1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
import sys
import argparse
from collections import Counter, defaultdict
import operator
import itertools
import warnings
import traceback
import os.path
import multiprocessing
import numpy as np
import pysam
import HTSeq
from HTSeq.scripts.utils import (
UnknownChrom,
my_showwarning,
invert_strand,
_write_output,
)
def correct_barcodes(counts, hamming=1):
'''Correct barcodes, usually UMIs.
Notice: This function does not use recursive correction. Recursion sounds
great in theory, but due to experimental corner cases it can lead to
overcorrection and loss of signal.
'''
if hamming == 0:
return
# Count reads from all feature per barcode, and prepare to oder
n_reads = Counter({key: sum(val.values()) for key, val in counts.items()})
# Order by counts, from most to least
order = [umi for (umi, _) in n_reads.most_common()]
# Get close Hamming distances, and aggregate them into higher count ones
umi_vectors = np.array([list(x) for x in order])
idx_left = list(range(len(order)))
while idx_left:
i = idx_left.pop(0)
vi = ''.join(umi_vectors[i])
# Distance from all remaining barcodes
dis = (umi_vectors[i] != umi_vectors[idx_left]).sum(axis=1)
# Get indices of barcodes within reach
idx = (dis <= hamming).nonzero()[0]
js = [idx_left[idxi] for idxi in idx]
for j in js:
# Merge barcode counts into higher count one
vj = ''.join(umi_vectors[j])
counts[vi].update(counts.pop(vj))
# Shorten list of remaining UMIs
idx_left = [j for j in idx_left if j not in js]
def count_reads_with_barcodes(
sam_filename,
features,
feature_attr,
order,
max_buffer_size,
stranded,
overlap_mode,
multimapped_mode,
secondary_alignment_mode,
supplementary_alignment_mode,
feature_type,
id_attribute,
additional_attributes,
quiet,
minaqual,
samout_format,
samout_filename,
cb_tag,
ub_tag,
correct_ub_distance,
):
def write_to_samout(r, assignment, samoutfile, template=None):
if samoutfile is None:
return
if not pe_mode:
r = (r,)
for read in r:
if read is not None:
read.optional_fields.append(('XF', assignment))
if template is not None:
samoutfile.write(read.to_pysam_AlignedSegment(template))
elif samout_format in ('SAM', 'sam'):
samoutfile.write(read.get_sam_line() + "\n")
else:
raise ValueError(
'BAM/SAM output: no template and not a test SAM file',
)
def identify_barcodes(r):
'''Identify barcode from the read or pair (both must have the same)'''
if not pe_mode:
r = (r,)
# If either cell or UMI barcode doesn't exist, just raise exception
has_cb_tag = False
has_ub_tag = False
for read in r:
if read is not None:
# If tags have not been found, then try to find it
if not has_cb_tag:
has_cb_tag = read.has_optional_field(cb_tag)
if not has_ub_tag:
has_ub_tag = read.has_optional_field(ub_tag)
if not has_cb_tag or not has_ub_tag:
raise Exception("Missing cell or UMI barcode")
# cell, UMI
barcodes = [None, None]
nbar = 0
for read in r:
if read is not None:
for tag, val in read.optional_fields:
if tag == cb_tag:
barcodes[0] = val
nbar += 1
if nbar == 2:
return barcodes
elif tag == ub_tag:
barcodes[1] = val
nbar += 1
if nbar == 2:
return barcodes
return barcodes
try:
if sam_filename == "-":
read_seq_file = HTSeq.BAM_Reader(sys.stdin)
else:
read_seq_file = HTSeq.BAM_Reader(sam_filename)
# Get template for output BAM
if samout_filename is None:
template = None
samoutfile = None
elif samout_format in ('bam', 'BAM'):
template = read_seq_file.get_template()
samoutfile = pysam.AlignmentFile(
samout_filename, 'wb',
template=template,
)
elif (samout_format in ('sam', 'SAM')) and \
hasattr(read_seq_file, 'get_template'):
template = read_seq_file.get_template()
samoutfile = pysam.AlignmentFile(
samout_filename, 'w',
template=template,
)
else:
template = None
samoutfile = open(samout_filename, 'w')
read_seq_iter = iter(read_seq_file)
# Catch empty BAM files
try:
first_read = next(read_seq_iter)
pe_mode = first_read.paired_end
# FIXME: catchall can hide subtle bugs
except:
first_read = None
pe_mode = False
if first_read is not None:
read_seq = itertools.chain([first_read], read_seq_iter)
else:
read_seq = []
except:
sys.stderr.write(
"Error occured when reading beginning of SAM/BAM file.\n")
raise
# CIGAR match characters (including alignment match, sequence match, and
# sequence mismatch
com = ('M', '=', 'X')
try:
if pe_mode:
if ((supplementary_alignment_mode == 'ignore') and
(secondary_alignment_mode == 'ignore')):
primary_only = True
else:
primary_only = False
if order == "name":
read_seq = HTSeq.pair_SAM_alignments(
read_seq,
primary_only=primary_only)
elif order == "pos":
read_seq = HTSeq.pair_SAM_alignments_with_buffer(
read_seq,
max_buffer_size=max_buffer_size,
primary_only=primary_only)
else:
raise ValueError("Illegal order specified.")
