1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
\documentstyle[11pt]{article}
% copied from the Haskore tutorial
\textheight=8.5in
\textwidth=6.5in
\topmargin=-.3in
\oddsidemargin=0in
\evensidemargin=0in
\parskip=6pt plus2pt minus2pt
% and some of my own personal preferences
\parindent=0in
\newcommand{\var}[1]{{\tt #1\/}} % variables
\newcommand{\fun}[1]{{\tt #1\/}} % functions
\newcommand{\expr}[1]{{\tt #1\/}} % expressions
\newcommand{\type}[1]{{\tt #1\/}} % types
\newcommand{\class}[1]{{\tt #1\/}} % classes
\newcommand{\module}[1]{{\tt #1\/}} % modules
\newcommand{\tva}{$\alpha$} % type variables
\newcommand{\tvb}{$\beta $}
\newcommand{\tvc}{$\gamma$}
\newcommand{\arrow}{$\enspace\to\enspace$} % type constructors
\newcommand{\Hugs}{{\bf Hugs\/}}
\newcommand{\GHC}{{\bf GHC\/}}
\newcommand{\Haskell}{{\bf Haskell\/}}
\newcommand{\cexpr}[1]{{\tt #1\/}} % C expressions
\newcommand{\ctype}[1]{{\tt #1\/}} % C types
\newcommand{\cvar}[1]{{\tt #1\/}} % C variables
\newcommand{\cfun}[1]{{\tt #1\/}} % C functions
\newcommand{\cfile}[1]{{\tt #1\/}} % C files (.c, .h, etc)
\newenvironment{aside}{%
\medbreak
\noindent
{\bf Aside: }
\begingroup
\sl
\begin{indent} % why doesn't this do what I expect?
}{%
\end{indent}
\endgroup
\par
{\bf End aside.}
\medbreak
}
\newenvironment{note}{%
\medbreak
\noindent
{\bf Note: }
\begingroup
\sl
\begin{indent} % why doesn't this do what I expect?
}{%
\end{indent}
\endgroup
\par
{\bf End note.}
\medbreak
}
\newcommand{\Portability}[1]{\par{{\bf Portability Note:} \sl #1}\par}
\newcommand{\Warning}[1]{\par{{\bf Warning:} \sl #1}\par}
% These are used for reminders, communication between authors, etc.
% There should be no calls to these guys in the final document.
\newcommand{\HeyPaul}[1]{\par{{\bf Hey Paul:} \sl #1}\par}
\newcommand{\ToDo}[1]{\par{{\bf ToDo:} \sl #1}\par}
\newenvironment{outline}{%
\medbreak
\noindent
{\bf Outline: }
\begingroup
\nobreak
\sl
}{%
\endgroup
\nobreak
{\bf End outline.}
\medbreak
}
% Here's how you create figures
%
% \begin{figure*}
% \centerline{
% Foo
% }
% \caption{...}
% \label{...}
% \end{figure*}
\begin{document}
\title{%
Using \Hugs{} as a ``Haskell server''
}
\author{Alastair Reid\\
Reid Consulting (UK) Limited\\
{\tt alastair@reid-consulting-uk.ltd.uk}\\
{\tt http://www.reid-consulting-uk.ltd.uk/alastair/}}
\date{22 June, 2002}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}\label{introduction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Warning: the Haskell server is still under development - you should
expect to see changes in the server API from one release of \Hugs{} to
the next.]
\Hugs{} is normally used as an interactive program. However, there are
situations in which you want to use \Hugs{} as a non-interactive system.
Examples include:
\begin{itemize}
\item
writing shell scripts in Haskell
\item
writing cgi scripts in Haskell
\item
writing Netscape plugins to let you embed Haskell code in HTML documents
(the same way that you might use Javascript or Java)
\end{itemize}
For these purposes, we provide a "\Hugs{} Server API" which provides
access to some of \Hugs{}' innards:
\begin{itemize}
\item
loading/compiling files
\item
compiling expressions
\item
constructing and evaluating ``Graphs''
\end{itemize}
This is not enough to implement the \Hugs{} user interface, but it's good
enough for all the applications listed above. (We've done all three.)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Example}\label{example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Here's a complete example of how to use the \Hugs{} server. This
is a simplified version of the ``runhugs'' program which loads a
file, executes \fun{Main.main} and returns the resulting exit code.
