1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
(eval-when (compile)
#+franz (include "f-franz")
(include "f-macro")
(include "f-ol-rec")
(include "genmacs")
(special bool-NIL-olval bool-CONS-olval T-olval F-olval
bool-list-fn-ty bool-list-ty DEST_TRI_l MK_TRI_l
AND-tm OR-tm NOT-tm))
#+franz
(declare
(localf map-term
map-pred-form
map-thm
make-eq
make-conv
is-eval-fn
is-bin-comb
make-ol-bool-list
dest-ol-list
pos-dif
get-width
bits-to-num
bits-to-num-fn
is-boolconst-list
make-ol-list-val
is-num-pair
word-AND
word-OR
word-NOT))
; Lisp code for the ML function rem
(defun intrem (x y) (if (zerop y) (failwith '|rem|) (mod x y)))
; (mk-bin-rep w n) = (b1...bw) where bi is |0| or |1|
(defun mk-bin-rep (w n)
(prog (x res)
(setq res nil)
loop (cond ((zerop w) (failwith 'mk_bin_rep)))
(setq x (Divide n 2))
(setq res (cons (atomify(cadr x)) res))
(setq n (car x))
(setq w (sub1 w))
(cond ((zerop n) (go pad)))
(go loop)
pad (cond ((zerop w) (return res)))
(setq res (cons '|0| res))
(setq w (sub1 w))
(go pad)))
; (map-term f tm) maps f over all subterms of term tm
(defun map-term (f tm)
(cond ((is-comb tm)
(apply
f
(list
(make-comb
(map-term f (get-rator tm))
(map-term f (get-rand tm))
(get-type tm)))))
((is-abs tm)
(make-abs
(get-abs-var tm)
(map-term f (get-abs-body tm))
(get-type tm)))
(t tm)))
; (map-pred-form f "ASSERT t") maps f over all subterms of term t
(defun map-pred-form (f fm)
(make-pred-form
(get-pred-sym fm)
(map-term f (get-pred-arg fm))))
; (map-thm f thm) maps f over all subterms of the conclusion of thm
(defun map-thm (f thm)
(make-thm (get-hyp thm) (map-pred-form f (get-concl thm))))
;(make-eq t1 t2) makes a value representing "t1 = t2"
(defun make-eq (t1 t2)
(make-comb
(make-comb
(ml-mk_const '|=| `(|fun| ,(get-type t1) (|fun| ,(get-type t2) (|bool|))))
t1
`(|fun| ,(get-type t2) (|bool|)))
t2
'(|bool|)))
; (make-conv (f tm)) makes the theorem: |-"^tm = tm'"
; where tm' is got from tm by applying f to all subterms of it
(defun make-conv (f tm)
(make-thm nil (make-pred-form 'HOL_ASSERT (make-eq tm (map-term f tm)))))
; (is-eval-fn (fnname l)) checks that (explodec fnname) = (append l wl)
; where wl is a list of numerals
(defun is-eval-fn (fnname l)
(prog (fl)
(setq fl (exploden fnname))
loop (cond ((and (null l) (not (null fl)))
(return
(test-list-els
fl
'(#/0 #/1 #/2 #/3 #/4 #/5 #/6 #/7 #/8 #/9))))
((or (null fl) (not (eq (cascii (car l)) (car fl))))
(return nil)))
(setq l (cdr l))
(setq fl (cdr fl))
(go loop)))
; (is-bin-comb tm tok) tests whether tm has the form "tok t1 t2"
(defun is-bin-comb (tm tok)
(and (is-comb tm)
(is-comb(get-rator tm))
(is-const(get-rator(get-rator tm)))
(eq (get-const-name(get-rator(get-rator tm))) tok)))
(eval-when (load)
(setq bool-list-ty '(|list| (|bool|)))
(setq bool-list-fn-ty '(|fun| (|list| (|bool|)) (|list| (|bool|))))
(setq bool-CONS-olval
(ml-mk_const 'CONS
