File: count_with_barcodes.py

package info (click to toggle)
htseq 2.0.9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 103,476 kB
  • sloc: python: 6,280; sh: 211; cpp: 147; makefile: 80
file content (746 lines) | stat: -rw-r--r-- 27,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
import sys
import argparse
from collections import Counter, defaultdict
import operator
import itertools
import warnings
import traceback
import os.path
import multiprocessing
import numpy as np
import pysam

import HTSeq
from HTSeq.scripts.utils import (
    UnknownChrom,
    my_showwarning,
    invert_strand,
    _write_output,
)


def correct_barcodes(counts, hamming=1):
    '''Correct barcodes, usually UMIs.

    Notice: This function does not use recursive correction. Recursion sounds
    great in theory, but due to experimental corner cases it can lead to
    overcorrection and loss of signal.
    '''
    if hamming == 0:
        return

    # Count reads from all feature per barcode, and prepare to oder
    n_reads = Counter({key: sum(val.values()) for key, val in counts.items()})

    # Order by counts, from most to least
    order = [umi for (umi, _) in n_reads.most_common()]

    # Get close Hamming distances, and aggregate them into higher count ones
    umi_vectors = np.array([list(x) for x in order])
    idx_left = list(range(len(order)))
    while idx_left:
        i = idx_left.pop(0)
        vi = ''.join(umi_vectors[i])
        # Distance from all remaining barcodes
        dis = (umi_vectors[i] != umi_vectors[idx_left]).sum(axis=1)
        # Get indices of barcodes within reach
        idx = (dis <= hamming).nonzero()[0]
        js = [idx_left[idxi] for idxi in idx]
        for j in js:
            # Merge barcode counts into higher count one
            vj = ''.join(umi_vectors[j])
            counts[vi].update(counts.pop(vj))
        # Shorten list of remaining UMIs
        idx_left = [j for j in idx_left if j not in js]


def count_reads_with_barcodes(
        sam_filename,
        features,
        feature_attr,
        order,
        max_buffer_size,
        stranded,
        overlap_mode,
        multimapped_mode,
        secondary_alignment_mode,
        supplementary_alignment_mode,
        feature_type,
        id_attribute,
        additional_attributes,
        quiet,
        minaqual,
        samout_format,
        samout_filename,
        cb_tag,
        ub_tag,
        correct_ub_distance,
        ):

    def write_to_samout(r, assignment, samoutfile, template=None):
        if samoutfile is None:
            return
        if not pe_mode:
            r = (r,)
        for read in r:
            if read is not None:
                read.optional_fields.append(('XF', assignment))
                if template is not None:
                    samoutfile.write(read.to_pysam_AlignedSegment(template))
                elif samout_format in ('SAM', 'sam'):
                    samoutfile.write(read.get_sam_line() + "\n")
                else:
                    raise ValueError(
                        'BAM/SAM output: no template and not a test SAM file',
                    )

    def identify_barcodes(r):
        '''Identify barcode from the read or pair (both must have the same)'''
        if not pe_mode:
            r = (r,)

        # If either cell or UMI barcode doesn't exist, just raise exception
        has_cb_tag = False
        has_ub_tag = False
        for read in r:
            if read is not None:
                # If tags have not been found, then try to find it
                if not has_cb_tag:
                    has_cb_tag = read.has_optional_field(cb_tag)
                if not has_ub_tag:
                    has_ub_tag = read.has_optional_field(ub_tag)
        if not has_cb_tag or not has_ub_tag:
            raise Exception("Missing cell or UMI barcode")

        # cell, UMI
        barcodes = [None, None]
        nbar = 0
        for read in r:
            if read is not None:
                for tag, val in read.optional_fields:
                    if tag == cb_tag:
                        barcodes[0] = val
                        nbar += 1
                        if nbar == 2:
                            return barcodes
                    elif tag == ub_tag:
                        barcodes[1] = val
                        nbar += 1
                        if nbar == 2:
                            return barcodes
        return barcodes

    try:
        if sam_filename == "-":
            read_seq_file = HTSeq.BAM_Reader(sys.stdin)
        else:
            read_seq_file = HTSeq.BAM_Reader(sam_filename)