(We've left out all error handling to keep things simple in this
version.)
\begin{verbatim}
1> #include "server.h"
2> extern HugsServerAPI* initHugsServer Args((int,char**));
3>
4> static char* hugs_argv[] = {
5> "runhugs", /* program name */
6> "+l" /* literate scripts as default */
7> };
8> static int hugs_argc = sizeof hugs_argv / sizeof hugs_argv[0];
9>
10> main( int argc, char** argv)
11> {
12> HugsServerAPI* hugs = initHugsServer(hugs_argc,hugs_argv);
13> hugs->setOutputEnable(0);
14> argc--; argv++;
15> hugs->setHugsArgs(argc,argv);
16> hugs->loadFile(argv[0]);
17> hugs->lookupName("Main","main");
18> exit(hugs->doIO());
19> }
\end{verbatim}
Here's what each line does:
\begin{description}
\item[1-2]
Include the server API (included in appendix~\ref{server.c})
\item[4-8]
Declare command line arguments used when initialising the server.
These should consist of the program name (\cexpr{argv[0]}) and
a list of flags. Unlike \Hugs{} you should not include files
to load.
\item[12]
Initialise the server. This returns a ``virtual function table''
which is used to access all other functions in the server API.
(This is described in section~\ref{initHugs}.)
\item[13]
Turn off output from the compiler. This does not affect output
produced by running Haskell code.
\item[14]
Forget the first argument on the command line. On a Unix system,
this will be the name of the above C program.
\item[15]
Set the values seen by the Haskell functions \fun{System.getProgName}
and \fun{System.getArgs}.
\item[16]
Load and compile the file named on the command line.
\item[17-18]
Lookup the Haskell function \fun{Main.main} (which should be defined
in the file we just loaded and should have type \type{IO ()}).
The value returned is used as an exit code.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Initialising the server}\label{initHugs}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The ``Hugs server'' is initialised by calling \cfun{initHugsServer}
\begin{verbatim}
> HugsServerAPI* initHugsServer(
> Int argc,
> String argv[] /* command line flags (-P, etc) */
> );
\end{verbatim}
This loads the standard Prelude and the dynamic typing library (see
section~\ref{dynamic}) and processes any command line flags in argv.
If initialisation succeeds, it returns a ``virtual function table''
containing all the other server functions you can call. That is it
returns a non-null pointer to a struct of type \ctype{HugsServerAPI}.
We'll go through these in detail in the rest of the document --- but
here's the complete list:
\begin{verbatim}
> typedef struct _HugsServerAPI {
> char* (*clearError ) (void);
> void (*setHugsArgs ) (int, char**);
> int (*getNumScripts ) (void);
> void (*reset ) (int);
> void (*setOutputEnable) (unsigned);
> void (*changeDir ) (char*);
> void (*loadProject ) (char*); /* obsolete */
> void (*loadFile ) (char*);
> HVal (*compileExpr ) (char*,char*);
>
> void (*lookupName ) (char*,char*); /* push values onto stack*/
> void (*mkInt ) (int);
> void (*mkString ) (char*);
>
> void (*apply ) (void); /* manipulate top of stack */
>
> int (*evalInt ) (void); /* evaluate top of stack */
> char* (*evalString ) (void);
> int (*doIO ) (void);
>
> HVal (*popHVal ) (void); /* pop stack */
> void (*pushHVal ) (HVal); /* push back onto stack */
> void (*freeHVal ) (HVal);
> } HugsServerAPI;
\end{verbatim}
In the rest of this document, we'll assume that you've put a pointer
to the ``virtual function table'' in a variable called \cvar{hugs} and
we'll write things like this
\begin{verbatim}
> void hugs->loadFile (char*);
\end{verbatim}
to indicate the type of \cfun{hugs->loadFile}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Loading files}\label{loading files}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Loading files is easy enough. Simply call
\cexpr{hugs->loadFile(<name>)}.
\begin{verbatim}
> void hugs->loadFile (char*);
\end{verbatim}
Some programs need to be able to ``unload'' (or ``forget'') some of
the Haskell files that have been loaded. \Hugs{} maintains a
``stack'' of all files it has loaded. To unload some files, it pops
files off the stack. The server API provides two functions for
modifying the stack of files: \cfun{getNumScripts} tells you how large
the stack is; and \cfun{reset} sets the stack to the required size.