'(|fun| (|bool|) (|fun| (|list| (|bool|)) (|list| (|bool|))))))
(setq bool-NIL-olval (ml-mk_const 'NIL '(|list| (|bool|))))
(setq T-olval (ml-mk_const 'T '(|bool|)))
(setq F-olval (ml-mk_const 'F '(|bool|))))
; (make-ol-bool-list '(|1| |0| |1| |1|)) = "[T; F; T; T]"
(defun make-ol-bool-list (l)
(cond ((null l) bool-NIL-olval)
(t (make-comb
(make-comb
bool-CONS-olval
(cond ((eq (car l) '|1|) T-olval) (t F-olval))
bool-list-fn-ty)
(make-ol-bool-list (cdr l))
bool-list-ty))))
;is-ol-list tests whether tm is of the form:
; CONS t1 (CONS t2 ... (CONS tn nil) ... )
(defun is-ol-list (tm)
(or (null-ol-list tm)
(and (is-ol-cons tm)
(is-ol-list(tl-ol-list tm)))))
;(dest-ol-list "[e1; ... ;en]") gives (e1 ... en)
(defun dest-ol-list (tm)
(cond ((null-ol-list tm) nil)
(t (cons (hd-ol-list tm) (dest-ol-list (tl-ol-list tm))))))
; | "[t1;...;tw]" if tm = "BITSw #b1...bw"
; BITS-eval tm = |
; | tm otherwise
(defun BITS-eval (tm)
(cond ((and (is-comb tm)
(is-const (get-rator tm))
(is-const (get-rand tm))
(is-eval-fn (get-const-name(get-rator tm)) '(B I T S))
(wordconstp (get-const-name(get-rand tm))))
(make-ol-bool-list (cdr(explodec(get-const-name(get-rand tm))))))
(t tm)))
; (BITS-RULE thm) applies BITS-eval to all subterms of the conclusion of thm
; BITS_CONV is the corresponding formula conversion
(defun BITS-RULE (thm) (map-thm 'BITS-eval thm))
(defun BITS-CONV (fm) (make-conv 'BITS-eval fm))
; | "r" if tm = "m+n" and r=m+n
; ADD-eval tm = |
; | tm otherwise
; Note that "m+n" is really "+ (($, m) n)"
(defun ADD-eval (tm)
(cond ((and (is-bin-comb tm '|+|)
(is-const (get-rand(get-rator tm)))
(is-const (get-rand tm)))
(ml-mk_const
(atomify
(add
(atom-to-num(get-const-name(get-rand(get-rator tm))))
(atom-to-num(get-const-name(get-rand tm)))))
'(|num|)))
(t tm)))
; (ADD-RULE thm) applies ADD-eval to all subterms of the conclusion of thm
; ADD-CONV is the corresponding formula conversion
(defun ADD-RULE (thm) (map-thm 'ADD-eval thm))
(defun ADD-CONV (fm) (make-conv 'ADD-eval fm))
; | "r" if tm = "m-n" and r=m-n
; DIF-eval tm = |
; | tm otherwise
; Note that "m-n" is really "- (($, m) n)"
(defun pos-dif (m n)
(cond ((lessp m n) 0) (t (diff m n))))
(defun DIF-eval (tm)
(cond ((and (is-bin-comb tm '|-|)
(is-const (get-rand(get-rator tm)))
(is-const (get-rand tm)))
(ml-mk_const
(atomify
(pos-dif
(atom-to-num(get-const-name(get-rand(get-rator tm))))
(atom-to-num(get-const-name(get-rand tm)))))
'(|num|)))
(t tm)))
; (DIF-RULE thm) applies DIF-eval to all subterms of the conclusion of thm
; DIF-CONV is the corresponding formula conversion
(defun DIF-RULE (thm) (map-thm 'DIF-eval thm))
(defun DIF-CONV (fm) (make-conv 'DIF-eval fm))
; | "T" if tm = "x=x" and x=x
; EQ-eval tm = | "F" if tm = "x=y" and x,y are different constants
; | tm otherwise
(defun EQ-eval (tm)
(cond ((is-bin-comb tm '|=|)
(let ((left (get-rand(get-rator tm)))
