1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
#!/usr/bin/env python
# HTSeq_QA.py
#
# (c) Simon Anders, European Molecular Biology Laboratory, 2010
# released under GNU General Public License
import sys
import os.path
import argparse
from itertools import islice
import numpy as np
import HTSeq
try:
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.pyplot import Normalize
except ImportError:
sys.stderr.write("htseq-qa needs 'matplotlib >= 1.5'")
raise
def get_read_length(readfile, isAlnmntFile):
readlen = 0
if isAlnmntFile:
reads = (a.read for a in readfile)
else:
reads = readfile
for r in islice(reads, 10000):
if len(r) > readlen:
readlen = len(r)
return readlen
def compute_quality(
readfilename,
file_type,
nosplit,
readlen,
max_qual,
gamma,
primary_only=False,
max_records=-1,
):
if file_type in ("sam", "bam"):
readfile = HTSeq.BAM_Reader(readfilename)
isAlnmntFile = True
elif file_type == "solexa-export":
readfile = HTSeq.SolexaExportReader(readfilename)
isAlnmntFile = True
elif file_type == "fastq":
readfile = HTSeq.FastqReader(readfilename)
isAlnmntFile = False
elif file_type == "solexa-fastq":
readfile = HTSeq.FastqReader(readfilename, "solexa")
isAlnmntFile = False
else:
raise ValueError('File format not recognized: {:}'.format(file_type))
twoColumns = isAlnmntFile and (not nosplit)
if readlen is None:
readlen = get_read_length(readfile, isAlnmntFile)
# Initialize count arrays
base_arr_U = np.zeros((readlen, 5), np.int64)
qual_arr_U = np.zeros((readlen, max_qual+1), np.int64)
if twoColumns:
base_arr_A = np.zeros((readlen, 5), np.int64)
qual_arr_A = np.zeros((readlen, max_qual+1), np.int64)
# Main counting loop
i = 0
try:
for a in readfile:
if isAlnmntFile:
r = a.read
else:
r = a
# Exclude non-primary alignments if requested
if isAlnmntFile and primary_only:
if a.aligned and a.not_primary_alignment:
continue
if twoColumns and isAlnmntFile and a.aligned:
r.add_bases_to_count_array(base_arr_A)
r.add_qual_to_count_array(qual_arr_A)
else:
r.add_bases_to_count_array(base_arr_U)
r.add_qual_to_count_array(qual_arr_U)
i += 1
if i == max_records:
break
if (i % 200000) == 0:
if (not isAlnmntFile) or primary_only:
print(i, "reads processed")
else:
print(i, "alignments processed")
except:
sys.stderr.write("Error occured in: %s\n" %
readfile.get_line_number_string())
raise
if (not isAlnmntFile) or primary_only:
print(i, "reads processed")
else:
print(i, "alignments processed")
# Normalize result
def norm_by_pos(arr):
arr = np.array(arr, np.float64)
arr_n = (arr.T / arr.sum(1)).T
arr_n[arr == 0] = 0
return arr_n
def norm_by_start(arr):
arr = np.array(arr, np.float64)
arr_n = (arr.T / arr.sum(1)[0]).T
arr_n[arr == 0] = 0
return arr_n
result = {
'isAlnmntFile': isAlnmntFile,
'readlen': readlen,
'twoColumns': twoColumns,
'base_arr_U_n': norm_by_pos(base_arr_U),
'qual_arr_U_n': norm_by_start(qual_arr_U),
'nreads_U': base_arr_U[0, :].sum(),
}
if twoColumns:
result['base_arr_A_n'] = norm_by_pos(base_arr_A)
result['qual_arr_A_n'] = norm_by_start(qual_arr_A)
result['nreads_A'] = base_arr_A[0, :].sum()
return result
def plot(
result,
readfilename,
outfile,
max_qual,
gamma,
primary_only=False,
):
def plot_bases(arr, ax):
xg = np.arange(readlen)
ax.plot(xg, arr[:, 0], marker='.', color='red')
ax.plot(xg, arr[:, 1], marker='.', color='darkgreen')
ax.plot(xg, arr[:, 2], marker='.', color='lightgreen')
ax.plot(xg, arr[:, 3], marker='.', color='orange')
ax.plot(xg, arr[:, 4], marker='.', color='grey')
ax.set_xlim(0, readlen-1)
ax.set_ylim(0, 1)
ax.text(readlen*.70, .9, "A", color="red")
ax.text(readlen*.75, .9, "C", color="darkgreen")
ax.text(readlen*.80, .9, "G", color="lightgreen")
ax.text(readlen*.85, .9, "T", color="orange")
ax.text(readlen*.90, .9, "N", color="grey")
if outfile is None:
outfilename = os.path.basename(readfilename) + ".pdf"
else:
outfilename = outfile
isAlnmntFile = result['isAlnmntFile']
readlen = result['readlen']
twoColumns = result['twoColumns']
base_arr_U_n = result['base_arr_U_n']
qual_arr_U_n = result['qual_arr_U_n']
