1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
import unittest
import pytest
import yaml
from huggingface_hub import SpaceCardData
from huggingface_hub.repocard_data import (
CardData,
DatasetCardData,
EvalResult,
ModelCardData,
eval_results_to_model_index,
model_index_to_eval_results,
)
OPEN_LLM_LEADERBOARD_URL = "https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard"
DUMMY_METADATA_WITH_MODEL_INDEX = """
language: en
license: mit
library_name: timm
tags:
- pytorch
- image-classification
datasets:
- beans
metrics:
- acc
model-index:
- name: my-cool-model
results:
- task:
type: image-classification
dataset:
type: beans
name: Beans
metrics:
- type: acc
value: 0.9
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
"""
class BaseCardDataTest(unittest.TestCase):
def test_metadata_behave_as_dict(self):
metadata = CardData(foo="bar")
# .get and __getitem__
self.assertEqual(metadata.get("foo"), "bar")
self.assertEqual(metadata.get("FOO"), None) # case-sensitive
self.assertEqual(metadata["foo"], "bar")
with self.assertRaises(KeyError): # case-sensitive
_ = metadata["FOO"]
# __setitem__
metadata["foo"] = "BAR"
self.assertEqual(metadata.get("foo"), "BAR")
self.assertEqual(metadata["foo"], "BAR")
# __contains__
self.assertTrue("foo" in metadata)
self.assertFalse("FOO" in metadata)
# default value
# Should return default when key is not in metadata
self.assertEqual(metadata.get("FOO", "default"), "default")
# Should return default when key is in metadata but value is None
metadata.FOO = None
self.assertEqual(metadata.get("FOO", "default"), "default")
# export
self.assertEqual(str(metadata), "foo: BAR")
# .pop
self.assertEqual(metadata.pop("foo"), "BAR")
class ModelCardDataTest(unittest.TestCase):
def test_eval_results_to_model_index(self):
expected_results = yaml.safe_load(DUMMY_METADATA_WITH_MODEL_INDEX)
eval_results = [
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
source_name="Open LLM Leaderboard",
source_url=OPEN_LLM_LEADERBOARD_URL,
),
]
model_index = eval_results_to_model_index("my-cool-model", eval_results)
self.assertEqual(model_index, expected_results["model-index"])
def test_model_index_to_eval_results(self):
model_index = [
{
"name": "my-cool-model",
"results": [
{
"task": {
"type": "image-classification",
},
"dataset": {
"type": "cats_vs_dogs",
"name": "Cats vs. Dogs",
},
"metrics": [
{
"type": "acc",
"value": 0.85,
},
{
"type": "f1",
"value": 0.9,
},
],
},
{
"task": {
"type": "image-classification",
},
"dataset": {
"type": "beans",
"name": "Beans",
},
"metrics": [
{
"type": "acc",
"value": 0.9,
"verified": True,
"verifyToken": 1234,
}
],
"source": {
"name": "Open LLM Leaderboard",
"url": OPEN_LLM_LEADERBOARD_URL,
},
},
],
}
]
model_name, eval_results = model_index_to_eval_results(model_index)
self.assertEqual(len(eval_results), 3)
self.assertEqual(model_name, "my-cool-model")
self.assertEqual(eval_results[0].dataset_type, "cats_vs_dogs")
self.assertIsNone(eval_results[0].source_name)
self.assertIsNone(eval_results[0].source_url)
self.assertEqual(eval_results[1].metric_type, "f1")
self.assertEqual(eval_results[1].metric_value, 0.9)
self.assertIsNone(eval_results[1].source_name)
self.assertIsNone(eval_results[1].source_url)
self.assertEqual(eval_results[2].task_type, "image-classification")
self.assertEqual(eval_results[2].dataset_type, "beans")
self.assertEqual(eval_results[2].verified, True)
self.assertEqual(eval_results[2].verify_token, 1234)
self.assertEqual(eval_results[2].source_name, "Open LLM Leaderboard")
self.assertEqual(eval_results[2].source_url, OPEN_LLM_LEADERBOARD_URL)
def test_card_data_requires_model_name_for_eval_results(self):
with pytest.raises(ValueError, match="`eval_results` requires `model_name` to be set."):
ModelCardData(
eval_results=[
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
),
],
)
data = ModelCardData(
model_name="my-cool-model",
eval_results=[
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
),
],
)
model_index = eval_results_to_model_index(data.model_name, data.eval_results)
self.assertEqual(model_index[0]["name"], "my-cool-model")