(right (get-rand tm)))
(cond ((equal left right)
T-olval)
((and (is-const left) (is-const right))
F-olval)
(t tm))))
(t tm)))
; (EQ-RULE thm) applies EQ-eval to all subterms of the conclusion of thm
; EQ-CONV is the corresponding formula conversion
(defun EQ-RULE (thm) (map-thm 'EQ-eval thm))
(defun EQ-CONV (fm) (make-conv 'EQ-eval fm))
; | "ti" if tm = "EL i [tn ; ... ; t0]"
; EL-eval tm = |
; | tm otherwise
(defun EL-eval (tm)
(cond ((and (is-comb tm)
(is-comb (get-rator tm))
(is-const (get-rator(get-rator tm)))
(eq (get-const-name(get-rator(get-rator tm))) 'EL)
(is-const (get-rand(get-rator tm)))
(is-ol-list (get-rand tm)))
(word-el
(atom-to-num (get-const-name(get-rand(get-rator tm))))
(dest-ol-list (get-rand tm))))
(t tm)))
; (EL-RULE thm) applies EL-eval to all subterms of the conclusion of thm
; EL-CONV is the corresponding formula conversion
(defun EL-RULE (thm) (map-thm 'EL-eval thm))
(defun EL-CONV (fm) (make-conv 'EL-eval fm))
; (get-width `WORDw) = w
(defun get-width (x)
(imploden (cddddr (exploden x))))
; | "#b1...bw" if tm = "WORDw n"
; WORD-eval tm = |
; | tm otherwise
(defun WORD-eval (tm)
(cond ((and (is-comb tm)
(is-const(get-rator tm))
(is-const (get-rand tm))
(is-eval-fn (get-const-name (get-rator tm)) '(W O R D))
(numconstp (get-const-name (get-rand tm))))
(ml-mk_const
(imploden
(cons #/#
(mapcar #'cascii
(mk-bin-rep
(get-width(get-const-name(get-rator tm)))
(atom-to-num(get-const-name(get-rand tm)))))))
(list
(imploden
(append
'(#/w #/o #/r #/d)
(exploden(get-width(get-const-name(get-rator tm)))))))))
(t tm)))
; (WORD-RULE thm) applies WORD-eval to all subterms of the conclusion of thm
; WORD-CONV is the corresponding formula conversion
(defun WORD-RULE (thm) (map-thm 'WORD-eval thm))
(defun WORD-CONV (fm) (make-conv 'WORD-eval fm))
; (bits-to-num '(|1| |0| |1| |1|)) = "11" etc.
(defun bits-to-num (l)
(ml-mk_const (atomify (bits-to-num-fn (reverse l))) '(|num|)))
(defun bits-to-num-fn (l)
(cond ((null l) 0)
(t (add (atom-to-num(car l)) (times 2 (bits-to-num-fn (cdr l)))))))
; | "n" if tm = "VALw #b1...bw" and b1...bw denotes n
; VAL-eval tm = |
; | tm otherwise
(defun VAL-eval (tm)
(cond ((and (is-comb tm)
(is-const (get-rator tm))
(is-const (get-rand tm))
(is-eval-fn (get-const-name(get-rator tm)) '(V A L))
(wordconstp (get-const-name(get-rand tm))))
(bits-to-num (cdr(explodec(get-const-name(get-rand tm))))))
(t tm)))
; (VAL-RULE thm) applies VAL-eval to all subterms of the conclusion of thm
; VAL-CONV is the corresponding formula conversion
(defun VAL-RULE (thm) (map-thm 'VAL-eval thm))
(defun VAL-CONV (fm) (make-conv 'VAL-eval fm))
; test whether a list is a sequence of Ts and Fs
(defun is-boolconst-list (l)
(or (null l)
(and (or (equal (car l) T-olval)
(equal (car l) F-olval))
(is-boolconst-list (cdr l)))))
; | "n" if tm = "V [b1;...;bm]" and b1...bm denotes n
; V-eval tm = |
