File: features.py

package info (click to toggle)
htseq 2.0.9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 103,476 kB
  • sloc: python: 6,280; sh: 211; cpp: 147; makefile: 80
file content (473 lines) | stat: -rw-r--r-- 17,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
'''GFF format utilities'''
import itertools
import warnings
import os
import shlex
import sys

import HTSeq
from HTSeq._HTSeq import *
from HTSeq.utils import FileOrSequence


# GFF regular expressions for cache
_re_attr_main = re.compile(r"\s*([^\s\=]+)[\s=]+(.*)")
_re_attr_empty = re.compile(r"^\s*$")
_re_gff_meta_comment = re.compile(r"##\s*(\S+)\s+(\S*)")



class GenomicFeature(object):
    """A genomic feature, i.e., an interval on a genome with metadata.

    At minimum, the following information should be provided by slots:

      name: a string identifying the feature (e.g., a gene symbol)
      type: a string giving the feature type (e.g., "gene", "exon")
      iv: a GenomicInterval object specifying the feature locus
    """

    def __init__(self, name, type_, interval):
        self.name = name
        self.type = sys.intern(type_)
        self.iv = interval

    def __repr__(self):
        return "<%s: %s '%s' at %s: %d -> %d (strand '%s')>" % \
            (self.__class__.__name__, self.type, self.name,
             self.iv.chrom, self.iv.start_d, self.iv.end_d, self.iv.strand)

    def __eq__(self, other):
        if not isinstance(other, GenomicFeature):
            return False
        return self.name == other.name and self.type == other.type and \
            self.iv == other.iv

    def __neq__(self, other):
        if not isinstance(other, GenomicFeature):
            return True
        return not self.__eq__(other)

    def __hash__(self):
        return (self.name, self.type, self.iv).__hash__()

    def get_gff_line(self, with_equal_sign=False):
        try:
            source = self.source
        except AttributeError:
            source = "."
        try:
            score = self.score
        except AttributeError:
            score = "."
        try:
            frame = self.frame
        except AttributeError:
            frame = "."
        try:
            attr = self.attr
        except AttributeError:
            attr = {'ID': self.name}
        if with_equal_sign:
            sep = "="
        else:
            sep = " "
        attr_str = '; '.join(
            ['%s%s\"%s\"' % (ak, sep, attr[ak]) for ak in attr])
        return "\t".join(str(a) for a in (self.iv.chrom, source,
                         self.type, self.iv.start + 1, self.iv.end, score,
                         self.iv.strand, frame, attr_str)) + "\n"







class GFF_Reader(FileOrSequence):
    """Parse a GFF file

    Pass the constructor either a file name or an iterator of lines of a
    GFF files. If a file name is specified, it may refer to a gzip compressed
    file.

    Iterating over the object then yields GenomicFeature objects.

    Args:
        filename_or_sequence: input file or iterator of lines
        end_included: whether the end coordinate of intervals is included in
          the interval itself. This is common in GTF but not the Python
          standard, hence this argument.
        gff_version: Which version of the GFF format to use (2 or 3). The None
          default has the following meaning. If the input is a filename, use
          version 2 if it ends with gtf or gtf.gz (case insensitive), else use
          version 3. If an iterator, use version 2 by default. Notice that GFF3
          does not use quotes in gene names et similia, while GTF does.
    """

    def __init__(self, filename_or_sequence, end_included=True, gff_version=None):
        super().__init__(filename_or_sequence)
        self.end_included = end_included
        self.metadata = {}
        if gff_version is None:
            self._guess_gff_version()

    def _guess_gff_version(self):
        if not self.fos_is_path:
            gff_version = 2
        else:
            fos = os.fspath(self.fos)
            if fos.lower().endswith((".gtf.gz", ".gtf.gzip", ".gtf")):
                gff_version = 2
            else:
                gff_version = 3
        self.gff_version = gff_version

    def __iter__(self):
        for line in super().__iter__():
            if isinstance(line, bytes):
                line = line.decode()
            if line == "\n":
                continue
            if line.startswith('#'):
                if line.startswith("##"):
                    mo = _re_gff_meta_comment.match(line)
                    if mo:
                        self.metadata[mo.group(1)] = mo.group(2)
                continue
            (seqname, source, feature, start, end, score,
             strand, frame, attributeStr) = line.split("\t", 8)
            (attr, name) = self.parse_GFF_attribute_string(
                    attributeStr,
                    True,
                    self.gff_version,
                    )
            iv = GenomicInterval(
                    seqname,
                    int(start) - 1, int(end) - 1 + int(self.end_included),
                    strand)
            f = GenomicFeature(name, feature, iv)
            if score != ".":
                score = float(score)
            if frame != ".":
                frame = int(frame)
            f.source = source
            f.score = score
            f.frame = frame
            f.attr = attr
            yield f

    @staticmethod
    def parse_GFF_attribute_string(
            attrStr,
            extra_return_first_value=False,
            gff_version=2,
        ):
        """Parses a GFF attribute string and returns it as a dictionary.
    
        If 'extra_return_first_value' is set, a pair is returned: the dictionary
        and the value of the first attribute. This might be useful if this is the
        ID.

