1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
/*
* HT Editor
* analy_x86.cc
*
* Copyright (C) 1999-2002 Sebastian Biallas (sb@biallas.net)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <string.h>
#include "analy_register.h"
#include "analy_x86.h"
#include "htdebug.h"
#include "snprintf.h"
#include "x86dis.h"
bool AddressX86Flat32::add(int offset)
{
// check for overflow
if ((int)offset < 0) {
if (addr+offset > addr) return false;
} else {
if (addr+offset < addr) return false;
}
addr+=offset;
return true;
}
int AddressX86Flat32::byteSize()
{
return 4;
}
int AddressX86Flat32::compareTo(const Object *obj) const
{
assert(getObjectID() == obj->getObjectID());
if (addr > ((AddressX86Flat32 *)obj)->addr) return 1;
if (addr < ((AddressX86Flat32 *)obj)->addr) return -1;
return 0;
}
int AddressX86Flat32::compareDelinear(Address *to)
{
assert(getObjectID() == to->getObjectID());
uint32 da = delinearize(addr);
uint32 db = delinearize(((AddressFlat32 *)to)->addr);
if (da > db) return 1;
if (da < db) return -1;
return 0;
}
bool AddressX86Flat32::difference(int &result, Address *to)
{
if (getObjectID() == to->getObjectID()) {
result = addr-((AddressX86Flat32 *)to)->addr;
return true;
} else {
return false;
}
}
AddressX86Flat32 *AddressX86Flat32::clone() const
{
return new AddressX86Flat32(*this);
}
void AddressX86Flat32::getFromArray(const byte *array)
{
UNALIGNED_MOVE(addr, *(uint32*)array);
}
void AddressX86Flat32::getFromCPUAddress(CPU_ADDR *ca)
{
addr = ca->addr32.offset;
}
bool AddressX86Flat32::getFromUInt64(uint64 u)
{
if (u <= 0xffffffff) {
addr = u;
return true;
} else {
return false;
}
}
void AddressX86Flat32::load(ObjectStream &s)
{
GET_INT32X(s, addr);
}
ObjectID AddressX86Flat32::getObjectID() const
{
return ATOM_ADDRESS_X86_FLAT_32;
}
int AddressX86Flat32::parseString(const char *s, int length, Analyser *a)
{
return 0;
}
void AddressX86Flat32::putIntoArray(byte *array) const
{
UNALIGNED_MOVE(*(uint32*)array, addr);
}
void AddressX86Flat32::putIntoCPUAddress(CPU_ADDR *ca) const
{
ca->addr32.offset = addr;
}
bool AddressX86Flat32::putIntoUInt64(uint64 &u) const
{
u = addr;
return true;
}
void AddressX86Flat32::store(ObjectStream &s) const
{
PUT_INT32X(s, addr);
}
int AddressX86Flat32::stringify(char *s, int max_length, int format) const
{
const char *formats[] = {
"%s%x%s",
"%s%8x%s",
"%s%08x%s",
"",
"%s%X%s",
"%s%8X%s",
"%s%08X%s",
"",
};
return ht_snprintf(s, max_length, formats[format&7], (format & ADDRESS_STRING_FORMAT_ADD_0X) ? "0x":"", addr, (format & ADDRESS_STRING_FORMAT_ADD_H) ? "h":"");
}
int AddressX86Flat32::stringSize() const
{
return 8;
}
AddressX86_1632::AddressX86_1632(uint16 Seg, uint32 Addr)
{
seg = Seg;
addr = Addr;
}
bool AddressX86_1632::add(int offset)
{
// check for overflow
if ((int)offset < 0) {
if (addr+offset > addr) return false;
} else {
if (addr+offset < addr) return false;
}
addr+=offset;
return true;
}
int AddressX86_1632::byteSize()
{
return 6;
}
int AddressX86_1632::compareTo(const Object *obj) const
{
assert(getObjectID() == obj->getObjectID());
if (seg > ((AddressX86_1632 *)obj)->seg) return 1;
if (seg < ((AddressX86_1632 *)obj)->seg) return -1;
if (addr > ((AddressX86_1632 *)obj)->addr) return 1;
if (addr < ((AddressX86_1632 *)obj)->addr) return -1;
return 0;
}