; | tm otherwise
(defun V-eval (tm)
(cond ((and (is-comb tm)
(is-const (get-rator tm))
(eq (get-const-name(get-rator tm)) 'V)
(is-ol-list (get-rand tm))
(is-boolconst-list(dest-ol-list (get-rand tm))))
(bits-to-num
(mapcar
#'(lambda (x) (cond ((equal x T-olval) '|1|) (t '|0|)))
(dest-ol-list (get-rand tm)))))
(t tm)))
; (V-RULE thm) applies V-eval to all subterms of the conclusion of thm
; V-CONV is the corresponding formula conversion
(defun V-RULE (thm) (map-thm 'V-eval thm))
(defun V-CONV (fm) (make-conv 'V-eval fm))
; | t if tm "(n,m)" where n,m are constants
; (is-num-pair tm) = |
; | nil otherwise
; (make-ol-list-val (t1...tn) cons-rep ty) makes a value representing
; "[t1;...;tn]", cons-rep and ty are the appropriate cons and ty
; to use - i.e. if ty = el-ty list then cons-rep : el-ty -> ty -> ty
(defun make-ol-list-val (l cons-rep ty)
(cond ((null l) (ml-mk_const 'NIL ty))
(t (make-comb
(make-comb cons-rep (car l) (make-type '|fun| (list ty ty)))
(make-ol-list-val (cdr l) cons-rep ty)
ty))))
(defun is-num-pair (tm)
(and (is-bin-comb tm '|,|)
(is-const (get-rand(get-rator tm)))
(numconstp (get-const-name(get-rand(get-rator tm))))
(is-const (get-rand tm))
(numconstp (get-const-name(get-rand tm)))))
; | "[tj;...;ti]" if tm = "SEG(i,j)[tn;...;t0]"
; SEG-eval tm = |
; | tm otherwise
(defun SEG-eval (tm)
(cond ((and (is-comb tm)
(is-comb (get-rator tm))
(is-const (get-rator(get-rator tm)))
(eq (get-const-name(get-rator(get-rator tm))) 'SEG)
(is-num-pair (get-rand(get-rator tm)))
(is-ol-list (get-rand tm)))
(let ((p (get-rand(get-rator tm)))
(ty (get-type tm)))
(make-ol-list-val
(word-seg
(list
(atom-to-num(get-const-name(get-fst p)))
(atom-to-num(get-const-name(get-snd p))))
(dest-ol-list (get-rand tm)))
(ml-mk_const
'CONS
(make-type
'|fun|
(list (cadr ty) (make-type '|fun| (list ty ty)))))
ty)))
(t tm)))
; (SEG-RULE thm) applies SEG-eval to all subterms of the conclusion of thm
; SEG-CONV is the corresponding formula conversion
(defun SEG-RULE (thm) (map-thm 'SEG-eval thm))
(defun SEG-CONV (fm) (make-conv 'SEG-eval fm))
; (word-AND '|#a1...aw| '|#b1...bw|) = |#c1...cw| where ci=ai/\bi
(defun word-AND (w1 w2)
(imploden
(cons
#/#
(mapcar
#'(lambda (a b)
(cond ((eq a #/1) b) (t #/0)))
(cdr(exploden w1))
(cdr(exploden w2))))))
; | "#c1...cw" if tm = "#a1...aw AND #b1...bw" and ci=ai/\bi
; AND-eval tm = |
; | tm otherwise
(defun AND-eval (tm)
(cond ((and (is-comb tm)
(is-comb (get-rator tm))
(is-const (get-rator(get-rator tm)))
(is-eval-fn (get-const-name(get-rator(get-rator tm))) '(A N D))
(is-const (get-rand(get-rator tm)))
(wordconstp (get-const-name(get-rand(get-rator tm))))
(is-const (get-rand tm))
(wordconstp (get-const-name(get-rand tm))))
(ml-mk_const
(word-AND
(get-const-name(get-rand(get-rator tm)))
(get-const-name(get-rand tm)))
(get-type tm)))
(t tm)))