# The nesting is cell barcode, UMI, feature
counts = defaultdict(lambda: defaultdict(Counter))
i = 0
for r in read_seq:
if i > 0 and i % 100000 == 0 and not quiet:
sys.stderr.write(
"%d alignment record%s processed.\n" %
(i, "s" if not pe_mode else " pairs"))
sys.stderr.flush()
i += 1
try:
cb, ub = identify_barcodes(r)
except:
# Happens when cb or ub is not found
write_to_samout(
r, "__too_low_aQual", samoutfile,
template)
continue
if not pe_mode:
if not r.aligned:
counts[cb][ub]['__not_aligned'] += 1
write_to_samout(
r, "__not_aligned", samoutfile,
template)
continue
if ((secondary_alignment_mode == 'ignore') and
r.not_primary_alignment):
continue
if ((supplementary_alignment_mode == 'ignore') and
r.supplementary):
continue
try:
if r.optional_field("NH") > 1:
counts[cb][ub]['__alignment_not_unique'] += 1
write_to_samout(
r,
"__alignment_not_unique",
samoutfile,
template)
if multimapped_mode == 'none':
continue
except KeyError:
pass
if r.aQual < minaqual:
counts[cb][ub]['__too_low_aQual'] += 1
write_to_samout(
r, "__too_low_aQual", samoutfile,
template)
continue
if stranded != "reverse":
iv_seq = (co.ref_iv for co in r.cigar if co.type in com
and co.size > 0)
else:
iv_seq = (invert_strand(co.ref_iv)
for co in r.cigar if (co.type in com and
co.size > 0))
else:
if r[0] is not None and r[0].aligned:
if stranded != "reverse":
iv_seq = (co.ref_iv for co in r[0].cigar
if co.type in com and co.size > 0)
else:
iv_seq = (invert_strand(co.ref_iv) for co in r[0].cigar
if co.type in com and co.size > 0)
else:
iv_seq = tuple()
if r[1] is not None and r[1].aligned:
if stranded != "reverse":
iv_seq = itertools.chain(
iv_seq,
(invert_strand(co.ref_iv) for co in r[1].cigar
if co.type in com and co.size > 0))
else:
iv_seq = itertools.chain(
iv_seq,
(co.ref_iv for co in r[1].cigar
if co.type in com and co.size > 0))
else:
if (r[0] is None) or not (r[0].aligned):
write_to_samout(
r, "__not_aligned", samoutfile,
template)
counts[cb][ub]['__not_aligned'] += 1
continue
if secondary_alignment_mode == 'ignore':
if (r[0] is not None) and r[0].not_primary_alignment:
continue
elif (r[1] is not None) and r[1].not_primary_alignment:
continue
if supplementary_alignment_mode == 'ignore':
if (r[0] is not None) and r[0].supplementary:
continue
elif (r[1] is not None) and r[1].supplementary:
continue
try:
if ((r[0] is not None and r[0].optional_field("NH") > 1) or
(r[1] is not None and r[1].optional_field("NH") > 1)):
write_to_samout(
r, "__alignment_not_unique", samoutfile,
template)
counts[cb][ub]['__alignment_not_unique'] += 1
if multimapped_mode == 'none':
continue
except KeyError:
pass
if ((r[0] and r[0].aQual < minaqual) or
(r[1] and r[1].aQual < minaqual)):
write_to_samout(
r, "__too_low_aQual", samoutfile,
template)
counts[cb][ub]['__too_low_aQual'] += 1
continue
try:
if overlap_mode == "union":
fs = set()
for iv in iv_seq:
if iv.chrom not in features.chrom_vectors:
raise UnknownChrom
for iv2, fs2 in features[iv].steps():
fs = fs.union(fs2)
elif overlap_mode in ("intersection-strict",
"intersection-nonempty"):
fs = None
for iv in iv_seq:
if iv.chrom not in features.chrom_vectors:
raise UnknownChrom
for iv2, fs2 in features[iv].steps():
if ((len(fs2) > 0) or
(overlap_mode == "intersection-strict")):
if fs is None:
fs = fs2.copy()
else:
fs = fs.intersection(fs2)
else:
sys.exit("Illegal overlap mode.")
