1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
-----------------------------------------------------------------------------
-- Signed Integers
-- Suitable for use with Hugs 1.4 on 32 bit systems.
-----------------------------------------------------------------------------
module Int
( Int8
, Int16
, Int32
--, Int64
, int8ToInt -- :: Int8 -> Int
, intToInt8 -- :: Int -> Int8
, int16ToInt -- :: Int16 -> Int
, intToInt16 -- :: Int -> Int16
, int32ToInt -- :: Int32 -> Int
, intToInt32 -- :: Int -> Int32
-- plus Eq, Ord, Num, Bounded, Real, Integral, Ix, Enum, Read,
-- Show and Bits instances for each of Int8, Int16 and Int32
) where
import Bits
-----------------------------------------------------------------------------
-- The "official" coercion functions
-----------------------------------------------------------------------------
int8ToInt :: Int8 -> Int
intToInt8 :: Int -> Int8
int16ToInt :: Int16 -> Int
intToInt16 :: Int -> Int16
int32ToInt :: Int32 -> Int
intToInt32 :: Int -> Int32
-- And some non-exported ones
int8ToInt16 :: Int8 -> Int16
int8ToInt32 :: Int8 -> Int32
int16ToInt8 :: Int16 -> Int8
int16ToInt32 :: Int16 -> Int32
int32ToInt8 :: Int32 -> Int8
int32ToInt16 :: Int32 -> Int16
int8ToInt16 = I16 . int8ToInt
int8ToInt32 = I32 . int8ToInt
int16ToInt8 = I8 . int16ToInt
int16ToInt32 = I32 . int16ToInt
int32ToInt8 = I8 . int32ToInt
int32ToInt16 = I16 . int32ToInt
-----------------------------------------------------------------------------
-- Int8
-----------------------------------------------------------------------------
newtype Int8 = I8 Int
int8ToInt (I8 x) = if x' <= 0x7f then x' else x' - 0x100
where x' = x `primAnd` 0xff
intToInt8 = I8
instance Eq Int8 where (==) = binop (==)
instance Ord Int8 where compare = binop compare
instance Num Int8 where
x + y = to (binop (+) x y)
x - y = to (binop (-) x y)
negate = to . negate . from
x * y = to (binop (*) x y)
abs = absReal
signum = signumReal
fromInteger = to . fromInteger
fromInt = to
instance Bounded Int8 where
minBound = 0x80
maxBound = 0x7f
instance Real Int8 where
toRational x = toInteger x % 1
instance Integral Int8 where
x `div` y = to (binop div x y)
x `quot` y = to (binop quot x y)
x `rem` y = to (binop rem x y)
x `mod` y = to (binop mod x y)
x `quotRem` y = to2 (binop quotRem x y)
even = even . from
toInteger = toInteger . from
toInt = toInt . from
instance Ix Int8 where
range (m,n) = [m..n]
index b@(m,n) i
| inRange b i = from (i - m)
| otherwise = error "index: Index out of range"
inRange (m,n) i = m <= i && i <= n
instance Enum Int8 where
toEnum = to
fromEnum = from
enumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Int8)]
enumFromThen c d = map toEnum [fromEnum c, fromEnum d .. fromEnum (last::Int8)]
where last = if d < c then minBound else maxBound
instance Read Int8 where
readsPrec p s = [ (to x,r) | (x,r) <- readsPrec p s ]
instance Show Int8 where
showsPrec p = showsPrec p . from
binop8 :: (Int32 -> Int32 -> a) -> (Int8 -> Int8 -> a)
binop8 op x y = int8ToInt32 x `op` int8ToInt32 y
instance Bits Int8 where
x .&. y = int32ToInt8 (binop8 (.&.) x y)
x .|. y = int32ToInt8 (binop8 (.|.) x y)
x `xor` y = int32ToInt8 (binop8 xor x y)
complement = int32ToInt8 . complement . int8ToInt32
x `shift` i = int32ToInt8 (int8ToInt32 x `shift` i)
-- rotate
bit = int32ToInt8 . bit
setBit x i = int32ToInt8 (setBit (int8ToInt32 x) i)
clearBit x i = int32ToInt8 (clearBit (int8ToInt32 x) i)
complementBit x i = int32ToInt8 (complementBit (int8ToInt32 x) i)
testBit x i = testBit (int8ToInt32 x) i
bitSize _ = 8
isSigned _ = True
-----------------------------------------------------------------------------
-- Int16
-----------------------------------------------------------------------------
newtype Int16 = I16 Int
int16ToInt (I16 x) = if x' <= 0x7fff then x' else x' - 0x10000
where x' = x `primAnd` 0xffff
intToInt16 = I16
instance Eq Int16 where (==) = binop (==)
instance Ord Int16 where compare = binop compare
instance Num Int16 where
x + y = to (binop (+) x y)
x - y = to (binop (-) x y)
negate = to . negate . from
x * y = to (binop (*) x y)
abs = absReal
signum = signumReal
fromInteger = to . fromInteger
fromInt = to
instance Bounded Int16 where
minBound = 0x8000
maxBound = 0x7fff
instance Real Int16 where
toRational x = toInteger x % 1
instance Integral Int16 where
x `div` y = to (binop div x y)
x `quot` y = to (binop quot x y)
x `rem` y = to (binop rem x y)
x `mod` y = to (binop mod x y)
x `quotRem` y = to2 (binop quotRem x y)
even = even . from
toInteger = toInteger . from
toInt = toInt . from
instance Ix Int16 where
range (m,n) = [m..n]
index b@(m,n) i
| inRange b i = from (i - m)
| otherwise = error "index: Index out of range"
