1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
-----------------------------------------------------------------------------
-- |
-- Module : Control.Concurrent
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : non-portable (concurrency)
--
-- A common interface to a collection of useful concurrency
-- abstractions.
--
-----------------------------------------------------------------------------
module Control.Concurrent (
-- * Concurrent Haskell
-- $conc_intro
-- * Basic concurrency operations
ThreadId,
#ifdef __GLASGOW_HASKELL__
myThreadId,
#endif
forkIO,
#ifdef __GLASGOW_HASKELL__
killThread,
throwTo,
#endif
-- * Scheduling
-- $conc_scheduling
yield, -- :: IO ()
-- ** Blocking
-- $blocking
#ifdef __GLASGOW_HASKELL__
-- ** Waiting
threadDelay, -- :: Int -> IO ()
threadWaitRead, -- :: Int -> IO ()
threadWaitWrite, -- :: Int -> IO ()
#endif
-- * Communication abstractions
module Control.Concurrent.MVar,
module Control.Concurrent.Chan,
module Control.Concurrent.QSem,
module Control.Concurrent.QSemN,
module Control.Concurrent.SampleVar,
-- * Merging of streams
#ifndef __HUGS__
mergeIO, -- :: [a] -> [a] -> IO [a]
nmergeIO, -- :: [[a]] -> IO [a]
#endif
-- $merge
#ifdef __GLASGOW_HASKELL__
-- * Bound Threads
-- $boundthreads
rtsSupportsBoundThreads,
forkOS,
isCurrentThreadBound,
runInBoundThread,
runInUnboundThread
#endif
-- * GHC's implementation of concurrency
-- |This section describes features specific to GHC's
-- implementation of Concurrent Haskell.
-- ** Terminating the program
-- $termination
-- ** Pre-emption
-- $preemption
) where
import Prelude
import Control.Exception as Exception
#ifdef __GLASGOW_HASKELL__
import GHC.Conc
import GHC.TopHandler ( reportStackOverflow, reportError )
import GHC.IOBase ( IO(..) )
import GHC.IOBase ( unsafeInterleaveIO )
import GHC.IOBase ( newIORef, readIORef, writeIORef )
import GHC.Base
import Foreign.StablePtr
import Foreign.C.Types ( CInt )
import Control.Monad ( when )
#endif
#ifdef __HUGS__
import Hugs.ConcBase
#endif
import Control.Concurrent.MVar
import Control.Concurrent.Chan
import Control.Concurrent.QSem
import Control.Concurrent.QSemN
import Control.Concurrent.SampleVar
#ifdef __HUGS__
type ThreadId = ()
#endif
{- $conc_intro
The concurrency extension for Haskell is described in the paper
/Concurrent Haskell/
<http://www.haskell.org/ghc/docs/papers/concurrent-haskell.ps.gz>.
Concurrency is \"lightweight\", which means that both thread creation
and context switching overheads are extremely low. Scheduling of
Haskell threads is done internally in the Haskell runtime system, and
doesn't make use of any operating system-supplied thread packages.
However, if you want to interact with a foreign library that expects your
program to use the operating system-supplied thread package, you can do so
by using 'forkOS' instead of 'forkIO'.
Haskell threads can communicate via 'MVar's, a kind of synchronised
mutable variable (see "Control.Concurrent.MVar"). Several common
concurrency abstractions can be built from 'MVar's, and these are
provided by the "Control.Concurrent" library.
In GHC, threads may also communicate via exceptions.
-}
{- $conc_scheduling
Scheduling may be either pre-emptive or co-operative,
depending on the implementation of Concurrent Haskell (see below
for imformation related to specific compilers). In a co-operative
system, context switches only occur when you use one of the
primitives defined in this module. This means that programs such
as:
> main = forkIO (write 'a') >> write 'b'
> where write c = putChar c >> write c
will print either @aaaaaaaaaaaaaa...@ or @bbbbbbbbbbbb...@,
instead of some random interleaving of @a@s and @b@s. In
practice, cooperative multitasking is sufficient for writing
simple graphical user interfaces.