        # Get template for output BAM
        if samout_filename is None:
            template = None
            samoutfile = None
        elif samout_format in ('bam', 'BAM'):
            template = read_seq_file.get_template()
            samoutfile = pysam.AlignmentFile(
                    samout_filename, 'wb',
                    template=template,
                    )
        elif (samout_format in ('sam', 'SAM')) and \
                hasattr(read_seq_file, 'get_template'):
            template = read_seq_file.get_template()
            samoutfile = pysam.AlignmentFile(
                    samout_filename, 'w',
                    template=template,
                    )
        else:
            template = None
            samoutfile = open(samout_filename, 'w')

        read_seq_iter = iter(read_seq_file)
        # Catch empty BAM files
        try:
            first_read = next(read_seq_iter)
            pe_mode = first_read.paired_end
        # FIXME: catchall can hide subtle bugs
        except:
            first_read = None
            pe_mode = False
        if first_read is not None:
            read_seq = itertools.chain([first_read], read_seq_iter)
        else:
            read_seq = []
    except:
        sys.stderr.write(
            "Error occured when reading beginning of SAM/BAM file.\n")
        raise

    # CIGAR match characters (including alignment match, sequence match, and
    # sequence mismatch
    com = ('M', '=', 'X')

    try:
        if pe_mode:
            if ((supplementary_alignment_mode == 'ignore') and
               (secondary_alignment_mode == 'ignore')):
                primary_only = True
            else:
                primary_only = False
            if order == "name":
                read_seq = HTSeq.pair_SAM_alignments(
                        read_seq,
                        primary_only=primary_only)
            elif order == "pos":
                read_seq = HTSeq.pair_SAM_alignments_with_buffer(
                        read_seq,
                        max_buffer_size=max_buffer_size,
                        primary_only=primary_only)
            else:
                raise ValueError("Illegal order specified.")

        # The nesting is cell barcode, UMI, feature
        counts = defaultdict(lambda: defaultdict(Counter))
        i = 0
        for r in read_seq:
            if i > 0 and i % 100000 == 0 and not quiet:
                sys.stderr.write(
                    "%d alignment record%s processed.\n" %
                    (i, "s" if not pe_mode else " pairs"))
                sys.stderr.flush()

            i += 1

            try:
                cb, ub = identify_barcodes(r)
            except:
                # Happens when cb or ub is not found
                write_to_samout(
                    r, "__too_low_aQual", samoutfile,
                    template)
                continue