self.assertEqual(model_index[0]["results"][0]["task"]["type"], "image-classification")
def test_arbitrary_incoming_card_data(self):
data = ModelCardData(
model_name="my-cool-model",
eval_results=[
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
),
],
some_arbitrary_kwarg="some_value",
)
self.assertEqual(data.some_arbitrary_kwarg, "some_value")
data_dict = data.to_dict()
self.assertEqual(data_dict["some_arbitrary_kwarg"], "some_value")
def test_eval_result_with_incomplete_source(self):
# Source url without name: ok
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
source_url=OPEN_LLM_LEADERBOARD_URL,
)
# Source name without url: not ok
with self.assertRaises(ValueError):
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
source_name="Open LLM Leaderboard",
)
def test_model_card_unique_tags(self):
data = ModelCardData(tags=["tag2", "tag1", "tag2", "tag3"])
assert data.tags == ["tag2", "tag1", "tag3"]
def test_remove_top_level_none_values(self):
as_obj = ModelCardData(tags=["tag1", None], foo={"bar": 3, "baz": None}, pipeline_tag=None)
as_dict = as_obj.to_dict()
assert as_obj.tags == ["tag1", None]
assert as_dict["tags"] == ["tag1", None] # none value inside list should be kept
assert as_obj.foo == {"bar": 3, "baz": None}
assert as_dict["foo"] == {"bar": 3, "baz": None} # none value inside dict should be kept
assert as_obj.pipeline_tag is None
assert "pipeline_tag" not in as_dict # top level none value should be removed
def test_eval_results_requires_evalresult_type(self):
with pytest.raises(ValueError, match="should be of type `EvalResult` or a list of `EvalResult`"):
ModelCardData(model_name="my-cool-model", eval_results="this is not an EvalResult")
with pytest.raises(ValueError, match="should be of type `EvalResult` or a list of `EvalResult`"):
ModelCardData(model_name="my-cool-model", eval_results=["accuracy: 0.9", "f1: 0.85"])
data = ModelCardData(
model_name="my-cool-model",
eval_results="this is not an EvalResult",
ignore_metadata_errors=True,
)
assert data.eval_results is not None and data.eval_results == "this is not an EvalResult"
def test_model_name_required_with_eval_results(self):
with pytest.raises(ValueError, match="`eval_results` requires `model_name` to be set"):
ModelCardData(
eval_results=[
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
),
],
)
eval_results = [
EvalResult(
task_type="image-classification",
dataset_type="beans",
dataset_name="Beans",
metric_type="acc",
metric_value=0.9,
),
]
data = ModelCardData(
eval_results=eval_results,
ignore_metadata_errors=True,
)
assert data.eval_results is not None and data.eval_results == eval_results
class DatasetCardDataTest(unittest.TestCase):
def test_train_eval_index_keys_updated(self):
train_eval_index = [
{
"config": "plain_text",
"task": "text-classification",
"task_id": "binary_classification",
"splits": {"train_split": "train", "eval_split": "test"},
"col_mapping": {"text": "text", "label": "target"},
"metrics": [
{
"type": "accuracy",
"name": "Accuracy",
},
{"type": "f1", "name": "F1 macro", "args": {"average": "macro"}},
],
}
]
card_data = DatasetCardData(
language="en",
license="mit",
pretty_name="My Cool Dataset",
train_eval_index=train_eval_index,
)
# The init should have popped this out of kwargs and into train_eval_index attr
self.assertEqual(card_data.train_eval_index, train_eval_index)
# Underlying train_eval_index gets converted to train-eval-index in DatasetCardData._to_dict.
# So train_eval_index should be None in the dict
self.assertTrue(card_data.to_dict().get("train_eval_index") is None)
# And train-eval-index should be in the dict
self.assertEqual(card_data.to_dict()["train-eval-index"], train_eval_index)
class SpaceCardDataTest(unittest.TestCase):
def test_space_card_data(self) -> None:
card_data = SpaceCardData(
title="Dreambooth Training",
license="mit",
sdk="gradio",
duplicated_from="multimodalart/dreambooth-training",
)
self.assertEqual(
card_data.to_dict(),
{
"title": "Dreambooth Training",
"sdk": "gradio",
"license": "mit",
"duplicated_from": "multimodalart/dreambooth-training",
},
)
self.assertIsNone(card_data.tags) # SpaceCardData has some default attributes
|