1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
## This module is copyright (c) 1999-2006 Bruce Ravel
## <bravel@anl.gov>
## http://feff.phys.washington.edu/~ravel/software/exafs/
##
## -------------------------------------------------------------------
## All rights reserved. This program is free software; you can
## redistribute it and/or modify it under the same terms as Perl
## itself.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## Artistic License for more details.
## -------------------------------------------------------------------
######################################################################
## Time-stamp: <1999/05/20 15:20:00 bruce>
######################################################################
## Code:
=head1 NAME
Xray::Absorption::CL - Perl interface to the Cromer-Liberman tables
=head1 SYNOPSIS
use Xray::Absorption;
Xray::Absorption -> load("cl");
See the documentation for Xray::Absorption for details.
=head1 DESCRIPTION
This module is inherited by the Xray::Absorption module and provides
access to the data contained in the Cromer-Liberman tables of anomalous
scattering factors and line and edge energies.
The data in this module and the Fortran code which it calls as a
shared library, referred to as "The CL Tables", was published as
S. Brennan and P.L. Cowen, Rev. Sci. Instrum, vol 63,
p.850 (1992)
More information about these data is available on the Web at
http://www.slac.ssrl.stanford.edu/absorb.html.
The values for the anomalous scattering factors are calculated by
calls to the Ifeffit library by Matt Newville.
The values of edge and line energies are contained in a database file
called F<cl.db> which is generated at install time from the flat
text files of the these data. The data is stored in a Storable
archive using "network" ordering. This allows speedy disk and memory
access along with network and platform portability.
The required C<File::Spec>, C<Chemistry::Elements>, C<Storable> are
available from CPAN.
=cut
package Xray::Absorption::CL;
use Exporter ();
use Config;
use strict;
use Xray::Absorption;
use vars qw(@ISA $VERSION $resource $line_rule);
use strict;
use vars qw($VERSION $cvs_info $cl_version @ISA @EXPORT @EXPORT_OK);
require Exporter;
@ISA = qw(Exporter AutoLoader);
# Items to export into callers namespace by default. Note: do not export
# names by default without a very good reason. Use EXPORT_OK instead.
# Do not simply export all your public functions/methods/constants.
@EXPORT_OK = qw();
$cvs_info = '$Id: CL.pm,v 1.2 2001/09/20 17:42:04 bruce Exp $ ';
$VERSION = '1.21'; #(split(' ', $cvs_info))[2] || "pre_release";
my $epsilon = 0.001; # a milivolt
use strict;
use Carp;
use File::Spec;
use Storable;
use Chemistry::Elements qw(get_name get_Z get_symbol);
#use Xray::Absorption::CLdata qw(cl_f1 cl_f2);
use Ifeffit qw(ifeffit put_array get_array);
## the next two line initialize Ifeffit under perl without changing
## any ifeffit global variables
my $foo = Ifeffit::get_scalar("\&screen_echo");
ifeffit("\&screen_echo = $foo\n");
use constant PI => 4*atan2(1,1);
use constant RE => 0.00002817938; # Classical electron radius in Angstroms
use constant HBARC => 1973.2858; # in eV*Angstrom
my $dbfile = File::Spec->catfile($Xray::Absorption::data_dir, "cl.db");
my $r_cl = retrieve($dbfile);
$cl_version = $$r_cl{'version'};
=head1 METHODS
The behaviour of the methods in this module is a bit different from
other modules used by C<Xray::Absorption>. This section describes
methods which behave differently for this data resource.
=cut
sub current_resource {
"CL.pm version $VERSION, database version $cl_version";
};
## is this element actually tabulated in these tables?
## Xray::Absorption -> in_resource($elem) $elem can be Z, symbol, name
sub in_resource {
shift;
my $z = $_[0];
$z = get_Z($z);
(defined $z) || return 0;
return 0 if $z < 1;
return ( $z > 92 ) ? 0 : 1;
};
=over 4
=item C<get_energy>
Example:
$energy = Xray::Absorption -> get_energy($elem, $edge);
This behaves similarly to the C<get_energy> method of the other
resources. When using the CL data resource, C<$edge> can be any of
K, L1-L3, M1-M5, N1-N7, O1-O7, or P1-P3. Line energies are not
supplied with the CL data set. The line energies from the McMaster
tables are used.