        Args:
            attrStr: the GFF attribute string to parse
            extra_return_first_value: whether to return the pair explained above
            gff_version: which GFF format rules to use (2 or 3)
        """
        if attrStr.endswith("\n"):
            attrStr = attrStr[:-1]
        d = {}
        first_val = "_unnamed_"

        if gff_version == 2:
            iterator = quotesafe_split(attrStr.encode())
        else:
            # GFF3 does not care about quotes
            iterator = attrStr.encode().split(b';')

        for (i, attr) in enumerate(iterator):
            attr = attr.decode()
            if _re_attr_empty.match(attr):
                continue

            if (gff_version == 2) and (attr.count('"') not in (0, 2)):
                raise ValueError(
                    "The attribute string seems to contain mismatched quotes.")
            mo = _re_attr_main.match(attr)
            if not mo:
                raise ValueError("Failure parsing GFF attribute line")
            val = mo.group(2)

            # GFF3 does not split quotes
            if (gff_version == 2) and val.startswith('"') and val.endswith('"'):
                val = val[1:-1]
            d[sys.intern(mo.group(1))] = sys.intern(val)
            if extra_return_first_value and i == 0:
                first_val = val
        if extra_return_first_value:
            return (d, first_val)
        else:
            return d


def _parse_feature_query(feature_query):
    if '"' not in feature_query:
        raise ValueError('Invalid feature query')
    if '==' not in feature_query:
        raise ValueError('Invalid feature query')

    idx_quote1 = feature_query.find('"')
    idx_quote2 = feature_query.rfind('"')
    attr_name = feature_query[idx_quote1+1: idx_quote2]

    idx_equal = feature_query[:idx_quote1].find('==')
    attr_cat = feature_query[:idx_equal].strip()

    return {
        'attr_cat': attr_cat,
        'attr_name': attr_name,
        }


def make_feature_dict(
        feature_sequence,
        feature_type=None,
        feature_query=None,
        ):
    """Organize a sequence of Feature objects into a nested dictionary.

    Args:
        feature_sequence (iterable of Feature): A sequence of features, e.g. as
            obtained from GFF_reader('myfile.gtf')
        feature_type (string, sequence of strings, or None): If None, collect
            all features. If a string, restrict to only one type of features,
            e.g. 'exon' (this is the most common situation). If a sequence of
            strings, restrict to the types found in the sequence, e.g.
            ['gene', 'pseudogene']. Using a feature of strings is an uncommon
            need and can lead to a higher number of ambiguous alignments: only
            use if you know what you are doing. Even then, beware that this
            option is designed to work for feature types that are "peers" and
            not obviously overlapping, such as genes and pseudogenes. If you
            select nested features types (e.g. "gene" and "exon"), you are
            likely to end up with meaningless numbers.
        feature_query (string or None): If None, all features of the selected
            types will be collected. If a string, it has to be in the format:

        <feature_attribute> == <attr_value>

        e.g.

        'gene_id == "Fn1"'

        (note the double quotes inside).

        Then only that feature will be collected. Using this argument is more
        efficient than collecting all features and then pruning it down to a
        single one.

    Returns:
        dict with all the feature types as keys. Each value is again a dict,
        now of feature names. The values of this dict is a list of features.

    Example: Let's say you load the C. elegans GTF file from Ensembl and make a
    feature dict:

    >>> gff = HTSeq.GFF_Reader("Caenorhabditis_elegans.WS200.55.gtf.gz")
    >>> worm_features_dict = HTSeq.make_feature_dict(gff)

    (This command may take a few minutes to deal with the 430,000 features
    in the GTF file. Note that you may need a lot of RAM if you have millions
    of features.)

    Then, you can simply access, say, exon 0 of gene "F08E10.4" as follows:
    >>> worm_features_dict['exon']['F08E10.4'][0]
    <GenomicFeature: exon 'F08E10.4' at V: 17479353 -> 17479001 (strand '-')>
    """

    if feature_query is not None:
        feature_qdic = _parse_feature_query(feature_query)

    features = {}
    for f in feature_sequence:
        if any(ft in (None, f.type) for ft in feature_type):
            if f.type not in features:
                features[f.type] = {}
            res_ftype = features[f.type]

            if feature_query is not None:
                # Skip the features that don't even have the right attr
                if feature_qdic['attr_cat'] not in f.attr:
                    continue
                # Skip the ones with an attribute with a different name
                # from the query (e.g. other genes)
                if f.attr[feature_qdic['attr_cat']] != feature_qdic['attr_name']:
                    continue

            if f.name not in res_ftype:
                res_ftype[f.name] = [f]
            else:
                res_ftype[f.name].append(f)
    return features


def make_feature_genomicarrayofsets(
        feature_sequence,
        id_attribute,
        feature_type=None,
        feature_query=None,
        additional_attributes=None,
        stranded=False,
        verbose=False,
        add_chromosome_info=False,
        ):
    """Organize a sequence of Feature objects into a GenomicArrayOfSets.

