1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
/* -*- mode: C; tab-width: 2; indent-tabs-mode: nil; -*- */
/*
* This code has been contributed by the DARPA HPCS program. Contact
* David Koester <dkoester@mitre.org> or Bob Lucas <rflucas@isi.edu>
* if you have questions.
*
*
* GUPS (Giga UPdates per Second) is a measurement that profiles the memory
* architecture of a system and is a measure of performance similar to MFLOPS.
* The HPCS HPCchallenge RandomAccess benchmark is intended to exercise the
* GUPS capability of a system, much like the LINPACK benchmark is intended to
* exercise the MFLOPS capability of a computer. In each case, we would
* expect these benchmarks to achieve close to the "peak" capability of the
* memory system. The extent of the similarities between RandomAccess and
* LINPACK are limited to both benchmarks attempting to calculate a peak system
* capability.
*
* GUPS is calculated by identifying the number of memory locations that can be
* randomly updated in one second, divided by 1 billion (1e9). The term "randomly"
* means that there is little relationship between one address to be updated and
* the next, except that they occur in the space of one half the total system
* memory. An update is a read-modify-write operation on a table of 64-bit words.
* An address is generated, the value at that address read from memory, modified
* by an integer operation (add, and, or, xor) with a literal value, and that
* new value is written back to memory.
*
* We are interested in knowing the GUPS performance of both entire systems and
* system subcomponents --- e.g., the GUPS rating of a distributed memory
* multiprocessor the GUPS rating of an SMP node, and the GUPS rating of a
* single processor. While there is typically a scaling of FLOPS with processor
* count, a similar phenomenon may not always occur for GUPS.
*
* Select the memory size to be the power of two such that 2^n <= 1/2 of the
* total memory. Each CPU operates on its own address stream, and the single
* table may be distributed among nodes. The distribution of memory to nodes
* is left to the implementer. A uniform data distribution may help balance
* the workload, while non-uniform data distributions may simplify the
* calculations that identify processor location by eliminating the requirement
* for integer divides. A small (less than 1%) percentage of missed updates
* are permitted.
*
* When implementing a benchmark that measures GUPS on a distributed memory
* multiprocessor system, it may be required to define constraints as to how
* far in the random address stream each node is permitted to "look ahead".
* Likewise, it may be required to define a constraint as to the number of
* update messages that can be stored before processing to permit multi-level
* parallelism for those systems that support such a paradigm. The limits on
* "look ahead" and "stored updates" are being implemented to assure that the
* benchmark meets the intent to profile memory architecture and not induce
* significant artificial data locality. For the purpose of measuring GUPS,
* we will stipulate that each process is permitted to look ahead no more than
* 1024 random address stream samples with the same number of update messages
* stored before processing.
*
* The supplied MPI-1 code generates the input stream {A} on all processors
* and the global table has been distributed as uniformly as possible to
* balance the workload and minimize any Amdahl fraction. This code does not
* exploit "look-ahead". Addresses are sent to the appropriate processor
* where the table entry resides as soon as each address is calculated.
* Updates are performed as addresses are received. Each message is limited
* to a single 64 bit long integer containing element ai from {A}.
* Local offsets for T[ ] are extracted by the destination processor.
*
* If the number of processors is equal to a power of two, then the global
* table can be distributed equally over the processors. In addition, the
* processor number can be determined from that portion of the input stream
* that identifies the address into the global table by masking off log2(p)
* bits in the address.
*
* If the number of processors is not equal to a power of two, then the global
* table cannot be equally distributed between processors. In the MPI-1
* implementation provided, there has been an attempt to minimize the differences
* in workloads and the largest difference in elements of T[ ] is one. The
* number of values in the input stream generated by each processor will be
* related to the number of global table entries on each processor.
*
* The MPI-1 version of RandomAccess treats the potential instance where the
* number of processors is a power of two as a special case, because of the
* significant simplifications possible because processor location and local
* offset can be determined by applying masks to the input stream values.