=back
=cut
## $edge should be one of
## Xray::Absorption -> get_energy($elem, $edge)
sub get_energy {
shift;
my ($sym,$edge) = @_;
$sym = lc( get_symbol($sym) );
Xray::Absorption -> in_resource($sym) || return 0;
(defined $sym) || return 0;
$edge = lc($edge);
## absorption edges
if (($edge =~ /\b(k|l[1-3]|m[1-5]|n[1-7]|o[1-5]|p[1-3])\b/)
and
($edge !~ /-\b(k|l[1-3]|m[1-5]|n[1-7]|o[1-5]|p[1-3])\b/)) {
$edge = "energy_$edge";
return (exists($$r_cl{$sym}{$edge})) ? $$r_cl{$sym}{$edge} : 0;
};
my $sieg_edge = lc(Xray::Absorption->get_Siegbahn($edge));
if (($edge =~ /^ka/i) or ($sieg_edge =~ /^ka/i)) {
($edge = "energy_kalpha");
};
if (($edge =~ /^kb/i) or ($sieg_edge =~ /^kb/i)) {
($edge = "energy_kbeta");
};
if (($edge =~ /^la/i) or ($sieg_edge =~ /^la/i)) {
($edge = "energy_lalpha");
};
if (($edge =~ /^lb/i) or ($sieg_edge =~ /^lb/i)) {
($edge = "energy_lbeta");
};
return (exists($$r_cl{$sym}{$edge})) ? $$r_cl{$sym}{$edge} : 0;
## no such edge
return 0;
};
## the list required by this method is preloaded into the database at
## install-time.
sub next_energy {
shift;
my $elem = shift; # atom in question
my $edge = shift; # edge in question
my @list = @_; # other atoms in material
my $hash = $$r_cl{energy_list};
my $key = lc($elem) . "_" . lc($edge);
while (1) {
my ($el, $ed, $en) = @{$$hash{$key}};
return () unless defined $el;
return ($el, $ed, $en) if (grep(/^$el$/i, @list));
$key = lc($el) . "_" . lc($ed);
};
};
sub data_available {
shift;
my ($sym, $edge) = @_;
$sym = lc( get_symbol($sym) );
$edge = lc($edge);
(defined $sym) or return 0;
Xray::Absorption -> in_resource($sym) or return 0;
return exists($$r_cl{$sym}{"energy_".$edge});
## worry about very low eneries
};
=over 4
=item C<cross_section>
Example:
$xsec = Xray::Absorption -> cross_section($elem, $energy, $mode);
@xsec = Xray::Absorption -> cross_section($elem, \@energy, $mode);
For this data resource, one call in list context is considerably
faster than repeated calls in scalar context. It is well worth the
trouble of organizing your code to make a single call in list context
and store the results for later use.
This behaves slightly differently from the similar method for the
McMaster and Elam resources. The CL tables are actually tables of
anomalous scattering factors and do not come with coherent and
incoherent scattering cross-sections. The photo-electric
cross-section is calculated from the imaginary part of the anomalous
scattering by the formula
mu = 2 * r_e * lambda * conv * f_2
where, C<r_e> is the classical electron radius, lamdba is the photon
wavelength, and conv is a units conversion factor.
r_e = 2.817938 x 10^-15 m
lambda = 2 pi hbar c / energy
hbar*c = 1973.27053324 eV*Angstrom
conv = Avagadro / atomic weight
= 6.022045e7 / weight in cgs
The C<$mode> argument is different here than for the other resources.
The options are "xsec", "f1", and "f2", telling this method to return
the cross-section or the real or imaginary anomalous scattering
factor, respectively.
The values for f1 and f2 are computed by linear interpolation of a
semi-log scale. Care is taken to avoid the discontinuities at the
edges.
Because the CL tables do not include the coherent and incoherent
scattering terms, the value returned by C<get_energy> is a bit smaller
using the CL tables than using the others.