if fs is None or len(fs) == 0:
write_to_samout(
r, "__no_feature", samoutfile,
template)
counts[cb][ub]['__no_feature'] += 1
elif len(fs) > 1:
write_to_samout(
r, "__ambiguous[" + '+'.join(fs) + "]",
samoutfile,
template)
counts[cb][ub]['__ambiguous'] += 1
else:
write_to_samout(
r, list(fs)[0], samoutfile,
template)
if fs is not None and len(fs) > 0:
if multimapped_mode == 'none':
if len(fs) == 1:
counts[cb][ub][list(fs)[0]] += 1
elif multimapped_mode == 'all':
for fsi in list(fs):
counts[cb][ub][fsi] += 1
else:
sys.exit("Illegal multimap mode.")
except UnknownChrom:
write_to_samout(
r, "__no_feature", samoutfile,
template)
counts[cb][ub]['__no_feature'] += 1
except:
sys.stderr.write(
"Error occured when processing input (%s):\n" %
(read_seq_file.get_line_number_string()))
raise
if not quiet:
sys.stderr.write(
"%d %s processed.\n" %
(i, "alignments " if not pe_mode else "alignment pairs"))
sys.stderr.flush()
if samoutfile is not None:
samoutfile.close()
# A UMI could be mapped to more than one feature. We count the feature
# with the highest number of reads. In case of ties, we discard the whole
# UMI to be on the safe side (it should not happen anyway).
cbs = sorted(counts.keys())
counts_noumi = {}
for cb in cbs:
counts_cell = Counter()
# Correct barcodes within a certain Hamming distance
correct_barcodes(counts[cb], hamming=correct_ub_distance)
for ub, udic in counts.pop(cb).items():
# In case of a tie, do not increment either feature
top = udic.most_common(2)
if (len(top) == 2) and (top[0][1] == top[1][1]):
continue
counts_cell[top[0][0]] += 1
counts_noumi[cb] = counts_cell
return {
'cell_barcodes': cbs,
'counts': counts_noumi,
}
def count_reads_in_features(
sam_filename,
gff_filename,
order,
max_buffer_size,
stranded,
overlap_mode,
multimapped_mode,
secondary_alignment_mode,
supplementary_alignment_mode,
feature_type,
id_attribute,
additional_attributes,
add_chromosome_info,
quiet,
minaqual,
samout,
samout_format,
output_delimiter,
output_filename,
counts_output_sparse,
cb_tag,
ub_tag,
correct_ub_distance,
):
'''Count reads in features, parallelizing by file'''
if samout is not None:
# Try to open samout file early in case any of them has issues
if samout_format in ('SAM', 'sam'):
with open(samout, 'w'):
pass
else:
# We don't have a template if the input is stdin
if sam_filename != '-':
with pysam.AlignmentFile(sam_filename, 'r') as sf:
with pysam.AlignmentFile(samout, 'w', template=sf):
pass
# Try to open samfiles to fail early in case any of them is not there
if sam_filename != '-':
with pysam.AlignmentFile(sam_filename, 'r') as sf:
pass
# Prepare features
gff = HTSeq.GFF_Reader(gff_filename)
feature_scan = HTSeq.make_feature_genomicarrayofsets(
gff,
id_attribute,
feature_type=feature_type,
additional_attributes=additional_attributes,
stranded=stranded != 'no',
verbose=not quiet,
add_chromosome_info=add_chromosome_info,
)
features = feature_scan['features']
attributes = feature_scan['attributes']
feature_attr = sorted(attributes.keys())
if len(feature_attr) == 0:
sys.stderr.write(
"Warning: No features of type '%s' found.\n" % feature_type)
# Count reads
results = count_reads_with_barcodes(
sam_filename,
features,
feature_attr,
order,
max_buffer_size,
stranded,
overlap_mode,
multimapped_mode,