* The non power of two case uses an integer division to determine the processor
* location. The integer division will be more costly in terms of machine
* cycles to perform than the bit masking operations
*
* For additional information on the GUPS metric, the HPCchallenge RandomAccess
* Benchmark,and the rules to run RandomAccess or modify it to optimize
* performance -- see http://icl.cs.utk.edu/hpcc/
*
*/
/* Jan 2005
*
* This code has been modified to allow local bucket sorting of updates.
* The total maximum number of updates in the local buckets of a process
* is currently defined in "RandomAccess.h" as MAX_TOTAL_PENDING_UPDATES.
* When the total maximum number of updates is reached, the process selects
* the bucket (or destination process) with the largest number of
* updates and sends out all the updates in that bucket. See buckets.c
* for details about the buckets' implementation.
*
* This code also supports posting multiple MPI receive descriptors (based
* on a contribution by David Addison).
*
* In addition, this implementation provides an option for limiting
* the execution time of the benchmark to a specified time bound
* (see time_bound.c). The time bound is currently defined in
* time_bound.h, but it should be a benchmark parameter. By default
* the benchmark will execute the recommended number of updates,
* that is, four times the global table size.
*/
#include <hpcc.h>
#include "RandomAccess.h"
#include "buckets.h"
#include "time_bound.h"
#ifndef LONG_IS_64BITS
static void
Sum64(void *invec, void *inoutvec, int *len, MPI_Datatype *datatype) {
int i, n = *len; s64Int *invec64 = (s64Int *)invec, *inoutvec64 = (s64Int *)inoutvec;
for (i = n; i; i--, invec64++, inoutvec64++) *inoutvec64 += *invec64;
}
static void
MinInt64(void *invec, void *inoutvec, int *len, MPI_Datatype *datatype) {
int i, n = *len; s64Int *invec64 = (s64Int *)invec, *inoutvec64 = (s64Int *)inoutvec, min_val;
if (datatype)
for (i = n; i; i--, invec64++, inoutvec64++) {
min_val = inoutvec64[0];
*inoutvec64 = *inoutvec64 > *invec64 ? *invec64 : *inoutvec64;
}
}
#endif
#ifdef HPCC_RA_STDALG
void
HPCC_AnyNodesMPIRandomAccessUpdate_LCG(HPCC_RandomAccess_tabparams_t tparams) {
s64Int i, j;
int proc_count;
s64Int SendCnt;
u64Int Ran;
s64Int WhichPe;
u64Int GlobalOffset, LocalOffset;
int NumberReceiving = tparams.NumProcs - 1;
#ifdef USE_MULTIPLE_RECV
int index, NumRecvs;
MPI_Request inreq[MAX_RECV] = { MPI_REQUEST_NULL };
MPI_Request outreq = MPI_REQUEST_NULL;
#else
MPI_Request inreq, outreq = MPI_REQUEST_NULL;
#endif
u64Int inmsg;
int bufferBase;
MPI_Status status;
int have_done;
int pe;
int pendingUpdates;
int maxPendingUpdates;
int localBufferSize;
int peUpdates;
int recvUpdates;
Bucket_Ptr Buckets;
pendingUpdates = 0;
maxPendingUpdates = MAX_TOTAL_PENDING_UPDATES;
localBufferSize = LOCAL_BUFFER_SIZE;
Buckets = HPCC_InitBuckets(tparams.NumProcs, maxPendingUpdates);
/* Perform updates to main table. The scalar equivalent is:
*
* u64Int Ran;
* Ran = 1;
* for (i=0; i<NUPDATE; i++) {
* Ran = LCG_MUL64 * Ran + LCG_ADD64;
* Table[Ran >> (64 - LOG2_TABSIZE)] ^= Ran;
* }
*/
SendCnt = tparams.ProcNumUpdates; /* SendCnt = (4 * LocalTableSize); */
Ran = HPCC_starts_LCG(4 * tparams.GlobalStartMyProc);
i = 0;
#ifdef USE_MULTIPLE_RECV
NumRecvs = (tparams.NumProcs > 4) ? (Mmin(4,MAX_RECV)) : 1;
for (j = 0; j < NumRecvs; j++)
MPI_Irecv(&LocalRecvBuffer[j*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[j]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
while (i < SendCnt) {
/* receive messages */
do {
#ifdef USE_MULTIPLE_RECV
