File: utils.py

package info (click to toggle)
htseq 2.0.9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 103,476 kB
  • sloc: python: 6,280; sh: 211; cpp: 147; makefile: 80
file content (372 lines) | stat: -rw-r--r-- 10,418 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import sys
import numpy as np


class UnknownChrom(Exception):
    pass


def my_showwarning(message, category, filename, lineno=None, file=None,
                   line=None):
    sys.stderr.write("Warning: %s\n" % message)


def invert_strand(iv):
    iv2 = iv.copy()
    if iv2.strand == "+":
        iv2.strand = "-"
    elif iv2.strand == "-":
        iv2.strand = "+"
    else:
        raise ValueError("Illegal strand")
    return iv2


def _merge_counts(
        results,
        attributes,
        additional_attributes,
        sparse=False,
        dtype=np.float32,
        ):
    barcodes = 'cell_barcodes' in results

    if barcodes:
        cbs = results['cell_barcodes']
        counts = results['counts']

    feature_attr = sorted(attributes.keys())
    other_features = [
        ('__no_feature', 'empty'),
        ('__ambiguous', 'ambiguous'),
        ('__too_low_aQual', 'lowqual'),
        ('__not_aligned', 'notaligned'),
        ('__alignment_not_unique', 'nonunique'),
        ]

    fea_names = [fea for fea in feature_attr] + [fea[0] for fea in other_features]
    L = len(fea_names)
    if barcodes:
        n = len(cbs)
    else:
        n = len(results)
    if not sparse:
        table = np.zeros(
            (n, L),
            dtype=dtype,
        )
    else:
        from scipy.sparse import lil_matrix
        table = lil_matrix((n, L), dtype=dtype)

    if not barcodes:
        fea_ids = [fea for fea in feature_attr] + [fea[1] for fea in other_features]
        for j, r in enumerate(results):
            for i, fn in enumerate(fea_ids):
                if i < len(feature_attr):
                    countji = r['counts'][fn]
                else:
                    countji = r[fn]
                if countji > 0:
                    table[j, i] = countji
    else:
        for j, cb in enumerate(cbs):
            for i, fn in enumerate(fea_names):
                countji = counts[cb][fn]
                if countji > 0:
                    table[j, i] = countji

    if sparse:
        table = table.tocsr()

    feature_metadata = {
        'id': fea_names,
    }
    for iadd, attr in enumerate(additional_attributes):
        feature_metadata[attr] = [attributes[fn][iadd] for fn in feature_attr]

    return {
        'feature_metadata': feature_metadata,
        'table': table,
    }


def _count_results_to_tsv(
        results,
        samples_name,
        attributes,
        additional_attributes,
        output_filename,
        output_delimiter,
        output_append=False,
        add_tsv_header=False
        ):

    barcodes = 'cell_barcodes' in results

    pad = ['' for attr in additional_attributes]

    if barcodes:
        cbs = results['cell_barcodes']
        counts = results['counts']

        # Print or write header
        fields = [''] + pad + cbs
        line = output_delimiter.join(fields)
        if output_filename == '':
            print(line)
        else:
            with open(output_filename, 'w') as f:
                f.write(line)
                f.write('\n')

    elif add_tsv_header:
        # Write the header.
        # Only get here if we don't have cell barcodes, i.e. this is not called by htseq-count-barcode,
        # and user wants the tsv header
        file_header = output_delimiter.join([''] + pad + samples_name)

        if output_filename == '':
            print(file_header)
        else:
            # If append to existing file, then open as a
            file_open_opt = 'a' if output_append else 'w'

            with open(output_filename, file_open_opt) as f:
                f.write(file_header)
                f.write('\n')

    # Each feature is a row with feature id, additional attrs, and counts
    feature_attr = sorted(attributes.keys())
    for ifn, fn in enumerate(feature_attr):
        if not barcodes:
            fields = [fn] + attributes[fn] + [str(r['counts'][fn]) for r in results]
        else:
            fields = [fn] + attributes[fn] + [str(counts[cb][fn]) for cb in cbs]

        line = output_delimiter.join(fields)
        if output_filename == '':
            print(line)
        else:
            omode = 'a' if output_append or (ifn > 0) or barcodes or add_tsv_header else 'w'
            with open(output_filename, omode) as f:
                f.write(line)
                f.write('\n')