int AddressX86_1632::compareDelinear(Address *to)
{
assert(getObjectID() == to->getObjectID());
uint32 s1 = delinearize(seg);
uint32 s2 = delinearize(((AddressX86_1632 *)to)->seg);
if (s1 > s2) return 1;
if (s1 < s2) return -1;
uint32 a1 = delinearize(addr);
uint32 a2 = delinearize(((AddressX86_1632 *)to)->addr);
if (a1 > a2) return 1;
if (a1 < a2) return -1;
return 0;
}
bool AddressX86_1632::difference(int &result, Address *to)
{
if ((getObjectID() == to->getObjectID()) && (seg == ((AddressX86_1632 *)to)->seg)) {
result = addr-((AddressX86_1632 *)to)->addr;
return true;
} else {
return false;
}
}
AddressX86_1632 *AddressX86_1632::clone() const
{
return new AddressX86_1632(*this);
}
void AddressX86_1632::getFromArray(const byte *array)
{
UNALIGNED_MOVE(addr, *(uint32*)array);
UNALIGNED_MOVE(seg, *(uint16*)(array+sizeof addr));
}
void AddressX86_1632::getFromCPUAddress(CPU_ADDR *ca)
{
seg = ca->addr32.seg;
addr = ca->addr32.offset;
}
bool AddressX86_1632::getFromUInt64(uint64 u)
{
return false;
}
void AddressX86_1632::load(ObjectStream &s)
{
GET_INT16X(s, seg);
GET_INT16X(s, addr);
}
ObjectID AddressX86_1632::getObjectID() const
{
return ATOM_ADDRESS_X86_1632;
}
int AddressX86_1632::parseString(const char *s, int length, Analyser *a)
{
return 0;
}
void AddressX86_1632::putIntoArray(byte *array) const
{
UNALIGNED_MOVE(*(uint32*)array, addr);
UNALIGNED_MOVE(*(uint16*)(array+sizeof addr), seg);
}
void AddressX86_1632::putIntoCPUAddress(CPU_ADDR *ca) const
{
ca->addr32.seg = seg;
ca->addr32.offset = addr;
}
bool AddressX86_1632::putIntoUInt64(uint64 &u) const
{
return false;
}
void AddressX86_1632::store(ObjectStream &s) const
{
PUT_INT16X(s, seg);
PUT_INT16X(s, addr);
}
int AddressX86_1632::stringify(char *s, int max_length, int format) const
{
const char *formats[] = {
"%s%x%s:%s%x%s",
"%s%4x%s:%s%08x%s",
"%s%04x%s:%s%08x%s",
"",
"%s%X%s:%s%X%s",
"%s%4X%s:%s%08X%s",
"%s%04X%s:%s%08X%s",
"",
};
return ht_snprintf(s, max_length, formats[format&7],
(format & ADDRESS_STRING_FORMAT_ADD_0X) ? "0x":"", seg, (format & ADDRESS_STRING_FORMAT_ADD_H) ? "h":"",
(format & ADDRESS_STRING_FORMAT_ADD_0X) ? "0x":"", addr, (format & ADDRESS_STRING_FORMAT_ADD_H) ? "h":"");
}
int AddressX86_1632::stringSize() const
{
return 14;
}
/*
*
*/
AddressX86_1616::AddressX86_1616(uint16 Seg, uint16 Addr)
{
seg = Seg;
addr = Addr;
}
bool AddressX86_1616::add(int offset)
{
// check for overflow
if ((int)offset < 0) {
if (addr+offset > addr) return false;
} else {
if (addr+offset < addr) return false;
}
addr+=offset;
return true;
}
int AddressX86_1616::byteSize()
{
return 4;
}
int AddressX86_1616::compareTo(const Object *obj) const
{
assert(getObjectID() == obj->getObjectID());
if (seg > ((AddressX86_1616 *)obj)->seg) return 1;
if (seg < ((AddressX86_1616 *)obj)->seg) return -1;
if (addr > ((AddressX86_1616 *)obj)->addr) return 1;
if (addr < ((AddressX86_1616 *)obj)->addr) return -1;
return 0;
}
int AddressX86_1616::compareDelinear(Address *to)
{
assert(getObjectID() == to->getObjectID());
uint32 s1 = delinearize(seg);
uint32 s2 = delinearize(((AddressX86_1616 *)to)->seg);
if (s1 > s2) return 1;
if (s1 < s2) return -1;
uint32 a1 = delinearize(addr);
uint32 a2 = delinearize(((AddressX86_1616 *)to)->addr);
if (a1 > a2) return 1;
if (a1 < a2) return -1;
return 0;
}