MPI_Testany(NumRecvs, inreq, &index, &have_done, &status);
#else
MPI_Test(&inreq, &have_done, &status);
#endif
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
#ifdef USE_MULTIPLE_RECV
bufferBase = index*LOCAL_BUFFER_SIZE;
#else
bufferBase = 0;
#endif
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg >> (64 - tparams.logTableSize)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;
}
} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;
} else {
MPI_Abort( MPI_COMM_WORLD, -1 );
}
#ifdef USE_MULTIPLE_RECV
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[index]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = LCG_MUL64 * Ran + LCG_ADD64;
GlobalOffset = Ran >> (64 - tparams.logTableSize);
if ( GlobalOffset < tparams.Top)
WhichPe = ( GlobalOffset / (tparams.MinLocalTableSize + 1) );
else
WhichPe = ( (GlobalOffset - tparams.Remainder) / tparams.MinLocalTableSize );
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran >> (64 - tparams.logTableSize)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;
}
else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;
}
i++;
}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize, &peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe, UPDATE_TAG,
MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;
}
}
}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {
/* receive messages */
do {
#ifdef USE_MULTIPLE_RECV
MPI_Testany(NumRecvs, inreq, &index, &have_done, &status);
#else
MPI_Test(&inreq, &have_done, &status);
#endif
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
#ifdef USE_MULTIPLE_RECV
bufferBase = index*LOCAL_BUFFER_SIZE;
#else
bufferBase = 0;
#endif
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg >> (64 - tparams.logTableSize)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;
}
} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;
} else {
MPI_Abort( MPI_COMM_WORLD, -1 );
}
#ifdef USE_MULTIPLE_RECV
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[index]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
}
} while (have_done && NumberReceiving > 0);
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize, &peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe, UPDATE_TAG,
MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;
}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] = MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,
MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
#ifdef USE_MULTIPLE_RECV
MPI_Waitany(NumRecvs, inreq, &index, &status);
#else
MPI_Wait(&inreq, &status);
#endif
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
#ifdef USE_MULTIPLE_RECV
bufferBase = index * LOCAL_BUFFER_SIZE;
#else
bufferBase = 0;
#endif
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg >> (64 - tparams.logTableSize)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;
}
} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;
} else {
MPI_Abort( MPI_COMM_WORLD, -1 );
}
#ifdef USE_MULTIPLE_RECV
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[index]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
}
MPI_Waitall( tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);
/* Be nice and clean up after ourselves */
HPCC_FreeBuckets(Buckets, tparams.NumProcs);
#ifdef USE_MULTIPLE_RECV
for (j = 0; j < NumRecvs; j++) {
MPI_Cancel(&inreq[j]);
MPI_Wait(&inreq[j], MPI_STATUS_IGNORE);
}
#else
MPI_Cancel(&inreq);
MPI_Wait(&inreq, MPI_STATUS_IGNORE);
#endif
MPI_Wait(&outreq, MPI_STATUS_IGNORE);
/* end multiprocessor code */
}
void