    Args:
        feature_sequence (iterable of Feature): A sequence of features, e.g. as
            obtained from GFF_reader('myfile.gtf')
        id_attribute (string or sequence of strings): An attribute to use to
            identify the feature in the output data structures (e.g.
            'gene_id'). If this is a list, the combination of all those
            attributes, separated by colons (:), will be used as an identifier.
            For instance, ['gene_id', 'exon_number'] uniquely identifies
            specific exons.
        feature_type (string, sequence of strings, or None): If None, collect
            all features. If a string, restrict to only one type of features,
            e.g. 'exon'. If a sequence of strings, restrict to the types found
            in the sequence, e.g. 'gene' and 'pseudogene'
        feature_query (string or None): If None, all features of the selected
            types will be collected. If a string, it has to be in the format:

        <feature_attribute> == <attr_value>

        e.g.

        'gene_id == "Fn1"'

        (note the double quotes inside).

        Then only that feature will be collected. Using this argument is more
        efficient than collecting all features and then pruning it down to a
        single one.

        additional_attributes (list or None): A list of additional attributes
            to be collected into a separate dict for the same features, for
            instance ['gene_name']
        stranded (bool): Whether to keep strandedness information
        verbose (bool): Whether to output progress and error messages
        add_chromosome_info (bool): Whether to add chromosome information for
            each feature. If this option is True, the fuction appends at the
            end of the "additional_attributes" list a "Chromosome" attribute.

    Returns:
        dict with two keys, 'features' with the GenomicArrayOfSets populated
        with the features, and 'attributes' which is itself a dict with
        the id_attribute as keys and the additional attributes as values.

    Example: Let's say you load the C. elegans GTF file from Ensembl and make a
    feature dict:

    >>> gff = HTSeq.GFF_Reader("Caenorhabditis_elegans.WS200.55.gtf.gz")
    >>> worm_features = HTSeq.make_feature_genomicarrayofsets(gff)

    (This command may take a few minutes to deal with the 430,000 features
    in the GTF file. Note that you may need a lot of RAM if you have millions
    of features.)

    This function is related but distinct from HTSeq.make_feature_dict. This
    function is used in htseq-count and its barcoded twin to count gene
    expression because the output GenomicArrayofSets is very efficient. You
    can use it in performance-critical scans of GFF files.
    """

    def get_id_attr(f, id_attribute):
        '''Get feature id with a single or multiple attributes'''
        if isinstance(id_attribute, str):
            try:
                feature_id = f.attr[id_attribute]
            except KeyError:
                raise ValueError(
                        "Feature %s does not contain a '%s' attribute" %
                        (f.name, id_attribute))
        else:
            feature_id = []
            for id_attr in id_attribute:
                try:
                    feature_id.append(f.attr[id_attr])
                except KeyError:
                    raise ValueError(
                            "Feature %s does not contain a '%s' attribute" %
                            (f.name, id_attr))
            feature_id = ':'.join(feature_id)
        return feature_id

    if additional_attributes is None:
        additional_attributes = []

    if feature_query is not None:
        feature_qdic = _parse_feature_query(feature_query)

    features = HTSeq.GenomicArrayOfSets("auto", stranded)
    attributes = {}
    i = 0
    try:
        for f in feature_sequence:
            if any(ft in (None, f.type) for ft in feature_type):
                feature_id = get_id_attr(f, id_attribute)

                if stranded and f.iv.strand == ".":
                    raise ValueError(
                            "Feature %s at %s does not have strand information but you are "
                            "using stranded mode. Try with unstrnded mode." %
                            (f.name, f.iv))

                if feature_query is not None:
                    # Skip the features that don't even have the right attr
                    if feature_qdic['attr_cat'] not in f.attr:
                        continue
                    # Skip the ones with an attribute with a different name
                    # from the query (e.g. other genes)
                    if f.attr[feature_qdic['attr_cat']] != feature_qdic['attr_name']:
                        continue

                features[f.iv] += feature_id
                attributes[feature_id] = [
                        f.attr[attr] if attr in f.attr else ''
                        for attr in additional_attributes]
                if add_chromosome_info:
                    attributes[feature_id] += [f.iv.chrom]

            i += 1
            if i % 100000 == 0 and verbose:
                if hasattr(feature_sequence, 'get_line_number_string'):
                    msg = "{:d} GFF lines processed.".format(i)
                else:
                    msg = "{:d} features processed.".format(i)
                sys.stderr.write(msg+'\n')
                sys.stderr.flush()
    except(KeyError, ValueError):
        if verbose:
            if hasattr(feature_sequence, 'get_line_number_string'):
                msg = "Error processing GFF file ({:}):".format(
                    feature_sequence.get_line_number_string())
            else:
                msg = "Error processing feature sequence ({:}):".format(
                    str(i+1))
            sys.stderr.write(msg+'\n')
        raise

    if verbose:
        if hasattr(feature_sequence, 'get_line_number_string'):
            msg = "{:d} GFF lines processed.".format(i)
        else:
            msg = "{:d} features processed.".format(i)
        sys.stderr.write(msg+"\n")
        sys.stderr.flush()

    if add_chromosome_info:
        additional_attributes.append('Chromosome')

    return {
        'features': features,
        'attributes': attributes,
        }