bool AddressX86_1616::difference(int &result, Address *to)
{
if ((getObjectID() == to->getObjectID()) && (seg == ((AddressX86_1616 *)to)->seg)) {
result = (int)addr-(int)((AddressX86_1616 *)to)->addr;
return true;
} else {
return false;
}
}
AddressX86_1616 *AddressX86_1616::clone() const
{
return new AddressX86_1616(*this);
}
void AddressX86_1616::getFromArray(const byte *array)
{
UNALIGNED_MOVE(addr, *(uint16*)array);
UNALIGNED_MOVE(seg, *(uint16*)(array+sizeof addr));
}
bool AddressX86_1616::getFromUInt64(uint64 u)
{
return false;
}
void AddressX86_1616::getFromCPUAddress(CPU_ADDR *ca)
{
seg = ca->addr32.seg;
addr = ca->addr32.offset;
}
void AddressX86_1616::load(ObjectStream &s)
{
GET_INT16X(s, seg);
GET_INT16X(s, addr);
}
ObjectID AddressX86_1616::getObjectID() const
{
return ATOM_ADDRESS_X86_1616;
}
int AddressX86_1616::parseString(const char *s, int length, Analyser *a)
{
return 0;
}
void AddressX86_1616::putIntoArray(byte *array) const
{
UNALIGNED_MOVE(*(uint16*)array, addr);
UNALIGNED_MOVE(*(uint16*)(array+sizeof seg), seg);
}
void AddressX86_1616::putIntoCPUAddress(CPU_ADDR *ca) const
{
ca->addr32.seg = seg;
ca->addr32.offset = addr;
}
bool AddressX86_1616::putIntoUInt64(uint64 &u) const
{
return false;
}
void AddressX86_1616::store(ObjectStream &s) const
{
PUT_INT16X(s, seg);
PUT_INT16X(s, addr);
}
int AddressX86_1616::stringify(char *s, int max_length, int format) const
{
const char *formats[] = {
"%s%x%s:%s%04x%s",
"%s%4x%s:%s%04x%s",
"%s%04x%s:%s%04x%s",
"",
"%s%X%s:%s%04X%s",
"%s%4X%s:%s%04X%s",
"%s%04X%s:%s%04X%s",
"",
};
return ht_snprintf(s, max_length, formats[format&7],
(format & ADDRESS_STRING_FORMAT_ADD_0X) ? "0x":"", seg, (format & ADDRESS_STRING_FORMAT_ADD_H) ? "h":"",
(format & ADDRESS_STRING_FORMAT_ADD_0X) ? "0x":"", addr, (format & ADDRESS_STRING_FORMAT_ADD_H) ? "h":"");
}
int AddressX86_1616::stringSize() const
{
return 9;
}
void AnalyX86Disassembler::init(Analyser *A, int f)
{
flags = f;
createUnasm();
AnalyDisassembler::init(A);
}
/*
*
*/
void AnalyX86Disassembler::load(ObjectStream &f)
{
GET_INT32X(f, flags);
AnalyDisassembler::load(f);
}
/*
*
*/
ObjectID AnalyX86Disassembler::getObjectID() const
{
return ATOM_ANALY_X86;
}
Address *AnalyX86Disassembler::createAddress(uint16 segment, uint64 offset)
{
if (flags & (ANALYX86DISASSEMBLER_FLAGS_FLAT64 | ANALYX86DISASSEMBLER_FLAGS_AMD64)) {
return new AddressFlat64(offset);
} else if (flags & ANALYX86DISASSEMBLER_FLAGS_SEGMENTED) {
if (offset <= 0xffff) {
return new AddressX86_1616(segment, offset);
} else {
// FIXME
// return new AddressX86_1632(segment, offset);
return new AddressX86_1616(segment, offset);
}
} else {
return new AddressX86Flat32(offset);
}
}
void AnalyX86Disassembler::createUnasm()
{
if (flags & ANALYX86DISASSEMBLER_FLAGS_AMD64) {
disasm = new x86_64dis();
} else {
if (flags & ANALYX86DISASSEMBLER_FLAGS_VXD_X86DIS) {
if (flags & ANALYX86DISASSEMBLER_FLAGS_16BIT) {
disasm = new x86dis_vxd(X86_OPSIZE16, X86_ADDRSIZE16);
} else {
disasm = new x86dis_vxd(X86_OPSIZE32, X86_ADDRSIZE32);
}
} else {
if (flags & ANALYX86DISASSEMBLER_FLAGS_16BIT) {
disasm = new x86dis(X86_OPSIZE16, X86_ADDRSIZE16);
} else {
disasm = new x86dis(X86_OPSIZE32, X86_ADDRSIZE32);
}
}
}
}
uint16 AnalyX86Disassembler::getSegment(Address *addr)
{
if (addr->getObjectID() == ATOM_ADDRESS_X86_1616) {