-}
{- $blocking
Calling a foreign C procedure (such as @getchar@) that blocks waiting
for input will block /all/ threads, unless the @threadsafe@ attribute
is used on the foreign call (and your compiler \/ operating system
supports it). GHC's I\/O system uses non-blocking I\/O internally to
implement thread-friendly I\/O, so calling standard Haskell I\/O
functions blocks only the thread making the call.
-}
-- Thread Ids, specifically the instances of Eq and Ord for these things.
-- The ThreadId type itself is defined in std/PrelConc.lhs.
-- Rather than define a new primitve, we use a little helper function
-- cmp_thread in the RTS.
#ifdef __GLASGOW_HASKELL__
id2TSO :: ThreadId -> ThreadId#
id2TSO (ThreadId t) = t
foreign import ccall unsafe "cmp_thread" cmp_thread :: ThreadId# -> ThreadId# -> Int
-- Returns -1, 0, 1
cmpThread :: ThreadId -> ThreadId -> Ordering
cmpThread t1 t2 =
case cmp_thread (id2TSO t1) (id2TSO t2) of
-1 -> LT
0 -> EQ
_ -> GT -- must be 1
instance Eq ThreadId where
t1 == t2 =
case t1 `cmpThread` t2 of
EQ -> True
_ -> False
instance Ord ThreadId where
compare = cmpThread
foreign import ccall unsafe "rts_getThreadId" getThreadId :: ThreadId# -> Int
instance Show ThreadId where
showsPrec d t =
showString "ThreadId " .
showsPrec d (getThreadId (id2TSO t))
{- |
This sparks off a new thread to run the 'IO' computation passed as the
first argument, and returns the 'ThreadId' of the newly created
thread.
The new thread will be a lightweight thread; if you want to use a foreign
library that uses thread-local storage, use 'forkOS' instead.
-}
forkIO :: IO () -> IO ThreadId
forkIO action = IO $ \ s ->
case (fork# action_plus s) of (# s1, id #) -> (# s1, ThreadId id #)
where
action_plus = Exception.catch action childHandler
childHandler :: Exception -> IO ()
childHandler err = Exception.catch (real_handler err) childHandler
real_handler :: Exception -> IO ()
real_handler ex =
case ex of
-- ignore thread GC and killThread exceptions:
BlockedOnDeadMVar -> return ()
AsyncException ThreadKilled -> return ()
-- report all others:
AsyncException StackOverflow -> reportStackOverflow False
ErrorCall s -> reportError False s
other -> reportError False (showsPrec 0 other "\n")
#endif /* __GLASGOW_HASKELL__ */
#ifndef __HUGS__
max_buff_size :: Int
max_buff_size = 1
mergeIO :: [a] -> [a] -> IO [a]
nmergeIO :: [[a]] -> IO [a]
-- $merge
-- The 'mergeIO' and 'nmergeIO' functions fork one thread for each
-- input list that concurrently evaluates that list; the results are
-- merged into a single output list.
--
-- Note: Hugs does not provide these functions, since they require
-- preemptive multitasking.
mergeIO ls rs
= newEmptyMVar >>= \ tail_node ->
newMVar tail_node >>= \ tail_list ->
newQSem max_buff_size >>= \ e ->
newMVar 2 >>= \ branches_running ->
let
buff = (tail_list,e)
in
forkIO (suckIO branches_running buff ls) >>
forkIO (suckIO branches_running buff rs) >>
takeMVar tail_node >>= \ val ->
signalQSem e >>
return val
type Buffer a
= (MVar (MVar [a]), QSem)
suckIO :: MVar Int -> Buffer a -> [a] -> IO ()
suckIO branches_running buff@(tail_list,e) vs
= case vs of
[] -> takeMVar branches_running >>= \ val ->
if val == 1 then
takeMVar tail_list >>= \ node ->
putMVar node [] >>
putMVar tail_list node
else
putMVar branches_running (val-1)
(x:xs) ->
waitQSem e >>
takeMVar tail_list >>= \ node ->
newEmptyMVar >>= \ next_node ->
unsafeInterleaveIO (
takeMVar next_node >>= \ y ->
signalQSem e >>
return y) >>= \ next_node_val ->
putMVar node (x:next_node_val) >>
putMVar tail_list next_node >>
suckIO branches_running buff xs
nmergeIO lss
= let
len = length lss
in
newEmptyMVar >>= \ tail_node ->
newMVar tail_node >>= \ tail_list ->
newQSem max_buff_size >>= \ e ->
newMVar len >>= \ branches_running ->
let
buff = (tail_list,e)
in
mapIO (\ x -> forkIO (suckIO branches_running buff x)) lss >>
takeMVar tail_node >>= \ val ->
signalQSem e >>
return val
where
mapIO f xs = sequence (map f xs)
#endif /* __HUGS__ */
#ifdef __GLASGOW_HASKELL__
-- ---------------------------------------------------------------------------
-- Bound Threads
{- $boundthreads
Support for multiple operating system threads and bound threads as described
below is currently only available in the GHC runtime system when the runtime system
has been compiled using a special option.