            if not pe_mode:
                if not r.aligned:
                    counts[cb][ub]['__not_aligned'] += 1
                    write_to_samout(
                            r, "__not_aligned", samoutfile,
                            template)
                    continue
                if ((secondary_alignment_mode == 'ignore') and
                   r.not_primary_alignment):
                    continue
                if ((supplementary_alignment_mode == 'ignore') and
                   r.supplementary):
                    continue
                try:
                    if r.optional_field("NH") > 1:
                        counts[cb][ub]['__alignment_not_unique'] += 1
                        write_to_samout(
                                r,
                                "__alignment_not_unique",
                                samoutfile,
                                template)
                        if multimapped_mode == 'none':
                            continue
                except KeyError:
                    pass
                if r.aQual < minaqual:
                    counts[cb][ub]['__too_low_aQual'] += 1
                    write_to_samout(
                            r, "__too_low_aQual", samoutfile,
                            template)
                    continue
                if stranded != "reverse":
                    iv_seq = (co.ref_iv for co in r.cigar if co.type in com
                              and co.size > 0)
                else:
                    iv_seq = (invert_strand(co.ref_iv)
                              for co in r.cigar if (co.type in com and
                                                    co.size > 0))
            else:
                if r[0] is not None and r[0].aligned:
                    if stranded != "reverse":
                        iv_seq = (co.ref_iv for co in r[0].cigar
                                  if co.type in com and co.size > 0)
                    else:
                        iv_seq = (invert_strand(co.ref_iv) for co in r[0].cigar
                                  if co.type in com and co.size > 0)
                else:
                    iv_seq = tuple()
                if r[1] is not None and r[1].aligned:
                    if stranded != "reverse":
                        iv_seq = itertools.chain(
                                iv_seq,
                                (invert_strand(co.ref_iv) for co in r[1].cigar
                                if co.type in com and co.size > 0))
                    else:
                        iv_seq = itertools.chain(
                                iv_seq,
                                (co.ref_iv for co in r[1].cigar
                                 if co.type in com and co.size > 0))
                else:
                    if (r[0] is None) or not (r[0].aligned):
                        write_to_samout(
                                r, "__not_aligned", samoutfile,
                                template)
                        counts[cb][ub]['__not_aligned'] += 1
                        continue
                if secondary_alignment_mode == 'ignore':
                    if (r[0] is not None) and r[0].not_primary_alignment:
                        continue
                    elif (r[1] is not None) and r[1].not_primary_alignment:
                        continue
                if supplementary_alignment_mode == 'ignore':
                    if (r[0] is not None) and r[0].supplementary:
                        continue
                    elif (r[1] is not None) and r[1].supplementary:
                        continue
                try:
                    if ((r[0] is not None and r[0].optional_field("NH") > 1) or
                       (r[1] is not None and r[1].optional_field("NH") > 1)):
                        write_to_samout(
                                r, "__alignment_not_unique", samoutfile,
                                template)
                        counts[cb][ub]['__alignment_not_unique'] += 1
                        if multimapped_mode == 'none':
                            continue
                except KeyError:
                    pass
                if ((r[0] and r[0].aQual < minaqual) or
                   (r[1] and r[1].aQual < minaqual)):
                    write_to_samout(
                            r, "__too_low_aQual", samoutfile,
                            template)
                    counts[cb][ub]['__too_low_aQual'] += 1
                    continue

            try:
                if overlap_mode == "union":
                    fs = set()
                    for iv in iv_seq:
                        if iv.chrom not in features.chrom_vectors:
                            raise UnknownChrom
                        for iv2, fs2 in features[iv].steps():
                            fs = fs.union(fs2)
                elif overlap_mode in ("intersection-strict",
                                      "intersection-nonempty"):
                    fs = None
                    for iv in iv_seq:
                        if iv.chrom not in features.chrom_vectors:
                            raise UnknownChrom
                        for iv2, fs2 in features[iv].steps():
                            if ((len(fs2) > 0) or
                               (overlap_mode == "intersection-strict")):
                                if fs is None:
                                    fs = fs2.copy()
                                else:
                                    fs = fs.intersection(fs2)
                else:
                    sys.exit("Illegal overlap mode.")

                if fs is None or len(fs) == 0:
                    write_to_samout(
                            r, "__no_feature", samoutfile,
                            template)
                    counts[cb][ub]['__no_feature'] += 1
                elif len(fs) > 1:
                    write_to_samout(
                            r, "__ambiguous[" + '+'.join(fs) + "]",
                            samoutfile,
                            template)
                    counts[cb][ub]['__ambiguous'] += 1
                else:
                    write_to_samout(
                            r, list(fs)[0], samoutfile,
                            template)

                if fs is not None and len(fs) > 0:
                    if multimapped_mode == 'none':
                        if len(fs) == 1:
                            counts[cb][ub][list(fs)[0]] += 1
                    elif multimapped_mode == 'all':
                        for fsi in list(fs):
                            counts[cb][ub][fsi] += 1
                    else:
                        sys.exit("Illegal multimap mode.")


            except UnknownChrom:
                write_to_samout(
                        r, "__no_feature", samoutfile,
                        template)
                counts[cb][ub]['__no_feature'] += 1

    except:
        sys.stderr.write(
            "Error occured when processing input (%s):\n" %
            (read_seq_file.get_line_number_string()))
        raise

    if not quiet:
        sys.stderr.write(
            "%d %s processed.\n" %
            (i, "alignments " if not pe_mode else "alignment pairs"))
        sys.stderr.flush()

    if samoutfile is not None:
        samoutfile.close()