\begin{verbatim}
> int hugs->getNumScripts (void);
> void hugs->reset (int);
\end{verbatim}
Typically, one writes code like this to load and execute functions
from a sequence of files. Note that the standard Prelude and
the module \module{MyLibraries} is only loaded once.
\begin{verbatim}
> HugsServerAPI* hugs = initHugsServer(hugs_argc,hugs_argv);
> hugs->loadFile("MyLibraries");
> int baseLevel = hugs->getNumScripts();
> for(int i = 1; i < argc; ++i) {
> hugs->reset(baseLevel);
> hugs->loadFile(argv[i]);
> hugs->lookupName("Main","main");
> hugs->doIO();
> }
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Executing Expressions}\label{evaluating}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
In section~\ref{example} we used \cfun{lookupName} to lookup
\cexpr{"Main.main"} and \cfun{doIO} to execute it. As you've probably
guessed, \cfun{lookupName} leaves a ``pointer'' to \fun{Main.main} on
the stack and \cfun{doIO} evaluates the object found on top of the stack.
Here are some of the other operations which operate on the stack:
\begin{verbatim}
> void hugs->mkInt (int);
> int hugs->evalInt (void);
>
> void hugs->mkString (char*);
> char* hugs->evalString (void);
>
> void hugs->apply (void);
>
> void hugs->lookupName (char*,char*);
> int hugs->doIO (void);
\end{verbatim}
The new functions are as follows:
\begin{itemize}
\item
\cfun{mkInt} pushes (a representation of) an \ctype{int} onto
the stack.
\cfun{evalInt} evaluates the \type{Int} on top of the stack.
\item
Similarily, \cfun{mkString} pushes (a representation of) a
C string onto the stack and
\cfun{evalString} evaluates the \type{String} on top of the stack.
\item
\cfun{apply} pops an argument and a function off the stack (in that
order) and applies the function to the argument. A typical usage
is
\begin{verbatim}
> hugs->lookupName("Foo","ackerman");
> hugs->mkInt(4);
> hugs->apply();
> hugs->mkInt(2);
> hugs->apply();
\end{verbatim}
Alternatively, you might define this macro
\begin{verbatim}
> #define ap(f,x) f; x; hugs->apply();
\end{verbatim}
and write this
\begin{verbatim}
> ap(ap( hugs->lookupName("Foo","factorial")
> , hugs->mkInt(4))
> , hugs->mkInt(2));
\end{verbatim}
\end{itemize}
\ToDo{%
The server API currently provides no way to push floats, chars, etc onto
the stack. There's no real problem in adding this, but we haven't
needed it yet.%
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Haskell Values}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
It's sometimes useful to be able to store the result of a calculation
for later use. These operations allow you to pop Haskell Values
off the stack, store them and later push them back onto the stack.
\begin{verbatim}
> HVal hugs->popHVal (void);
> void hugs->pushHVal (HVal);
> void hugs->freeHVal (HVal);
\end{verbatim}
``Haskell Values'' remain valid if you load additional Haskell files
and if you evaluate expressions but are invalidated by calling
\cfun{reset}.
\Warning{%
No check is performed to detect the use of invalid values; the
result is likely to be messy.%
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Compiling Expressions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The functions described in section~\ref{evaluating} let you evaluate
almost any Haskell expression but are rather painful to use. This
version of the server provides a much more convenient function which
lets you compile arbitrary Haskell expressions.
\begin{verbatim}
> HVal hugs->compileExpr (char*,char*);
\end{verbatim}
The function \cfun{compileExpr} takes two arguments. The first
argument is the name of the module in which to evaluate the
expression. The choice of module determines which functions are in
scope. The second argument is the expression itself.
\Portability{%
The current version of the server includes the full \Hugs{} compiler
so that we can load the Prelude and other libraries. Since the
compiler is included in the server, it is both cheap and easy to
provide \cfun{compileExpr}. In future versions of the server, we'd
like to be able to load precompiled versions of the Prelude and
libraries and omit most of the \Hugs{} compiler. In such a system,
we would also omit \cfun{compileExpr} since it is possible to do
most of what \cfun{compileExpr} does using \cfun{lookupName} and
\cfun{apply}.%
}
\ToDo{%
\cfun{compileExpr} really ought to leave its result on the stack.%
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Dynamic Types}\label{dynamic}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The evaluation mechanisms described above make it very easy to
construct and attempt to evaluate ill-typed objects. To avert
catastrophe, the server typechecks every function application.