; (AND-RULE thm) applies AND-eval to all subterms of the conclusion of thm
; AND-CONV is the corresponding formula conversion
(defun AND-RULE (thm) (map-thm 'AND-eval thm))
(defun AND-CONV (fm) (make-conv 'AND-eval fm))
; (word-OR '|#a1...aw| '|#b1...bw|) = |#c1...cw| where ci=ai\/bi
(defun word-OR (w1 w2)
(imploden
(cons
#/#
(mapcar
#'(lambda (a b)
(cond ((eq a #/0) b) (t #/1)))
(cdr(exploden w1))
(cdr(exploden w2))))))
; | "#c1...cw" if tm = "#a1...aw OR #b1...bw" and ci=ai\/bi
; OR-eval tm = |
; | tm otherwise
(defun OR-eval (tm)
(cond ((and (is-comb tm)
(is-comb (get-rator tm))
(is-const (get-rator(get-rator tm)))
(is-eval-fn (get-const-name(get-rator(get-rator tm))) '(O R))
(is-const (get-rand(get-rator tm)))
(wordconstp (get-const-name(get-rand(get-rator tm))))
(is-const (get-rand tm))
(wordconstp (get-const-name(get-rand tm))))
(ml-mk_const
(word-OR
(get-const-name(get-rand(get-rator tm)))
(get-const-name(get-rand tm)))
(get-type tm)))
(t tm)))
; (OR-RULE thm) applies OR-eval to all subterms of the conclusion of thm
; OR-CONV is the corresponding formula conversion
(defun OR-RULE (thm) (map-thm 'OR-eval thm))
(defun OR-CONV (fm) (make-conv 'OR-eval fm))
; (word-NOT '|#a1...aw|) = |#b1...bw| where bi = ~ai
(defun word-NOT (w)
(imploden
(cons
#/#
(mapcar
#'(lambda (a)
(cond ((eq a #/0) #/1) (t #/0)))
(cdr(exploden w))))))
; | "#b1...bw" if tm = "NOT #a1...aw" and bi = ~ai
; NOT-eval tm = |
; | tm otherwise
(defun NOT-eval (tm)
(cond ((and (is-comb tm)
(is-const (get-rator tm))
(is-eval-fn (get-const-name(get-rator tm)) '(N O T))
(is-const (get-rand tm))
(wordconstp (get-const-name(get-rand tm)))
(is-const (get-rand tm))
(wordconstp (get-const-name(get-rand tm))))
(ml-mk_const
(word-NOT(get-const-name(get-rand tm)))
(get-type tm)))
(t tm)))
; (NOT-RULE thm) applies NOT-eval to all subterms of the conclusion of thm
; NOT-CONV is the corresponding formula conversion
(defun NOT-RULE (thm) (map-thm 'NOT-eval thm))
(defun NOT-CONV (fm) (make-conv 'NOT-eval fm))
; | "x" if tm = "(T=>x|y)"
; COND-eval tm = | "y" if tm = "(F=>x|y)"
; | "z" if tm = "(t=>z|z)"
; | tm otherwise
(defun COND-eval (tm)
(cond ((and (is-comb tm)
(is-comb (get-rator tm))
(is-comb (get-rator(get-rator tm)))
(is-const (get-rator(get-rator(get-rator tm))))
(eq
(get-const-name(get-rator(get-rator(get-rator tm))))
'COND))
(let ((test (get-rand(get-rator(get-rator tm))))
(then-branch (get-rand(get-rator tm)))
(else-branch (get-rand tm)))
(cond ((equal test T-olval) then-branch)
((equal test F-olval) else-branch)
((equal then-branch else-branch) then-branch)
(t tm))))
(t tm)))
; (COND-RULE thm) applies COND-eval to all subterms of the conclusion of thm
; COND-CONV is the corresponding formula conversion
(defun COND-RULE (thm) (map-thm 'COND-eval thm))
(defun COND-CONV (fm) (make-conv 'COND-eval fm))
; | "x" if tm = "x Uw FLOATw" or tm = "FLOATw Uw x" or "x Uw x"
; U-eval tm = |