    # A UMI could be mapped to more than one feature. We count the feature
    # with the highest number of reads. In case of ties, we discard the whole
    # UMI to be on the safe side (it should not happen anyway).
    cbs = sorted(counts.keys())
    counts_noumi = {}
    for cb in cbs:
        counts_cell = Counter()

        # Correct barcodes within a certain Hamming distance
        correct_barcodes(counts[cb], hamming=correct_ub_distance)

        for ub, udic in counts.pop(cb).items():
            # In case of a tie, do not increment either feature
            top = udic.most_common(2)
            if (len(top) == 2) and (top[0][1] == top[1][1]):
                continue
            counts_cell[top[0][0]] += 1
        counts_noumi[cb] = counts_cell

    return {
        'cell_barcodes': cbs,
        'counts': counts_noumi,
        }


def count_reads_in_features(
        sam_filename,
        gff_filename,
        order,
        max_buffer_size,
        stranded,
        overlap_mode,
        multimapped_mode,
        secondary_alignment_mode,
        supplementary_alignment_mode,
        feature_type,
        id_attribute,
        additional_attributes,
        add_chromosome_info,
        quiet,
        minaqual,
        samout,
        samout_format,
        output_delimiter,
        output_filename,
        counts_output_sparse,
        cb_tag,
        ub_tag,
        correct_ub_distance,
        ):
    '''Count reads in features, parallelizing by file'''

    if samout is not None:
        # Try to open samout file early in case any of them has issues
        if samout_format in ('SAM', 'sam'):
            with open(samout, 'w'):
                pass
        else:
            # We don't have a template if the input is stdin
            if sam_filename != '-':
                with pysam.AlignmentFile(sam_filename, 'r') as sf:
                    with pysam.AlignmentFile(samout, 'w', template=sf):
                        pass

    # Try to open samfiles to fail early in case any of them is not there
    if sam_filename != '-':
        with pysam.AlignmentFile(sam_filename, 'r') as sf:
            pass

    # Prepare features
    gff = HTSeq.GFF_Reader(gff_filename)
    feature_scan = HTSeq.make_feature_genomicarrayofsets(
        gff,
        id_attribute,
        feature_type=feature_type,
        additional_attributes=additional_attributes,
        stranded=stranded != 'no',
        verbose=not quiet,
        add_chromosome_info=add_chromosome_info,
        )
    features = feature_scan['features']
    attributes = feature_scan['attributes']
    feature_attr = sorted(attributes.keys())

    if len(feature_attr) == 0:
        sys.stderr.write(
            "Warning: No features of type '%s' found.\n" % feature_type)

    # Count reads
    results = count_reads_with_barcodes(
        sam_filename,
        features,
        feature_attr,
        order,
        max_buffer_size,
        stranded,
        overlap_mode,
        multimapped_mode,
        secondary_alignment_mode,
        supplementary_alignment_mode,
        feature_type,
        id_attribute,
        additional_attributes,
        quiet,
        minaqual,
        samout_format,
        samout,
        cb_tag,
        ub_tag,
        correct_ub_distance,
        )

    # Write output
    _write_output(
        results,
        results['cell_barcodes'],
        attributes,
        additional_attributes,
        output_filename,
        output_delimiter,
        False,
        sparse=counts_output_sparse,
        dtype=np.float32,
    )


def main():

    pa = argparse.ArgumentParser(
        add_help=False,
    )

    pa.add_argument(
            "--version", action="store_true",
            help='Show software version and exit')
    args, argv = pa.parse_known_args()