HPCC_Power2NodesMPIRandomAccessUpdate_LCG(HPCC_RandomAccess_tabparams_t tparams) {
s64Int i, j;
int proc_count;
s64Int SendCnt;
u64Int Ran;
s64Int WhichPe;
u64Int LocalOffset;
int logLocalTableSize = tparams.logTableSize - tparams.logNumProcs;
int NumberReceiving = tparams.NumProcs - 1;
#ifdef USE_MULTIPLE_RECV
int index, NumRecvs;
MPI_Request inreq[MAX_RECV] = { MPI_REQUEST_NULL };
MPI_Request outreq = MPI_REQUEST_NULL;
#else
MPI_Request inreq, outreq = MPI_REQUEST_NULL;
#endif
u64Int inmsg;
int bufferBase;
MPI_Status status;
int have_done;
int pe;
int pendingUpdates;
int maxPendingUpdates;
int localBufferSize;
int peUpdates;
int recvUpdates;
Bucket_Ptr Buckets;
pendingUpdates = 0;
maxPendingUpdates = MAX_TOTAL_PENDING_UPDATES;
localBufferSize = LOCAL_BUFFER_SIZE;
Buckets = HPCC_InitBuckets(tparams.NumProcs, maxPendingUpdates);
/* Perform updates to main table. The scalar equivalent is:
*
* u64Int Ran;
* Ran = 1;
* for (i=0; i<NUPDATE; i++) {
* Ran = LCG_MUL64 * Ran + LCG_ADD64;
* Table[Ran >> (64 - LOG2_TABSIZE)] ^= Ran;
* }
*/
SendCnt = tparams.ProcNumUpdates; /* SendCnt = (4 * LocalTableSize); */
Ran = HPCC_starts_LCG(4 * tparams.GlobalStartMyProc);
i = 0;
#ifdef USE_MULTIPLE_RECV
NumRecvs = (tparams.NumProcs > 4) ? (Mmin(4,MAX_RECV)) : 1;
for (j = 0; j < NumRecvs; j++)
MPI_Irecv(&LocalRecvBuffer[j*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[j]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
while (i < SendCnt) {
/* receive messages */
do {
#ifdef USE_MULTIPLE_RECV
MPI_Testany(NumRecvs, inreq, &index, &have_done, &status);
#else
MPI_Test(&inreq, &have_done, &status);
#endif
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
#ifdef USE_MULTIPLE_RECV
bufferBase = index * LOCAL_BUFFER_SIZE;
#else
bufferBase = 0;
#endif
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
HPCC_Table[(inmsg >> (64 - tparams.logTableSize)) & (tparams.LocalTableSize-1)] ^= inmsg;
}
} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;
} else {
MPI_Abort( MPI_COMM_WORLD, -1 );
}
#ifdef USE_MULTIPLE_RECV
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[index]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = LCG_MUL64 * Ran + LCG_ADD64;
WhichPe = (Ran >> (64 - tparams.logTableSize + logLocalTableSize)) & (tparams.NumProcs - 1);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran >> (64 - tparams.logTableSize)) - tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;
}
else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;
}
i++;
}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize, &peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe, UPDATE_TAG,
MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;
}
}
}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {
/* receive messages */
do {
#ifdef USE_MULTIPLE_RECV
MPI_Testany(NumRecvs, inreq, &index, &have_done, &status);
#else
MPI_Test(&inreq, &have_done, &status);
#endif
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
#ifdef USE_MULTIPLE_RECV
bufferBase = index * LOCAL_BUFFER_SIZE;
#else
bufferBase = 0;
#endif
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
HPCC_Table[(inmsg >> (64 - tparams.logTableSize)) & (tparams.LocalTableSize-1)] ^= inmsg;
}
} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;
} else {
MPI_Abort( MPI_COMM_WORLD, -1 );
}
#ifdef USE_MULTIPLE_RECV
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[index]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
}
} while (have_done && NumberReceiving > 0);
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize, &peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe, UPDATE_TAG,
MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;
}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] = MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,
MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
#ifdef USE_MULTIPLE_RECV
MPI_Waitany(NumRecvs, inreq, &index, &status);
#else
MPI_Wait(&inreq, &status);
#endif
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
#ifdef USE_MULTIPLE_RECV
bufferBase = index * LOCAL_BUFFER_SIZE;
#else
bufferBase = 0;
#endif
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
HPCC_Table[(inmsg >> (64 - tparams.logTableSize)) & (tparams.LocalTableSize-1)] ^= inmsg;
}
} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;
} else {
MPI_Abort( MPI_COMM_WORLD, -1 );
}
#ifdef USE_MULTIPLE_RECV
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], localBufferSize,
tparams.dtype64, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&inreq[index]);
#else
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
#endif
}
MPI_Waitall( tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);
/* Be nice and clean up after ourselves */
HPCC_FreeBuckets(Buckets, tparams.NumProcs);
#ifdef USE_MULTIPLE_RECV
for (j = 0; j < NumRecvs; j++) {
MPI_Cancel(&inreq[j]);
MPI_Wait(&inreq[j], MPI_STATUS_IGNORE);
}
#else
MPI_Cancel(&inreq);
MPI_Wait(&inreq, MPI_STATUS_IGNORE);
#endif
MPI_Wait(&outreq, MPI_STATUS_IGNORE);
/* end multiprocessor code */
}
#endif
int
HPCC_MPIRandomAccess_LCG(HPCC_Params *params) {
s64Int i;
s64Int NumErrors, GlbNumErrors;
double CPUTime; /* CPU time to update table */
double RealTime; /* Real time to update table */
double TotalMem;
int sAbort, rAbort;
int PowerofTwo;
double timeBound = -1; /* OPTIONAL time bound for execution time */
u64Int NumUpdates_Default; /* Number of updates to table (suggested: 4x number of table entries) */
u64Int NumUpdates; /* actual number of updates to table - may be smaller than
* NumUpdates_Default due to execution time bounds */
#ifdef RA_TIME_BOUND
s64Int localProcNumUpdates, GlbNumUpdates; /* for reduction */
#ifndef LONG_IS_64BITS
MPI_Op min_int64;
#endif
#endif
FILE *outFile = NULL;
double *GUPs;
HPCC_RandomAccess_tabparams_t tparams;
#ifdef LONG_IS_64BITS
tparams.dtype64 = MPI_LONG;
#else
MPI_Op sum64;
tparams.dtype64 = MPI_LONG_LONG_INT;
#endif
GUPs = ¶ms->MPIRandomAccess_LCG_GUPs;
MPI_Comm_size( MPI_COMM_WORLD, &tparams.NumProcs );
MPI_Comm_rank( MPI_COMM_WORLD, &tparams.MyProc );
if (0 == tparams.MyProc) {
outFile = fopen( params->outFname, "a" );
if (! outFile) outFile = stderr;
}
TotalMem = params->HPLMaxProcMem; /* max single node memory */
TotalMem *= tparams.NumProcs; /* max memory in tparams.NumProcs nodes */
TotalMem /= sizeof(u64Int);
/* calculate TableSize --- the size of update array (must be a power of 2) */
for (TotalMem *= 0.5, tparams.logTableSize = 0, tparams.TableSize = 1;
TotalMem >= 1.0;
TotalMem *= 0.5, tparams.logTableSize++, tparams.TableSize <<= 1)
; /* EMPTY */
/* determine whether the number of processors is a power of 2 */
for (i = 1, tparams.logNumProcs = 0; ; tparams.logNumProcs++, i <<= 1) {
if (i == tparams.NumProcs) {
PowerofTwo = HPCC_TRUE;
tparams.Remainder = 0;
tparams.Top = 0;
tparams.MinLocalTableSize = (tparams.TableSize / tparams.NumProcs);
tparams.LocalTableSize = tparams.MinLocalTableSize;
tparams.GlobalStartMyProc = (tparams.MinLocalTableSize * tparams.MyProc);
break;
/* number of processes is not a power 2 (too many shifts may introduce negative values or 0) */
}
else if (i > tparams.NumProcs || i <= 0) {
PowerofTwo = HPCC_FALSE;