    # Add other features (unmapped, etc.)
    other_features = [
        ('__no_feature', 'empty'),
        ('__ambiguous', 'ambiguous'),
        ('__too_low_aQual', 'lowqual'),
        ('__not_aligned', 'notaligned'),
        ('__alignment_not_unique', 'nonunique'),
        ]
    for title, fn in other_features:
        if not barcodes:
            fields = [title] + pad + [str(r[fn]) for r in results]
        else:
            fields = [title] + pad + [str(counts[cb][title]) for cb in cbs]
        line = output_delimiter.join(fields)
        if output_filename == '':
            print(line)
        else:
            with open(output_filename, 'a') as f:
                f.write(line)
                f.write('\n')


def _count_table_to_mtx(
        filename,
        table,
        feature_metadata,
        samples,
        ):
    if not str(filename).endswith('.mtx'):
        raise ValueError('Matrix Marker filename should end with ".mtx"')

    try:
        from scipy.io import mmwrite
    except ImportError:
        raise ImportError('Install scipy for mtx support')

    filename_pfx = str(filename)[:-4]
    filename_feature_meta = filename_pfx+'_features.tsv'
    filename_samples = filename_pfx+'_samples.tsv'

    # Write main matrix (features as columns)
    mmwrite(
        filename,
        table,
    )

    # Write input filenames
    with open(filename_samples, 'wt') as fout:
        for fn in samples:
            fout.write(fn+'\n')

    # Write feature metadata (ids and additional attributes)
    with open(filename_feature_meta, 'wt') as fout:
        nkeys = len(feature_metadata)
        for ik, key in enumerate(feature_metadata):
            if ik != nkeys - 1:
                fout.write(key+'\t')
            else:
                fout.write(key+'\n')
        nfeatures = len(feature_metadata[key])
        for i in range(nfeatures):
            for ik, key in enumerate(feature_metadata):
                if ik != nkeys - 1:
                    fout.write(feature_metadata[key][i]+'\t')
                else:
                    fout.write(feature_metadata[key][i]+'\n')


def _count_table_to_h5ad(
        filename,
        table,
        feature_metadata,
        samples,
        ):
    try:
        import anndata
    except ImportError:
        raise ImportError('Install the anndata package for h5ad support')

    # If they have anndata, they have scipy and pandas too
    import pandas as pd

    # We don't have additional attribute (e.g. gene name) for htseq specific features like __no_feature.
    # Hence the trick is to convert the array to series so the value for htseq specific features like __no_feature
    # column is set NaN.
    # See: https://stackoverflow.com/questions/19736080/creating-dataframe-from-a-dictionary-where-entries-have-different-lengths
    feature_metadata = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in feature_metadata.items()]))
    feature_metadata.set_index(feature_metadata.columns[0], inplace=True)

    adata = anndata.AnnData(
        X=table,
        obs=pd.DataFrame([], index=samples),
        var=feature_metadata,
    )
    adata.write_h5ad(filename)


def _count_table_to_loom(
        filename,
        table,
        feature_metadata,
        samples,
        ):

    try:
        import loompy
    except ImportError:
        raise ImportError('Install the loompy package for loom support')

    # Loom uses features as rows...
    layers = {'': table.T}
    row_attrs = feature_metadata
    col_attrs = {'_index': samples}
    loompy.create(
        filename,
        layers=layers,
        row_attrs=row_attrs,
        col_attrs=col_attrs,
    )


def _write_output(
    results,
    samples,
    attributes,
    additional_attributes,
    output_filename,
    output_delimiter,
    output_append,
    sparse=False,
    dtype=np.float32,
    add_tsv_header=False
    ):

    """
    Export the gene counts as tsv/csv, mtx, loom, h5ad files.
    Note, need to update the parameter documentations.

    Parameters
    ----------
    results : list
        List of dictionaries with each element representing the counts for an input BAM file.
        Note, the list is in order of the samples parameter. So the first element in the list corresponds to
        the first file in samples parameter.
    samples : list
        List of input BAM files.

    """

    # Write output to stdout or TSV/CSV
    if output_filename == '':
        _count_results_to_tsv(
            results,
            samples,
            attributes,
            additional_attributes,
            output_filename,
            output_delimiter,
            output_append=False,
            add_tsv_header=add_tsv_header
        )
        return

    # Get file extension/format
    output_sfx = output_filename.split('.')[-1].lower()

    if output_sfx in ('csv', 'tsv'):
        _count_results_to_tsv(
            results,
            samples,
            attributes,
            additional_attributes,
            output_filename,
            output_delimiter,
            output_append,
            add_tsv_header=add_tsv_header
        )
        return

    # Make unified object of counts and feature metadata
    output_dict = _merge_counts(
        results,
        attributes,
        additional_attributes,
        sparse=sparse,
        dtype=dtype,
    )

    if output_sfx == 'mtx':
        _count_table_to_mtx(
            output_filename,
            output_dict['table'],
            output_dict['feature_metadata'],
            samples,
        )
        return

    if output_sfx == 'loom':
        _count_table_to_loom(
            output_filename,
            output_dict['table'],
            output_dict['feature_metadata'],
            samples,
        )
        return

    if output_sfx == 'h5ad':
        _count_table_to_h5ad(
            output_filename,
            output_dict['table'],
            output_dict['feature_metadata'],
            samples,
        )
        return

    raise ValueError(
        f'Format not recognized for output count file: {output_sfx}')