1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
-----------------------------------------------------------------------------
-- |
-- Module : Control.Arrow
-- Copyright : (c) Ross Paterson 2002
-- License : BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer : ross@soi.city.ac.uk
-- Stability : experimental
-- Portability : portable
--
-- Basic arrow definitions, based on
-- /Generalising Monads to Arrows/, by John Hughes,
-- /Science of Computer Programming/ 37, pp67-111, May 2000.
-- plus a couple of definitions ('returnA' and 'loop') from
-- /A New Notation for Arrows/, by Ross Paterson, in /ICFP 2001/,
-- Firenze, Italy, pp229-240.
-- See these papers for the equations these combinators are expected to
-- satisfy. These papers and more information on arrows can be found at
-- <http://www.haskell.org/arrows/>.
module Control.Arrow (
-- * Arrows
Arrow(..), Kleisli(..),
-- ** Derived combinators
returnA, (<<<),
-- * Monoid operations
ArrowZero(..), ArrowPlus(..),
-- * Conditionals
ArrowChoice(..),
-- * Arrow application
ArrowApply(..), ArrowMonad(..), leftApp,
-- * Feedback
ArrowLoop(..)
) where
import Prelude
import Control.Monad
import Control.Monad.Fix
infixr 5 <+>
infixr 3 ***
infixr 3 &&&
infixr 2 +++
infixr 2 |||
infixr 1 >>>
infixr 1 <<<
-- | The basic arrow class.
-- Any instance must define either 'arr' or 'pure' (which are synonyms),
-- as well as '>>>' and 'first'. The other combinators have sensible
-- default definitions, which may be overridden for efficiency.
class Arrow a where
-- | Lift a function to an arrow: you must define either this
-- or 'pure'.
arr :: (b -> c) -> a b c
arr = pure
-- | A synonym for 'arr': you must define one or other of them.
pure :: (b -> c) -> a b c
pure = arr
-- | Left-to-right composition of arrows.
(>>>) :: a b c -> a c d -> a b d
-- | Send the first component of the input through the argument
-- arrow, and copy the rest unchanged to the output.
first :: a b c -> a (b,d) (c,d)
-- | A mirror image of 'first'.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
second :: a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
where swap ~(x,y) = (y,x)
-- | Split the input between the two argument arrows and combine
-- their output. Note that this is in general not a functor.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(***) :: a b c -> a b' c' -> a (b,b') (c,c')
f *** g = first f >>> second g
-- | Fanout: send the input to both argument arrows and combine
-- their output.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(&&&) :: a b c -> a b c' -> a b (c,c')
f &&& g = arr (\b -> (b,b)) >>> f *** g
-- Ordinary functions are arrows.
instance Arrow (->) where
arr f = f
f >>> g = g . f
first f = f *** id
second f = id *** f
-- (f *** g) ~(x,y) = (f x, g y)
-- sorry, although the above defn is fully H'98, nhc98 can't parse it.
(***) f g ~(x,y) = (f x, g y)
-- | Kleisli arrows of a monad.
newtype Kleisli m a b = Kleisli (a -> m b)
instance Monad m => Arrow (Kleisli m) where
arr f = Kleisli (return . f)
Kleisli f >>> Kleisli g = Kleisli (\b -> f b >>= g)
first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d))
second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c))
-- | The identity arrow, which plays the role of 'return' in arrow notation.
returnA :: Arrow a => a b b
returnA = arr id
-- | Right-to-left composition, for a better fit with arrow notation.
(<<<) :: Arrow a => a c d -> a b c -> a b d
f <<< g = g >>> f
class Arrow a => ArrowZero a where
zeroArrow :: a b c
instance MonadPlus m => ArrowZero (Kleisli m) where
zeroArrow = Kleisli (\x -> mzero)
class ArrowZero a => ArrowPlus a where
(<+>) :: a b c -> a b c -> a b c
instance MonadPlus m => ArrowPlus (Kleisli m) where
Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x)
-- | Choice, for arrows that support it. This class underlies the
-- @if@ and @case@ constructs in arrow notation.
-- Any instance must define 'left'. The other combinators have sensible
-- default definitions, which may be overridden for efficiency.
class Arrow a => ArrowChoice a where
-- | Feed marked inputs through the argument arrow, passing the
-- rest through unchanged to the output.
left :: a b c -> a (Either b d) (Either c d)
-- | A mirror image of 'left'.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
right :: a b c -> a (Either d b) (Either d c)
right f = arr mirror >>> left f >>> arr mirror
where mirror (Left x) = Right x
mirror (Right y) = Left y
-- | Split the input between the two argument arrows, retagging
-- and merging their outputs.
-- Note that this is in general not a functor.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(+++) :: a b c -> a b' c' -> a (Either b b') (Either c c')
f +++ g = left f >>> right g
-- | Fanin: Split the input between the two argument arrows and
-- merge their outputs.
--
-- The default definition may be overridden with a more efficient
-- version if desired.
(|||) :: a b d -> a c d -> a (Either b c) d
f ||| g = f +++ g >>> arr untag
where untag (Left x) = x
untag (Right y) = y
instance ArrowChoice (->) where
left f = f +++ id
right f = id +++ f
f +++ g = (Left . f) ||| (Right . g)
(|||) = either
instance Monad m => ArrowChoice (Kleisli m) where
left f = f +++ arr id
right f = arr id +++ f
f +++ g = (f >>> arr Left) ||| (g >>> arr Right)
Kleisli f ||| Kleisli g = Kleisli (either f g)
-- | Some arrows allow application of arrow inputs to other inputs.
class Arrow a => ArrowApply a where
app :: a (a b c, b) c
instance ArrowApply (->) where
app (f,x) = f x
instance Monad m => ArrowApply (Kleisli m) where
app = Kleisli (\(Kleisli f, x) -> f x)
-- | The 'ArrowApply' class is equivalent to 'Monad': any monad gives rise
-- to a 'Kleisli' arrow, and any instance of 'ArrowApply' defines a monad.
newtype ArrowApply a => ArrowMonad a b = ArrowMonad (a () b)
instance ArrowApply a => Monad (ArrowMonad a) where
return x = ArrowMonad (arr (\z -> x))
ArrowMonad m >>= f = ArrowMonad (m >>>
arr (\x -> let ArrowMonad h = f x in (h, ())) >>>
app)
-- | Any instance of 'ArrowApply' can be made into an instance of
-- 'ArrowChoice' by defining 'left' = 'leftApp'.
leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d)
leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) |||
(\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app
-- | The 'loop' operator expresses computations in which an output value is
-- fed back as input, even though the computation occurs only once.
-- It underlies the @rec@ value recursion construct in arrow notation.
class Arrow a => ArrowLoop a where
loop :: a (b,d) (c,d) -> a b c
instance ArrowLoop (->) where
loop f b = let (c,d) = f (b,d) in c
instance MonadFix m => ArrowLoop (Kleisli m) where
loop (Kleisli f) = Kleisli (liftM fst . mfix . f')
where f' x y = f (x, snd y)
|