The mechanisms used to perform this typecheck are not as flexible
as the Haskell type system for two reasons:
\begin{itemize}
\item
Typechecking is restricted to a small set of base types and
type constructors. If you need to use other types, you'll need
to define new instances of the \class{Typeable} class. Use the
instances in appendix~\ref{dynamic-defn} as examples of how to write
your own instances.
\item
Typechecking is restricted to {\em monomorphic\/} values. Looking
up a polymorphic function will always result in an error. There
are two solutions:
\begin{itemize}
\item
Add monomorphic instances of the functions to your code. For example,
if you need to use \fun{Prelude.length} at 3 different types, you
might write a module containing these definitions
\begin{verbatim}
> length_Int :: [Int] -> Int
> length_Int = length
>
> length_Ints :: [[Int]] -> Int
> length_Ints = length
\end{verbatim}
\item
Use \cfun{compileExpr} to lookup the values at different types
\begin{verbatim}
> HVal length_Int = hugs->compileExpr("Prelude","length :: [Int] -> Int");
> HVal length_Ints = hugs->compileExpr("Prelude","length :: [[Int]] -> Int");
\end{verbatim}
\end{itemize}
In practice, both are equally irritating.
\end{itemize}
\ToDo{%
If we remove \cfun{compileExpr} we should probably improve the dynamic
typing.%
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Handling Errors}\label{errors}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
So far, we have assumed that errors almost never occur. In practice
error-free execution is the exception rather than the rule: the
standard prelude can't be found; filenames are wrong; programs contain
syntax and type errors; modules don't define what they're supposed to;
people look up polymorphic functions; Haskell code returns errors;
etc.
The \Hugs{} server is fairly robust: it tries to catch any errors and
will not perform any further actions until the error is resolved.
The function \cfun{clearError} is used to detect whether an error
has occurred (since the last time \cfun{clearError} was called); to
obtain any compiler output associated with the error; and to reset
an ``error flag''.
\begin{verbatim}
> char* hugs->clearError (void);
\end{verbatim}
All other functions in the server API return immediately if the error
flag is set --- this encourages programmers to call \cfun{clearError}
frequently and prevents the server from being totally corrupted if
\cfun{clearError} is not used.
The output returned by \cfun{clearError} depends on whether or not
compiler output has been redirected to a buffer using the function
\cfun{setOutputEnable}
\begin{verbatim}
> void hugs->setOutputEnable (unsigned);
\end{verbatim}
If compiler output has not been redirected, \cfun{clearError} produces
a brief error message. If compiler output has not been redirected,
then \cfun{clearError} produces an error message followed by all the
output that has been collected since the last time \cfun{clearError}
was called.
Using these features, it's possible to write a more robust version of
the runhugs program given in section~\ref{example}.
\begin{verbatim}
> static void check() {
> char* err = hugs->clearError();
> if (err) {
> fprintf(stderr,"Hugs Error:\n%s\n",err);
> fflush(stderr);
> exit(1);
> }
> }
>
> main( int argc, char** argv)
> {
> int exitCode;
> HugsServerAPI* hugs = initHugsServer(hugs_argc,hugs_argv);
> if (NULL == hugs) {
> fprintf(stderr,"Unable to initialise Hugs\n");
> fflush(stderr);
> exit(1);
> }
> hugs->setOutputEnable(0);
> check();
> argc--; argv++;
> hugs->setHugsArgs(argc,argv);
> if (argc < 1) {
> fprintf(stderr,"hugs standalone requires at least one argument\n");
> fflush(stderr);
> exit(1);
> }
> hugs->loadFile(argv[0]);
> check();
> hugs->lookupName("Main","main");
> exitCode = hugs->doIO();
> check();
> exit(exitCode);
> }
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\appendix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{\cfile{server.h}}\label{server.c}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
This is the current contents of the file \cfile{server.h}. This is
the only file you need to include into programs that use the server.
\begin{verbatim}
/* --------------------------------------------------------------------------
* Definition of the Hugs server API
*
* The Hugs 98 system is Copyright (c) Mark P Jones, Alastair Reid, the
* Yale Haskell Group, and the OGI School of Science & Engineering at OHSU,
* 1994-2003, All rights reserved. It is distributed as free software under
* the license in the file "License", which is included in the distribution.