return ((AddressX86_1616*)addr)->seg;
} else if (addr->getObjectID() == ATOM_ADDRESS_X86_1632) {
return ((AddressX86_1632*)addr)->seg;
} else {
assert(0);
return 0;
}
}
/*
*
*/
Address *AnalyX86Disassembler::branchAddr(OPCODE *opcode, branch_enum_t branchtype, bool examine)
{
Address *addr;
x86dis_insn *o = (x86dis_insn*)opcode;
assert(o->op[1].type == X86_OPTYPE_EMPTY);
switch (o->op[0].type) {
case X86_OPTYPE_IMM: {
uint16 seg = 0;
if (flags & ANALYX86DISASSEMBLER_FLAGS_SEGMENTED) {
seg = getSegment(analy->addr);
}
addr = createAddress(seg, o->op[0].imm);
return addr;
}
case X86_OPTYPE_FARPTR:
if (flags & ANALYX86DISASSEMBLER_FLAGS_SEGMENTED) {
addr = createAddress(o->op[0].farptr.seg, o->op[0].farptr.offset);
} else {
break;
}
return addr;
case X86_OPTYPE_MEM: {
taccess access;
addr = NULL;
if (o->op[0].mem.hasdisp) {
addr = createAddress(0, o->op[0].mem.disp);
access.type = acread;
access.indexed = (o->op[0].mem.base != X86_REG_NO) || (o->op[0].mem.index != X86_REG_NO);
access.size = o->op[0].size;
} else {
break;
}
if (examine && analy->validAddress(addr, scvalid)) {
analy->dataAccess(addr, access);
xref_enum_t xref;
switch (branchtype) {
case br_jXX:
case br_jump:
xref = xrefijump;
break;
case br_call:
xref = xreficall;
break;
default: {assert(0);}
}
analy->addXRef(addr, analy->addr, xref);
}
if (examine) {
delete addr;
break;
} else {
return addr;
}
}
default: break;
}
return new InvalidAddress();
}
/*
*
*/
void AnalyX86Disassembler::examineOpcode(OPCODE *opcode)
{
x86dis_insn *o = (x86dis_insn*)opcode;
for (int i = 0; i < 5; i++) {
x86_insn_op *op = &o->op[i];
Address *addr = NULL;
taccess access;
xref_enum_t xref = xrefoffset;
switch (op->type) {
case X86_OPTYPE_IMM:
access.type = acoffset;
access.indexed = false;
addr = createAddress(0, op->imm);
break;
case X86_OPTYPE_FARPTR:
if (flags & ANALYX86DISASSEMBLER_FLAGS_SEGMENTED) {
addr = createAddress(op->farptr.seg, op->farptr.offset);
}
access.type = acoffset;
access.indexed = false;
break;
case X86_OPTYPE_MEM:
if (op->mem.hasdisp) {
addr = createAddress(0, op->mem.disp);
access.type = acread;
access.indexed = (op->mem.base != X86_REG_NO) || (op->mem.index != X86_REG_NO);
access.size = op->size;
if (strcmp(o->name, "cmp")==0 || strcmp(o->name, "test")==0 || strcmp(o->name, "push")==0) {
xref = xrefread;
} else {
xref = (i==0) ? xrefwrite : xrefread;
}
}
break;
default: continue;
}
if (addr) {
if (analy->validAddress(addr, scvalid)) {
analy->dataAccess(addr, access);
analy->addXRef(addr, analy->addr, xref);
}
delete addr;
}
}
}
/*
*
*/
branch_enum_t AnalyX86Disassembler::isBranch(OPCODE *opcode)
{
x86dis_insn *o = (x86dis_insn*)opcode;
const char *opcode_str = o->name;
if (opcode_str[0] == '~') {
opcode_str++;
}
if (opcode_str[0] == '|') {
opcode_str++;
}
if (opcode_str[0]=='j') {
if (opcode_str[1]=='m') return br_jump; else return br_jXX;
} else if ((opcode_str[0]=='l') && (opcode_str[1]=='o') && (opcode_str[2]=='o')) {
// loop opcode will be threated like a jXX
return br_jXX;
} else if ((opcode_str[0]=='c') && (opcode_str[1]=='a')) {
return br_call;
} else if ((opcode_str[0]=='r') && (opcode_str[1]=='e')) {
return br_return;
} else return br_nobranch;
}
/*
*
*/
void AnalyX86Disassembler::store(ObjectStream &f) const
{
PUT_INT32X(f, flags);
AnalyDisassembler::store(f);
}
|