; | tm otherwise
(defun U-eval (tm)
(cond ((and (is-comb tm)
(is-comb (get-rator tm))
(is-const (get-rator(get-rator tm)))
(is-eval-fn (get-const-name(get-rator(get-rator tm))) '(U)))
(let ((left (get-rand(get-rator tm)))
(right (get-rand tm)))
(cond ((and
(is-const left)
(is-eval-fn (get-const-name left) '(F L O A T)))
right)
((and
(is-const right)
(is-eval-fn (get-const-name right) '(F L O A T)))
left)
((equal left right) left)
(t tm))))
(t tm)))
; (U-RULE thm) applies U-eval to all subterms of the conclusion of thm
; U-CONV is the corresponding formula conversion
(defun U-RULE (thm) (map-thm 'U-eval thm))
(defun U-CONV (fm) (make-conv 'U-eval fm))
; | "x" if tm = "DEST_TRIw(MK_TRIw x)"
; TRI-eval tm = |
; | tm otherwise
(setq DEST_TRI_l '(D E S T _ T R I))
(setq MK_TRI_l '(M K _ T R I))
(defun TRI-eval (tm)
(cond ((and (is-comb tm)
(is-const (get-rator tm))
(is-eval-fn (get-const-name(get-rator tm)) DEST_TRI_l)
(is-comb (get-rand tm))
(is-const (get-rator(get-rand tm)))
(is-eval-fn (get-const-name(get-rator(get-rand tm))) MK_TRI_l))
(get-rand (get-rand tm)))
(t tm)))
; (TRI-RULE thm) applies TRI-eval to all subterms of the conclusion of thm
; TRI-CONV is the corresponding formula conversion
(defun TRI-RULE (thm) (map-thm 'TRI-eval thm))
(defun TRI-CONV (fm) (make-conv 'TRI-eval fm))
; bool-eval does the following simplifications:
;
; T /\ x ---> x
; F /\ x ---> F
; x /\ T ---> x
; x /\ F ---> F
; T \/ x ---> T
; F \/ x ---> x
; x \/ T ---> T
; x \/ F ---> x
; T ==> x ---> x
; F ==> x ---> T
; x ==> T ---> T
; ~ T ---> F
; ~ F ---> T
(eval-when (load)
(setq AND-tm
(ml-mk_const '/\\ '(|fun| (|bool|) (|fun| (|bool|) (|bool|)))))
(setq OR-tm
(ml-mk_const '\\/ '(|fun| (|bool|) (|fun| (|bool|) (|bool|)))))
(setq NOT-tm (ml-mk_const '|~| '(|fun| (|bool|) (|bool|)))))
(defun bool-eval (tm)
(cond ((and (is-comb tm)
(is-const (get-rator tm))
(eq (get-const-name(get-rator tm)) '|~|))
(let ((x (get-rand tm)))
(cond ((equal x T-olval) F-olval)
((equal x F-olval) T-olval)
(t tm))))
((is-bin-comb tm '/\\)
(let ((x (get-rand(get-rator tm)))
(y (get-rand tm)))
(cond ((equal x T-olval) y)
((equal x F-olval) F-olval)
((equal y T-olval) x)
((equal y F-olval) F-olval)
(t tm))))
((is-bin-comb tm '\\/)
(let ((x (get-rand(get-rator tm)))
(y (get-rand tm)))
(cond ((equal x T-olval) T-olval)
((equal x F-olval) y)
((equal y T-olval) T-olval)
((equal y F-olval) x)
(t tm))))
((is-bin-comb tm '|==>|)
(let ((x (get-rand(get-rator tm)))
(y (get-rand tm)))
(cond ((equal x T-olval) y)
((equal x F-olval) T-olval)
((equal y T-olval) T-olval)
((equal y F-olval) (make-comb NOT-tm x '(|bool|)))
(t tm))))
(t tm)))
; (bool-RULE thm) applies bool-eval to all subterms of the conclusion of thm
; bool-CONV is the corresponding formula conversion
(defun bool-RULE (thm) (map-thm 'bool-eval thm))
(defun bool-CONV (fm) (make-conv 'bool-eval fm))
|