=back
=cut
sub cross_section {
shift;
die "cross_section takes a single energy or a reference to an array\n" if
($#_ > 2);
my ($sym, $energy, $mode) = @_;
##print wantarray ? "array context\n" : "scalar context\n";
$sym = lc( get_symbol($sym) );
my $z = get_Z($sym);
Xray::Absorption -> in_resource($sym) || return 0;
(defined $sym) || return 0;
## cache this hash element
my $hash_element = $$r_cl{$sym};
## my $n = $#{$$r_cl{$sym}{energy}};
## if (($energy < $$r_cl{$sym}{energy}->[0]) or
## ($energy > $$r_cl{$sym}{energy}->[$n]) ) {
## my $message = sprintf
## "The CL Tables for element %s are only valid " .
## "between %7.4f and %7.1f eV%s",
## ucfirst($sym), $$r_cl{$sym}{energy}->[0],
## $$r_cl{$sym}{energy}->[$n], $/;
## $Xray::Absorption::verbose and warn $message;
## return 0;
## };
## watch out for an input energy that is right at the edge
EDGE_CHECK: foreach my $edge ("k" , "l1", "l2", "l3",
"m1", "m2", "m3", "m4", "m5",
"n1", "n2", "n3", "n4", "n5", "n6", "n7",
"o1", "o2", "o3", "o4", "o5", "o6", "o7",
"p1", "p2", "p3") {
## define the dge to be 10 meV above the edge
if ((exists $$hash_element{"energy_".$edge}) and
(abs($energy - $$hash_element{"energy_".$edge}) < $epsilon)) {
($energy += 10*$epsilon);
last EDGE_CHECK;
};
};
## fetch Cromer-Liberman values from Ifeffit. Ifeffit requires that
## arrays be 2 or more elements long, so tack on a throw-away value
my @ener;
if (wantarray) {
@ener = @$energy;
} else {
@ener = ($energy, $energy+$epsilon/10);
};
put_array("absorption_cl.energy", \@ener);
ifeffit("f1f2(z=$z, energy=absorption_cl.energy)\n");
my @f1 = get_array("absorption_cl.f1");
my @f2 = get_array("absorption_cl.f2");
#print join(" ", @f1), $/;
#print join(" ", @f2), $/;
$mode ||= "xsec";
($mode =~ /\b(x|f[12])/i) or $mode = "xsec";
if ($mode =~ /\b(f2|x)/i) {
##my $fpp = cl_f2($z, $energy); # using old CLdata
if ($mode =~ /\bf2/) {
return wantarray ? @f2 : $f2[0];
} else {
my $factor = Xray::Absorption -> get_conversion($sym);
my $weight = Xray::Absorption -> get_atomic_weight($sym);
my @mu;
foreach my $i (0 .. $#ener) {
my $lambda = 2 * PI * HBARC / $ener[$i];
$mu[$i] = 2*RE * $lambda * $f2[$i] * 0.6022045 * 1e8 * $factor / $weight;
}; # ^ ^
## | |
## avagadro's / barn __| |
## angstroms -> cm __|
($mode =~ /\bx/) and return wantarray ? @mu : $mu[0];
#($mode =~ /\bx/) and return $mu;
};
} elsif ($mode =~ /\bf1/i) {
##my $fp = cl_f1($z, $energy); # using old CLdata
return wantarray ? @f1 : $f1[0];
};
return 0; ## it should never get here!
};
1;
__END__
=head1 EDGE AND LINE ENERGIES
The CL data resource provides a fairly complete set of edge energies.
Any edge tabulated on the Gwyn William's Table of Electron Binding
Energies for the Elements (that's the one published by NSLS and on the
door of just about every hutch at NSLS) is in the CL data resource.
The CL data comes with the same, limited set of fluorescence energies
as McMaster.
=head1 BUGS AND THINGS TO DO
None that I know about...
=head1 AUTHOR
Bruce Ravel, bruce@phys.washington.edu
http://feff.phys.washington.edu/~ravel/software/Absorption
=cut
|