    # Version is the only case where the BAM and GTF files are optional
    if args.version:
        print(HTSeq.__version__)
        sys.exit()

    pa = argparse.ArgumentParser(
        parents=[pa],
        description="This script takes one alignment file in SAM/BAM " +
        "format and a feature file in GFF format and calculates for each feature " +
        "the number of reads mapping to it, accounting for barcodes. See " +
        "http://htseq.readthedocs.io/en/master/count.html for details.",
        epilog="Written by Simon Anders (sanders@fs.tum.de), " +
        "European Molecular Biology Laboratory (EMBL) and Fabio Zanini " +
        "(fabio.zanini@unsw.edu.au), UNSW Sydney. (c) 2010-2020. " +
        "Released under the terms of the GNU General Public License v3. " +
        "Please cite the following paper if you use this script: \n" +
        "    G. Putri et al. Analysing high-throughput sequencing data in " +
        "Python with HTSeq 2.0. Bioinformatics (2022). " +
        "https://doi.org/10.1093/bioinformatics/btac166.\n" +
        "Part of the 'HTSeq' framework, version %s." % HTSeq.__version__,
    )

    pa.add_argument(
            "samfilename", type=str,
            help="Path to the SAM/BAM file containing the barcoded, mapped " +
            "reads. If '-' is selected, read from standard input")

    pa.add_argument(
            "featuresfilename", type=str,
            help="Path to the GTF file containing the features")

    pa.add_argument(
            "-f", "--format", dest="samtype",
            choices=("sam", "bam", "auto"), default="auto",
            help="Type of <alignment_file> data. DEPRECATED: " +
            "file format is detected automatically. This option is ignored.")

    pa.add_argument(
            "-r", "--order", dest="order",
            choices=("pos", "name"), default="name",
            help="'pos' or 'name'. Sorting order of <alignment_file> (default: name). Paired-end sequencing " +
            "data must be sorted either by position or by read name, and the sorting order " +
            "must be specified. Ignored for single-end data.")

    pa.add_argument(
            "--max-reads-in-buffer", dest="max_buffer_size", type=int,
            default=30000000,
            help="When <alignment_file> is paired end sorted by position, " +
            "allow only so many reads to stay in memory until the mates are " +
            "found (raising this number will use more memory). Has no effect " +
            "for single end or paired end sorted by name")

    pa.add_argument(
            "-s", "--stranded", dest="stranded",
            choices=("yes", "no", "reverse"), default="yes",
            help="Whether the data is from a strand-specific assay. Specify 'yes', " +
            "'no', or 'reverse' (default: yes). " +
            "'reverse' means 'yes' with reversed strand interpretation")

    pa.add_argument(
            "-a", "--minaqual", type=int, dest="minaqual",
            default=10,
            help="Skip all reads with MAPQ alignment quality lower than the given " +
            "minimum value (default: 10). MAPQ is the 5th column of a SAM/BAM " +
            "file and its usage depends on the software used to map the reads.")

    pa.add_argument(
            "-t", "--type", type=str, dest="featuretype",
            action="append", default=["exon"],
            help="Feature type (3rd column in GTF file) to be used, all "
            + "features of other type are ignored (default, suitable for"
            + "Ensembl GTF files: exon). You can call this option multiple "
            + "times. Features of all specified types will be included. "
            + "E.g. to include both genes and pseudogenes you might use "
            + "-t gene -t pseudogene")

    pa.add_argument(
            "-i", "--idattr", type=str, dest="idattr",
            default="gene_id",
            help="GTF attribute to be used as feature ID (default, " +
            "suitable for Ensembl GTF files: gene_id)")

    pa.add_argument(
            "--additional-attr", type=str,
            action='append',
            default=[],
            help="Additional feature attributes (default: none, " +
            "suitable for Ensembl GTF files: gene_name). Use multiple times " +
            "for each different attribute")

    pa.add_argument(
            "--add-chromosome-info", action='store_true',
            help="Store information about the chromosome of each feature as " +
            "an additional attribute (e.g. colunm in the TSV output file).",
            )

    pa.add_argument(
            "-m", "--mode", dest="mode",
            choices=("union", "intersection-strict", "intersection-nonempty"),
            default="union",
            help="Mode to handle reads overlapping more than one feature " +
            "(choices: union, intersection-strict, intersection-nonempty; default: union)")