/* Minimum local table size --- some processors have an additional entry */
tparams.MinLocalTableSize = (tparams.TableSize / tparams.NumProcs);
/* Number of processors with (LocalTableSize + 1) entries */
tparams.Remainder = tparams.TableSize - (tparams.MinLocalTableSize * tparams.NumProcs);
/* Number of table entries in top of Table */
tparams.Top = (tparams.MinLocalTableSize + 1) * tparams.Remainder;
/* Local table size */
if (tparams.MyProc < tparams.Remainder) {
tparams.LocalTableSize = (tparams.MinLocalTableSize + 1);
tparams.GlobalStartMyProc = ( (tparams.MinLocalTableSize + 1) * tparams.MyProc);
}
else {
tparams.LocalTableSize = tparams.MinLocalTableSize;
tparams.GlobalStartMyProc = ( (tparams.MinLocalTableSize * tparams.MyProc) + tparams.Remainder );
}
break;
} /* end else if */
} /* end for i */
sAbort = 0;
tparams.finish_statuses = XMALLOC( MPI_Status, tparams.NumProcs );
tparams.finish_req = XMALLOC( MPI_Request, tparams.NumProcs );
HPCC_Table = HPCC_XMALLOC( u64Int, tparams.LocalTableSize );
if (! tparams.finish_statuses || ! tparams.finish_req || ! HPCC_Table) sAbort = 1;
MPI_Allreduce( &sAbort, &rAbort, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD );
if (rAbort > 0) {
if (tparams.MyProc == 0) fprintf(outFile, "Failed to allocate memory for the main table.\n");
/* check all allocations in case there are new added and their order changes */
if (tparams.finish_statuses) free( tparams.finish_statuses );
if (tparams.finish_req) free( tparams.finish_req );
if (HPCC_Table) HPCC_free( HPCC_Table );
goto failed_table;
}
params->MPIRandomAccess_LCG_N = (s64Int)tparams.TableSize;
/* Default number of global updates to table: 4x number of table entries */
NumUpdates_Default = 4 * tparams.TableSize;
tparams.ProcNumUpdates = 4*tparams.LocalTableSize;
NumUpdates = NumUpdates_Default;
/* The time bound is only accurate for standard RandomAccess algorithm. */
#ifdef HPCC_RA_STDALG
#ifdef RA_TIME_BOUND
/* estimate number of updates such that execution time does not exceed time bound */
/* time_bound should be a parameter */
/* max run time in seconds */
MPI_Allreduce( ¶ms->HPLrdata.time, &timeBound, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD );
timeBound = Mmax( 0.25 * timeBound, (double)TIME_BOUND );
if (PowerofTwo) {
HPCC_Power2NodesTimeLCG( tparams, timeBound, (u64Int *)&localProcNumUpdates );
} else {
HPCC_AnyNodesTimeLCG( tparams, timeBound, (u64Int *)&localProcNumUpdates );
}
/* be conservative: get the smallest number of updates among all procs */
#ifdef LONG_IS_64BITS
MPI_Allreduce( &localProcNumUpdates, &GlbNumUpdates, 1, MPI_LONG, MPI_MIN, MPI_COMM_WORLD );
#else
MPI_Op_create( MinInt64, 1, &min_int64 );
MPI_Allreduce( &localProcNumUpdates, &GlbNumUpdates, 1, tparams.dtype64, min_int64, MPI_COMM_WORLD );
MPI_Op_free( &min_int64 );
#endif
tparams.ProcNumUpdates = Mmin(GlbNumUpdates, (4*tparams.LocalTableSize));
/* works for both PowerofTwo and AnyNodes */
NumUpdates = Mmin((tparams.ProcNumUpdates*tparams.NumProcs), (s64Int)NumUpdates_Default);
#endif
#endif
if (tparams.MyProc == 0) {
fprintf( outFile, "Running on %d processors%s\n", tparams.NumProcs, PowerofTwo ? " (PowerofTwo)" : "");
fprintf( outFile, "Total Main table size = 2^" FSTR64 " = " FSTR64 " words\n",
tparams.logTableSize, tparams.TableSize );
if (PowerofTwo)
fprintf( outFile, "PE Main table size = 2^" FSTR64 " = " FSTR64 " words/PE\n",
(tparams.logTableSize - tparams.logNumProcs), tparams.TableSize/tparams.NumProcs );
else
fprintf( outFile, "PE Main table size = (2^" FSTR64 ")/%d = " FSTR64 " words/PE MAX\n",
