(X_CHOOSE_TAC "q:num" th)%} giving
the subgoal:
{\par\samepage\setseps\small
\begin{verbatim}
{n < m, m = n + q} ?- ?x. m = n + (x + 1)
\end{verbatim}
}
\SEEALSO
CHOOSE, CHOOSE_THEN, X_CHOOSE_THEN.
\ENDDOC
\DOC{X\_CHOOSE\_THEN}
\TYPE {\small\verb%X_CHOOSE_THEN : (term -> thm_tactical)%}\egroup
\SYNOPSIS
Replaces existentially quantified variable with given witness, and passes it to
a theorem-tactic.
\DESCRIBE
{\small\verb%X_CHOOSE_THEN%} expects a variable {\small\verb%y%}, a tactic-generating function
{\small\verb%f:thm->tactic%}, and a theorem of the form {\small\verb%(A1 |- ?x. w)%} as
arguments. A new theorem is created by introducing the given variable
{\small\verb%y%} as a witness for the object {\small\verb%x%} whose existence is asserted in the original
theorem, {\small\verb%(w[y/x] |- w[y/x])%}. If the tactic-generating function {\small\verb%f%}
applied to this theorem produces results as follows when applied to a
goal {\small\verb%(A ?- t)%}:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
========= f ({w[y/x]} |- w[y/x])
A ?- t1
\end{verbatim}
}
\noindent then applying {\small\verb%(X_CHOOSE_THEN "y" f (A1 |- ?x. w))%} to the
goal {\small\verb%(A ?- t)%} produces the subgoal:
{\par\samepage\setseps\small
\begin{verbatim}
A ?- t
========= X_CHOOSE_THEN "y" f (A1 |- ?x. w)
A ?- t1 ("y" not free anywhere)
\end{verbatim}
}
\FAILURE
Fails if the theorem's conclusion is not existentially quantified, or if
the first argument is not a variable. Failures may arise in the
tactic-generating function. An invalid tactic is produced if the
introduced variable is free in {\small\verb%w%} or {\small\verb%t%}, or if the theorem has any
hypothesis which is not alpha-convertible to an assumption of the
goal.
\EXAMPLE
Given a goal of the form
{\par\samepage\setseps\small
\begin{verbatim}
{n < m} ?- ?x. m = n + (x + 1)
\end{verbatim}
}
\noindent the following theorem may be applied:
{\par\samepage\setseps\small
\begin{verbatim}
th = ["n < m"] |- ?p. m = n + p
\end{verbatim}
}
\noindent by the tactic {\small\verb%(X_CHOOSE_THEN "q:num" SUBST1_TAC th)%} giving
the subgoal:
{\par\samepage\setseps\small
\begin{verbatim}
{n < m} ?- ?x. n + q = n + (x + 1)
\end{verbatim}
}
\SEEALSO
CHOOSE, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_THEN,
DISJ_CASES_THEN2, DISJ_CASES_THENL, STRIP_THM_THEN, X_CHOOSE_TAC.
\ENDDOC
\DOC{X\_FUN\_EQ\_CONV}
\TYPE {\small\verb%X_FUN_EQ_CONV : (term -> conv)%}\egroup
\SYNOPSIS
Performs extensionality conversion for functions (function equality).
\DESCRIBE
The conversion {\small\verb%X_FUN_EQ_CONV%} embodies the fact that two functions are equal
precisely when they give the same results for all values to which they can be
applied. For any variable {\small\verb%"x"%} and equation {\small\verb%"f = g"%}, where {\small\verb%x%} is of type
{\small\verb%ty1%} and {\small\verb%f%} and {\small\verb%g%} are functions of type {\small\verb%ty1->ty2%}, a call to
{\small\verb%X_FUN_EQ_CONV "x" "f = g"%} returns the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (f = g) = (!x. f x = g x)
\end{verbatim}
}
\FAILURE
{\small\verb%X_FUN_EQ_CONV x tm%} fails if {\small\verb%x%} is not a variable or if {\small\verb%tm%} is not an
equation {\small\verb%f = g%} where {\small\verb%f%} and {\small\verb%g%} are functions. Furthermore, if {\small\verb%f%} and {\small\verb%g%}
are functions of type {\small\verb%ty1->ty2%}, then the variable {\small\verb%x%} must have type {\small\verb%ty1%};
otherwise the conversion fails. Finally, failure also occurs if {\small\verb%x%} is free in
either {\small\verb%f%} or {\small\verb%g%}.
\SEEALSO
EXT, FUN_EQ_CONV.
\ENDDOC
\DOC{X\_GEN\_TAC}
\TYPE {\small\verb%X_GEN_TAC : (term -> tactic)%}\egroup
\SYNOPSIS
Specializes a goal with the given variable.
\DESCRIBE
When applied to a term {\small\verb%x'%}, which should be a variable, and a goal
{\small\verb%A ?- !x. t%}, the tactic {\small\verb%X_GEN_TAC%} returns the goal {\small\verb%A ?- t[x'/x]%}.
{\par\samepage\setseps\small
\begin{verbatim}
A ?- !x. t
============== X_GEN_TAC "x'"
A ?- t[x'/x]
\end{verbatim}
}
\FAILURE
Fails unless the goal's conclusion is universally quantified and the term a
variable of the appropriate type. It also fails if the variable given is free
in either the assumptions or (initial) conclusion of the goal.
\SEEALSO
FILTER_GEN_TAC, GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC.
\ENDDOC
\DOC{X\_SKOLEM\_CONV}
\TYPE {\small\verb%X_SKOLEM_CONV : (term -> conv)%}\egroup
\SYNOPSIS
Introduces a user-supplied Skolem function.
\DESCRIBE
{\small\verb%X_SKOLEM_CONV%} takes two arguments. The first is a variable {\small\verb%f%}, which
must range over functions of the appropriate type, and the second is a term of
the form {\small\verb%!x1...xn. ?y. P%}. Given these arguments, {\small\verb%X_SKOLEM_CONV%} returns
the theorem:
{\par\samepage\setseps\small
\begin{verbatim}
|- (!x1...xn. ?y. P) = (?f. !x1...xn. tm[f x1 ... xn/y])
\end{verbatim}
}
\noindent which expresses the fact that a skolem function {\small\verb%f%} of the
universally quantified variables {\small\verb%x1...xn%} may be introduced in place of the
the existentially quantified value {\small\verb%y%}.
\FAILURE
{\small\verb%X_SKOLEM_CONV f tm%} fails if {\small\verb%f%} is not a variable, or if the input term {\small\verb%tm%}
is not a term of the form {\small\verb%!x1...xn. ?y. P%} (with at least one universally
quantified variable), or if the variable {\small\verb%f%} is free in {\small\verb%tm%}, or if the type of
{\small\verb%f%} does not match its intended use as an {\small\verb%n%}-place curried function from the
variables {\small\verb%x1...xn%} to a value having the same type as {\small\verb%y%}.
\SEEALSO
SKOLEM_CONV.
\ENDDOC
|