inRange (m,n) i = m <= i && i <= n
instance Enum Int16 where
toEnum = to
fromEnum = from
enumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Int16)]
enumFromThen c d = map toEnum [fromEnum c, fromEnum d .. fromEnum (last::Int16)]
where last = if d < c then minBound else maxBound
instance Read Int16 where
readsPrec p s = [ (to x,r) | (x,r) <- readsPrec p s ]
instance Show Int16 where
showsPrec p = showsPrec p . from
binop16 :: (Int32 -> Int32 -> a) -> (Int16 -> Int16 -> a)
binop16 op x y = int16ToInt32 x `op` int16ToInt32 y
instance Bits Int16 where
x .&. y = int32ToInt16 (binop16 (.&.) x y)
x .|. y = int32ToInt16 (binop16 (.|.) x y)
x `xor` y = int32ToInt16 (binop16 xor x y)
complement = int32ToInt16 . complement . int16ToInt32
x `shift` i = int32ToInt16 (int16ToInt32 x `shift` i)
-- rotate
bit = int32ToInt16 . bit
setBit x i = int32ToInt16 (setBit (int16ToInt32 x) i)
clearBit x i = int32ToInt16 (clearBit (int16ToInt32 x) i)
complementBit x i = int32ToInt16 (complementBit (int16ToInt32 x) i)
testBit x i = testBit (int16ToInt32 x) i
bitSize _ = 16
isSigned _ = True
-----------------------------------------------------------------------------
-- Int32
-----------------------------------------------------------------------------
newtype Int32 = I32 Int
int32ToInt (I32 x) = x
intToInt32 = I32
instance Eq Int32 where (==) = binop (==)
instance Ord Int32 where compare = binop compare
instance Num Int32 where
x + y = to (binop (+) x y)
x - y = to (binop (-) x y)
negate = to . negate . from
x * y = to (binop (*) x y)
abs = absReal
signum = signumReal
fromInteger = to . fromInteger
fromInt = to
instance Bounded Int32 where
minBound = to minBound
maxBound = to maxBound
instance Real Int32 where
toRational x = toInteger x % 1
instance Integral Int32 where
x `div` y = to (binop div x y)
x `quot` y = to (binop quot x y)
x `rem` y = to (binop rem x y)
x `mod` y = to (binop mod x y)
x `quotRem` y = to2 (binop quotRem x y)
even = even . from
toInteger = toInteger . from
toInt = toInt . from
instance Ix Int32 where
range (m,n) = [m..n]
index b@(m,n) i
| inRange b i = from (i - m)
| otherwise = error "index: Index out of range"
inRange (m,n) i = m <= i && i <= n
instance Enum Int32 where
toEnum = to
fromEnum = from
enumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Int32)]
enumFromThen c d = map toEnum [fromEnum c, fromEnum d .. fromEnum (last::Int32)]
where last = if d < c then minBound else maxBound
instance Read Int32 where
readsPrec p s = [ (to x,r) | (x,r) <- readsPrec p s ]
instance Show Int32 where
showsPrec p = showsPrec p . from
instance Bits Int32 where
(.&.) = primAndInt
(.|.) = primOrInt
xor = primXorInt
complement = primComplementInt
shift = primShiftInt
-- rotate
bit = primBitInt
setBit x i = x .|. bit i
clearBit x i = x .&. complement (bit i)
complementBit x i = x `xor` bit i
testBit = primTestInt
bitSize _ = 32
isSigned _ = True
-----------------------------------------------------------------------------
-- End of exported definitions
--
-- The remainder of this file consists of definitions which are only
-- used in the implementation.
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
-- Coercions - used to make the instance declarations more uniform
-----------------------------------------------------------------------------
class Coerce a where
to :: Int -> a
from :: a -> Int
instance Coerce Int32 where
from = int32ToInt
to = intToInt32
instance Coerce Int8 where
from = int8ToInt
to = intToInt8
instance Coerce Int16 where
from = int16ToInt
to = intToInt16
binop :: Coerce int => (Int -> Int -> a) -> (int -> int -> a)
binop op x y = from x `op` from y
to2 :: Coerce int => (Int, Int) -> (int, int)
to2 (x,y) = (to x, to y)
-----------------------------------------------------------------------------
-- Extra primitives
-----------------------------------------------------------------------------
primitive primAnd "primAndInt" :: Int -> Int -> Int
primitive primAndInt :: Int32 -> Int32 -> Int32
primitive primOrInt :: Int32 -> Int32 -> Int32
primitive primXorInt :: Int32 -> Int32 -> Int32
primitive primComplementInt :: Int32 -> Int32
primitive primShiftInt :: Int32 -> Int -> Int32
primitive primBitInt :: Int -> Int32
primitive primTestInt :: Int32 -> Int -> Bool
-----------------------------------------------------------------------------
-- Code copied from the Prelude
-----------------------------------------------------------------------------
absReal x | x >= 0 = x
| otherwise = -x
signumReal x | x == 0 = 0
| x > 0 = 1
| otherwise = -1
-----------------------------------------------------------------------------
-- End
-----------------------------------------------------------------------------
|