    pa.add_argument(
            "--nonunique", dest="nonunique", type=str,
            choices=("none", "all"), default="none",
            help="Whether to score reads that are not uniquely aligned " +
            "or ambiguously assigned to features")

    pa.add_argument(
            "--secondary-alignments", dest="secondary_alignments", type=str,
            choices=("score", "ignore"), default="ignore",
            help="Whether to score secondary alignments (0x100 flag)")

    pa.add_argument(
            "--supplementary-alignments", dest="supplementary_alignments", type=str,
            choices=("score", "ignore"), default="ignore",
            help="Whether to score supplementary alignments (0x800 flag)")

    pa.add_argument(
            "-o", "--samout", type=str, dest="samout",
            default=None,
            help="Write out all SAM alignment records into a" +
            "SAM/BAM file, annotating each line " +
            "with its feature assignment (as an optional field with tag 'XF')" +
            ". See the -p option to use BAM instead of SAM.")

    pa.add_argument(
            "-p", '--samout-format', type=str, dest='samout_format',
            choices=('SAM', 'BAM', 'sam', 'bam'), default='SAM',
            help="Format to use with the --samout option."
            )

    pa.add_argument(
            "-d", '--delimiter', type=str, dest='output_delimiter',
            default='\t',
            help="Column delimiter in output (default: TAB)."
            )
    pa.add_argument(
            "-c", '--counts_output', type=str, dest='output_filename',
            default='',
            help="TSV/CSV filename to output the counts to instead of stdout."
            )

    pa.add_argument(
            "--counts_output_sparse", action='store_true',
            help="Store the counts as a sparse matrix (mtx, h5ad, loom)."
            )

    pa.add_argument(
            '--cell-barcode', type=str, dest='cb_tag',
            default='CB',
            help='BAM tag used for the cell barcode (default compatible ' +
            'with 10X Genomics Chromium is CB).',
            )

    pa.add_argument(
            '--UMI', type=str, dest='ub_tag',
            default='UB',
            help='BAM tag used for the unique molecular identifier, also ' +
            'known as molecular barcode (default compatible ' +
            'with 10X Genomics Chromium is UB).',
            )

    pa.add_argument(
            '--correct-UMI-distance',
            type=int,
            choices=[0, 1, 2],
            dest='correct_ub_distance',
            default=0,
            help='Correct for sequencing errors in the UMI tag, based on ' +
            'Hamming distance. For each UMI, if another UMI with more reads ' +
            'within 1 or 2 mutations is found, merge this UMI\'s reads into ' +
            'the more popular one. The default is to not correct UMIs.',
    )

    pa.add_argument(
            "-q", "--quiet", action="store_true", dest="quiet",
            help="Suppress progress report")  # and warnings" )

    args = pa.parse_args()

    warnings.showwarning = my_showwarning
    try:
        count_reads_in_features(
                args.samfilename,
                args.featuresfilename,
                args.order,
                args.max_buffer_size,
                args.stranded,
                args.mode,
                args.nonunique,
                args.secondary_alignments,
                args.supplementary_alignments,
                args.featuretype,
                args.idattr,
                args.additional_attr,
                args.add_chromosome_info,
                args.quiet,
                args.minaqual,
                args.samout,
                args.samout_format,
                args.output_delimiter,
                args.output_filename,
                args.counts_output_sparse,
                args.cb_tag,
                args.ub_tag,
                args.correct_ub_distance,
                )
    except:
        sys.stderr.write("  %s\n" % str(sys.exc_info()[1]))
        sys.stderr.write("  [Exception type: %s, raised in %s:%d]\n" %
                         (sys.exc_info()[1].__class__.__name__,
                          os.path.basename(traceback.extract_tb(
                              sys.exc_info()[2])[-1][0]),
                          traceback.extract_tb(sys.exc_info()[2])[-1][1]))
        sys.exit(1)


if __name__ == "__main__":
    main()