tparams.logTableSize, tparams.NumProcs, tparams.LocalTableSize);
fprintf( outFile, "Default number of updates (RECOMMENDED) = " FSTR64 "\n", NumUpdates_Default);
#ifdef RA_TIME_BOUND
fprintf( outFile, "Number of updates EXECUTED = " FSTR64 " (for a TIME BOUND of %.2f secs)\n",
NumUpdates, timeBound);
#endif
params->MPIRandomAccess_LCG_ExeUpdates = NumUpdates;
params->MPIRandomAccess_LCG_TimeBound = timeBound;
}
/* Initialize main table */
for (i=0; i<tparams.LocalTableSize; i++)
HPCC_Table[i] = i + tparams.GlobalStartMyProc;
MPI_Barrier( MPI_COMM_WORLD );
CPUTime = -CPUSEC();
RealTime = -RTSEC();
if (PowerofTwo) {
HPCC_Power2NodesMPIRandomAccessUpdate_LCG( tparams );
} else {
HPCC_AnyNodesMPIRandomAccessUpdate_LCG( tparams );
}
MPI_Barrier( MPI_COMM_WORLD );
/* End timed section */
CPUTime += CPUSEC();
RealTime += RTSEC();
/* Print timing results */
if (tparams.MyProc == 0){
params->MPIRandomAccess_LCG_time = RealTime;
*GUPs = 1e-9*NumUpdates / RealTime;
fprintf( outFile, "CPU time used = %.6f seconds\n", CPUTime );
fprintf( outFile, "Real time used = %.6f seconds\n", RealTime );
fprintf( outFile, "%.9f Billion(10^9) Updates per second [GUP/s]\n",
*GUPs );
fprintf( outFile, "%.9f Billion(10^9) Updates/PE per second [GUP/s]\n",
*GUPs / tparams.NumProcs );
/* No longer reporting per CPU number */
/* *GUPs /= NumProcs; */
}
/* distribute result to all nodes */
MPI_Bcast( GUPs, 1, MPI_INT, 0, MPI_COMM_WORLD );
/* Verification phase */
/* Begin timing here */
CPUTime = -CPUSEC();
RealTime = -RTSEC();
if (PowerofTwo) {
HPCC_Power2NodesMPIRandomAccessCheck_LCG( tparams, &NumErrors );
}
else {
HPCC_AnyNodesMPIRandomAccessCheck_LCG( tparams, &NumErrors );
}
#ifdef LONG_IS_64BITS
MPI_Reduce( &NumErrors, &GlbNumErrors, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_WORLD );
#else
/* MPI 1.1 standard (obsolete at this point) doesn't define MPI_SUM
to work on `long long':
http://www.mpi-forum.org/docs/mpi-11-html/node78.html and
therefore LAM 6.5.6 chooses not to implement it (even though there
is code for it in LAM and for other reductions work OK,
e.g. MPI_MAX). MPICH 1.2.5 doesn't complain about MPI_SUM but it
doesn't have MPI_UNSIGNED_LONG_LONG (but has MPI_LONG_LONG_INT):
http://www.mpi-forum.org/docs/mpi-20-html/node84.htm So I need to
create a trivial summation operation. */
MPI_Op_create( Sum64, 1, &sum64 );
MPI_Reduce( &NumErrors, &GlbNumErrors, 1, tparams.dtype64, sum64, 0, MPI_COMM_WORLD );
MPI_Op_free( &sum64 );
#endif
/* End timed section */
CPUTime += CPUSEC();
RealTime += RTSEC();
if(tparams.MyProc == 0){
params->MPIRandomAccess_LCG_CheckTime = RealTime;
fprintf( outFile, "Verification: CPU time used = %.6f seconds\n", CPUTime);
fprintf( outFile, "Verification: Real time used = %.6f seconds\n", RealTime);
fprintf( outFile, "Found " FSTR64 " errors in " FSTR64 " locations (%s).\n",
GlbNumErrors, tparams.TableSize, (GlbNumErrors <= 0.01*tparams.TableSize) ?
"passed" : "failed");
if (GlbNumErrors > 0.01*tparams.TableSize) params->Failure = 1;
params->MPIRandomAccess_LCG_Errors = (s64Int)GlbNumErrors;
params->MPIRandomAccess_LCG_ErrorsFraction = (double)GlbNumErrors / (double)tparams.TableSize;
params->MPIRandomAccess_LCG_Algorithm = HPCC_RA_ALGORITHM;
}
/* End verification phase */
/* Deallocate memory (in reverse order of allocation which should
help fragmentation) */
HPCC_free( HPCC_Table );
free( tparams.finish_req );
free( tparams.finish_statuses );
failed_table:
if (0 == tparams.MyProc) if (outFile != stderr) fclose( outFile );
MPI_Barrier( MPI_COMM_WORLD );
return 0;
}
|