*
* ------------------------------------------------------------------------*/
#ifndef Args
# if HAVE_PROTOTYPES
# define Args(x) x
# else
# define Args(x) ()
# endif
#endif /* !defined Args */
typedef int HVal; /* Haskell values are represented by stable pointers */
typedef struct _HugsServerAPI {
char* (*clearError ) Args((void));
void (*setHugsArgs ) Args((int, char**));
int (*getNumScripts ) Args((void));
void (*reset ) Args((int));
void (*setOutputEnable) Args((unsigned));
void (*changeDir ) Args((char*));
void (*loadProject ) Args((char*)); /* obsolete */
void (*loadFile ) Args((char*));
HVal (*compileExpr ) Args((char*,char*));
void (*lookupName ) Args((char*,char*)); /* push values onto stack*/
void (*mkInt ) Args((int));
void (*mkString ) Args((char*));
void (*apply ) Args((void)); /* manipulate top of stack */
int (*evalInt ) Args((void)); /* evaluate top of stack */
char* (*evalString ) Args((void));
int (*doIO ) Args((void));
HVal (*popHVal ) Args((void)); /* pop stack */
void (*pushHVal ) Args((HVal)); /* push back onto stack */
void (*freeHVal ) Args((HVal));
} HugsServerAPI;
/* type of "initHugsServer" function */
typedef HugsServerAPI *(*HugsServerInitFun) Args((int, char**));
/* ------------------------------------------------------------------------*/
\end{verbatim}
\section{The \module{Dynamic} module}\label{dynamic-defn}
\begin{verbatim}
module Dynamic
( Typeable(typeOf),
, Dynamic, toDynamic, fromDynamic, dynApply,
, fromDyn, dynApp,
, intToDyn, fromDynInt, strToDyn, fromDynStr,
, Tycon(..), Type(..)
) where
----------------------------------------------------------------
-- Dynamics
----------------------------------------------------------------
data Dynamic = ...
-- The core functions
toDynamic :: Typeable a => a -> Dynamic
fromDynamic :: Typeable a => Dynamic -> Maybe a
dynApply :: Dynamic -> Dynamic -> Maybe Dynamic
-- special cases
fromDyn :: Typeable a => Dynamic -> a
intToDyn :: Int -> Dynamic
strToDyn :: String -> Dynamic
fromDynInt :: Dynamic -> Int
fromDynStr :: Dynamic -> String
runDyn :: Dynamic -> IO ()
dynApp :: Dynamic -> Dynamic -> Dynamic
----------------------------------------------------------------
-- Types
----------------------------------------------------------------
data Tycon = Tycon String deriving Eq
data Type = App Tycon [Type] deriving Eq
unitTC = Tycon "()"
intTC = Tycon "Int"
integerTC = Tycon "Integer"
floatTC = Tycon "Float"
doubleTC = Tycon "Double"
charTC = Tycon "Char"
ioTC = Tycon "IO"
funTC = Tycon "->"
listTC = Tycon "[]"
tup2TC = Tycon "(,)"
class Typeable a where typeOf :: a -> Type
-- Constant Tycons are easy
instance Typeable () where typeOf x = App unitTC []
instance Typeable Int where typeOf x = App intTC []
instance Typeable Integer where typeOf x = App integerTC []
instance Typeable Float where typeOf x = App floatTC []
instance Typeable Double where typeOf x = App doubleTC []
instance Typeable Char where typeOf x = App charTC []
-- Non-constant Tycons require sneakiness
instance Typeable a => Typeable (IO a) where
typeOf m =
case unsafePerformIO m of { r ->
App ioTC [typeOf r]
}
instance (Typeable a, Typeable b) => Typeable (a -> b) where
typeOf f =
-- We use case to bind arg and result to avoid excess polymorphism
case undefined of { arg ->
case f arg of { result ->
App funTC [typeOf arg, typeOf result]
}}
instance Typeable a => Typeable [a] where
typeOf xs = App listTC [typeOf (head xs)]
instance (Typeable a, Typeable b) => Typeable (a,b) where
typeOf p = App tup2TC [typeOf (fst p), typeOf (snd p)]
\end{verbatim}
\end{document}
|