secondary_alignment_mode,
supplementary_alignment_mode,
feature_type,
id_attribute,
additional_attributes,
quiet,
minaqual,
samout_format,
samout,
cb_tag,
ub_tag,
correct_ub_distance,
)
# Write output
_write_output(
results,
results['cell_barcodes'],
attributes,
additional_attributes,
output_filename,
output_delimiter,
False,
sparse=counts_output_sparse,
dtype=np.float32,
)
def main():
pa = argparse.ArgumentParser(
add_help=False,
)
pa.add_argument(
"--version", action="store_true",
help='Show software version and exit')
args, argv = pa.parse_known_args()
# Version is the only case where the BAM and GTF files are optional
if args.version:
print(HTSeq.__version__)
sys.exit()
pa = argparse.ArgumentParser(
parents=[pa],
description="This script takes one alignment file in SAM/BAM " +
"format and a feature file in GFF format and calculates for each feature " +
"the number of reads mapping to it, accounting for barcodes. See " +
"http://htseq.readthedocs.io/en/master/count.html for details.",
epilog="Written by Simon Anders (sanders@fs.tum.de), " +
"European Molecular Biology Laboratory (EMBL) and Fabio Zanini " +
"(fabio.zanini@unsw.edu.au), UNSW Sydney. (c) 2010-2020. " +
"Released under the terms of the GNU General Public License v3. " +
"Please cite the following paper if you use this script: \n" +
" G. Putri et al. Analysing high-throughput sequencing data in " +
"Python with HTSeq 2.0. Bioinformatics (2022). " +
"https://doi.org/10.1093/bioinformatics/btac166.\n" +
"Part of the 'HTSeq' framework, version %s." % HTSeq.__version__,
)
pa.add_argument(
"samfilename", type=str,
help="Path to the SAM/BAM file containing the barcoded, mapped " +
"reads. If '-' is selected, read from standard input")
pa.add_argument(
"featuresfilename", type=str,
help="Path to the GTF file containing the features")
pa.add_argument(
"-f", "--format", dest="samtype",
choices=("sam", "bam", "auto"), default="auto",
help="Type of <alignment_file> data. DEPRECATED: " +
"file format is detected automatically. This option is ignored.")
pa.add_argument(
"-r", "--order", dest="order",
choices=("pos", "name"), default="name",
help="'pos' or 'name'. Sorting order of <alignment_file> (default: name). Paired-end sequencing " +
"data must be sorted either by position or by read name, and the sorting order " +
"must be specified. Ignored for single-end data.")
pa.add_argument(
"--max-reads-in-buffer", dest="max_buffer_size", type=int,
default=30000000,
help="When <alignment_file> is paired end sorted by position, " +
"allow only so many reads to stay in memory until the mates are " +
"found (raising this number will use more memory). Has no effect " +
"for single end or paired end sorted by name")
pa.add_argument(
"-s", "--stranded", dest="stranded",
choices=("yes", "no", "reverse"), default="yes",
help="Whether the data is from a strand-specific assay. Specify 'yes', " +
"'no', or 'reverse' (default: yes). " +
"'reverse' means 'yes' with reversed strand interpretation")
pa.add_argument(
"-a", "--minaqual", type=int, dest="minaqual",
default=10,
help="Skip all reads with MAPQ alignment quality lower than the given " +
"minimum value (default: 10). MAPQ is the 5th column of a SAM/BAM " +
"file and its usage depends on the software used to map the reads.")