nreads_U = result['nreads_U']
if twoColumns:
base_arr_A_n = result['base_arr_A_n']
qual_arr_A_n = result['qual_arr_A_n']
nreads_A = result['nreads_A']
cur_backend = matplotlib.get_backend()
try:
matplotlib.use('PDF')
fig = plt.figure()
fig.subplots_adjust(top=.85)
fig.suptitle(os.path.basename(readfilename), fontweight='bold')
if twoColumns:
ax = fig.add_subplot(221)
plot_bases(base_arr_U_n, ax)
ax.set_ylabel("proportion of base")
ax.set_title(
"non-aligned reads\n{:.0%} ({:.4f} million)".format(
1.0 * nreads_U / (nreads_U+nreads_A),
1.0 * nreads_U / 1e6,
))
ax2 = fig.add_subplot(222)
plot_bases(base_arr_A_n, ax2)
ax2.set_title(
"{:}\n{:.0%} ({:.4f} million)".format(
'aligned reads' if primary_only else 'alignments',
1.0 * nreads_A / (nreads_U+nreads_A),
1.0 * nreads_A / 1e6,
))
ax3 = fig.add_subplot(223)
ax3.pcolor(
qual_arr_U_n.T ** gamma,
cmap=plt.cm.Greens,
norm=Normalize(0, 1))
ax3.set_xlim(0, readlen-1)
ax3.set_ylim(0, max_qual+1)
ax3.set_xlabel("position in read")
ax3.set_ylabel("base-call quality score")
ax4 = fig.add_subplot(224)
ax4.pcolor(
qual_arr_A_n.T ** gamma,
cmap=plt.cm.Greens,
norm=Normalize(0, 1))
ax4.set_xlim(0, readlen-1)
ax4.set_ylim(0, max_qual+1)
ax4.set_xlabel("position in read")
else:
ax = fig.add_subplot(211)
plot_bases(base_arr_U_n, ax)
ax.set_ylabel("proportion of base")
ax.set_title("{:.3f} million {:}".format(
1.0 * nreads_U / 1e6,
'reads' if (not isAlnmntFile) or primary_only else 'alignments',
))
ax2 = fig.add_subplot(212)
ax2.pcolor(
qual_arr_U_n.T ** gamma,
cmap=plt.cm.Greens,
norm=Normalize(0, 1))
ax2.set_xlim(0, readlen-1)
ax2.set_ylim(0, max_qual+1)
ax2.set_xlabel("position in read")
ax2.set_ylabel("base-call quality score")
fig.savefig(outfilename)
finally:
matplotlib.use(cur_backend)
def main():
# **** Parse command line ****
pa = argparse.ArgumentParser(
description=
"This script take a file with high-throughput sequencing reads " +
"(supported formats: SAM, Solexa _export.txt, FASTQ, Solexa " +
"_sequence.txt) and performs a simply quality assessment by " +
"producing plots showing the distribution of called bases and " +
"base-call quality scores by position within the reads. The " +
"plots are output as a PDF file.",
)
pa.add_argument(
'readfilename',
help='The file to count reads in (SAM/BAM or Fastq)',
)
pa.add_argument(
"-t", "--type", type=str, dest="type",
choices=("sam", "bam", "solexa-export", "fastq", "solexa-fastq"),
default="sam", help="type of read_file (one of: sam [default], bam, " +
"solexa-export, fastq, solexa-fastq)")
pa.add_argument(
"-o", "--outfile", type=str, dest="outfile",
help="output filename (default is <read_file>.pdf)")
pa.add_argument(
"-r", "--readlength", type=int, dest="readlen",
help="the maximum read length (when not specified, the script guesses from the file")
pa.add_argument(
"-g", "--gamma", type=float, dest="gamma",
default=0.3,
help="the gamma factor for the contrast adjustment of the quality score plot")
pa.add_argument(
"-n", "--nosplit", action="store_true", dest="nosplit",
help="do not split reads in unaligned and aligned ones")
pa.add_argument(
"-m", "--maxqual", type=int, dest="maxqual", default=41,
help="the maximum quality score that appears in the data (default: 41)")
pa.add_argument(
'--primary-only', action='store_true',
help="For SAM/BAM input files, ignore alignments that are not primary. " +
"This only affects 'multimapper' reads that align to several regions " +
"in the genome. By choosing this option, each read will only count as " +
"one; without this option, each of its alignments counts as one."
)
pa.add_argument(
'--max-records', type=int, default=-1, dest='max_records',
help="Limit the analysis to the first N reads/alignments."
)
args = pa.parse_args()
result = compute_quality(
args.readfilename,
args.type,
args.nosplit,
args.readlen,
args.maxqual,
args.gamma,
args.primary_only,
args.max_records,
)
plot(
result,
args.readfilename,
args.outfile,
args.maxqual,
args.gamma,
args.primary_only,
)
if __name__ == "__main__":
main()
|