pa.add_argument(
"-t", "--type", type=str, dest="featuretype",
action="append", default=["exon"],
help="Feature type (3rd column in GTF file) to be used, all "
+ "features of other type are ignored (default, suitable for"
+ "Ensembl GTF files: exon). You can call this option multiple "
+ "times. Features of all specified types will be included. "
+ "E.g. to include both genes and pseudogenes you might use "
+ "-t gene -t pseudogene")
pa.add_argument(
"-i", "--idattr", type=str, dest="idattr",
default="gene_id",
help="GTF attribute to be used as feature ID (default, " +
"suitable for Ensembl GTF files: gene_id)")
pa.add_argument(
"--additional-attr", type=str,
action='append',
default=[],
help="Additional feature attributes (default: none, " +
"suitable for Ensembl GTF files: gene_name). Use multiple times " +
"for each different attribute")
pa.add_argument(
"--add-chromosome-info", action='store_true',
help="Store information about the chromosome of each feature as " +
"an additional attribute (e.g. colunm in the TSV output file).",
)
pa.add_argument(
"-m", "--mode", dest="mode",
choices=("union", "intersection-strict", "intersection-nonempty"),
default="union",
help="Mode to handle reads overlapping more than one feature " +
"(choices: union, intersection-strict, intersection-nonempty; default: union)")
pa.add_argument(
"--nonunique", dest="nonunique", type=str,
choices=("none", "all"), default="none",
help="Whether to score reads that are not uniquely aligned " +
"or ambiguously assigned to features")
pa.add_argument(
"--secondary-alignments", dest="secondary_alignments", type=str,
choices=("score", "ignore"), default="ignore",
help="Whether to score secondary alignments (0x100 flag)")
pa.add_argument(
"--supplementary-alignments", dest="supplementary_alignments", type=str,
choices=("score", "ignore"), default="ignore",
help="Whether to score supplementary alignments (0x800 flag)")
pa.add_argument(
"-o", "--samout", type=str, dest="samout",
default=None,
help="Write out all SAM alignment records into a" +
"SAM/BAM file, annotating each line " +
"with its feature assignment (as an optional field with tag 'XF')" +
". See the -p option to use BAM instead of SAM.")
pa.add_argument(
"-p", '--samout-format', type=str, dest='samout_format',
choices=('SAM', 'BAM', 'sam', 'bam'), default='SAM',
help="Format to use with the --samout option."
)
pa.add_argument(
"-d", '--delimiter', type=str, dest='output_delimiter',
default='\t',
help="Column delimiter in output (default: TAB)."
)
pa.add_argument(
"-c", '--counts_output', type=str, dest='output_filename',
default='',
help="TSV/CSV filename to output the counts to instead of stdout."
)
pa.add_argument(
"--counts_output_sparse", action='store_true',
help="Store the counts as a sparse matrix (mtx, h5ad, loom)."
)
pa.add_argument(
'--cell-barcode', type=str, dest='cb_tag',
default='CB',
help='BAM tag used for the cell barcode (default compatible ' +
'with 10X Genomics Chromium is CB).',
)
pa.add_argument(
'--UMI', type=str, dest='ub_tag',
default='UB',
help='BAM tag used for the unique molecular identifier, also ' +
'known as molecular barcode (default compatible ' +
'with 10X Genomics Chromium is UB).',
)
pa.add_argument(
'--correct-UMI-distance',
type=int,
choices=[0, 1, 2],
dest='correct_ub_distance',
default=0,
help='Correct for sequencing errors in the UMI tag, based on ' +
'Hamming distance. For each UMI, if another UMI with more reads ' +
'within 1 or 2 mutations is found, merge this UMI\'s reads into ' +
'the more popular one. The default is to not correct UMIs.',
)
pa.add_argument(
"-q", "--quiet", action="store_true", dest="quiet",
help="Suppress progress report") # and warnings" )
args = pa.parse_args()
warnings.showwarning = my_showwarning
try:
count_reads_in_features(
args.samfilename,
args.featuresfilename,
args.order,
args.max_buffer_size,
args.stranded,
args.mode,
args.nonunique,
args.secondary_alignments,
args.supplementary_alignments,
args.featuretype,
args.idattr,
args.additional_attr,
args.add_chromosome_info,
args.quiet,
args.minaqual,
args.samout,
args.samout_format,
args.output_delimiter,
args.output_filename,
args.counts_output_sparse,
args.cb_tag,
args.ub_tag,
args.correct_ub_distance,
)
except:
sys.stderr.write(" %s\n" % str(sys.exc_info()[1]))
sys.stderr.write(" [Exception type: %s, raised in %s:%d]\n" %
(sys.exc_info()[1].__class__.__name__,
os.path.basename(traceback.extract_tb(
sys.exc_info()[2])[-1][0]),
traceback.extract_tb(sys.exc_info()[2])[-1][1]))
sys.exit(1)
if __name__ == "__main__":
main()
|