When recompiling GHC, use .\/configure --enable-threaded-rts to enable this.
To find your GHC has already been compiled that way, use
'rtsSupportsBoundThreads' from GHCi.
Other Haskell systems do not currently support multiple operating system threads.
A bound thread is a haskell thread that is /bound/ to an operating system
thread. While the bound thread is still scheduled by the Haskell run-time
system, the operating system thread takes care of all the foreign calls made
by the bound thread.
To a foreign library, the bound thread will look exactly like an ordinary
operating system thread created using OS functions like @pthread_create@
or @CreateThread@.
Bound threads can be created using the 'forkOS' function below. All foreign
exported functions are run in a bound thread (bound to the OS thread that
called the function). Also, the @main@ action of every Haskell program is
run in a bound thread.
Why do we need this? Because if a foreign library is called from a thread
created using 'forkIO', it won't have access to any /thread-local state/ -
state variables that have specific values for each OS thread
(see POSIX's @pthread_key_create@ or Win32's @TlsAlloc@). Therefore, some
libraries (OpenGL, for example) will not work from a thread created using
'forkIO'. They work fine in threads created using 'forkOS' or when called
from @main@ or from a @foreign export@.
-}
-- | 'True' if bound threads are supported.
-- If @rtsSupportsBoundThreads@ is 'False', 'isCurrentThreadBound'
-- will always return 'False' and both 'forkOS' and 'runInBoundThread' will
-- fail.
foreign import ccall rtsSupportsBoundThreads :: Bool
{- |
Like 'forkIO', this sparks off a new thread to run the 'IO' computation passed as the
first argument, and returns the 'ThreadId' of the newly created
thread.
However, @forkOS@ uses operating system-supplied multithreading support to create
a new operating system thread. The new thread is /bound/, which means that
all foreign calls made by the 'IO' computation are guaranteed to be executed
in this new operating system thread; also, the operating system thread is not
used for any other foreign calls.
This means that you can use all kinds of foreign libraries from this thread
(even those that rely on thread-local state), without the limitations of 'forkIO'.
-}
forkOS :: IO () -> IO ThreadId
foreign export ccall forkOS_entry
:: StablePtr (IO ()) -> IO ()
foreign import ccall "forkOS_entry" forkOS_entry_reimported
:: StablePtr (IO ()) -> IO ()
forkOS_entry stableAction = do
action <- deRefStablePtr stableAction
action
foreign import ccall forkOS_createThread
:: StablePtr (IO ()) -> IO CInt
forkOS action
| rtsSupportsBoundThreads = do
mv <- newEmptyMVar
let action_plus = Exception.catch action childHandler
entry <- newStablePtr (myThreadId >>= putMVar mv >> action_plus)
err <- forkOS_createThread entry
when (err /= 0) $ fail "Cannot create OS thread."
tid <- takeMVar mv
freeStablePtr entry
return tid
| otherwise = fail "RTS not built to support multiple OS threads."
-- | Returns 'True' if the calling thread is /bound/, that is, if it is
-- safe to use foreign libraries that rely on thread-local state from the
-- calling thread.
isCurrentThreadBound :: IO Bool
isCurrentThreadBound = IO $ \ s# ->
case isCurrentThreadBound# s# of
(# s2#, flg #) -> (# s2#, not (flg ==# 0#) #)
{- |
Run the 'IO' computation passed as the first argument. If the calling thread
is not /bound/, a bound thread is created temporarily. @runInBoundThread@
doesn't finish until the 'IO' computation finishes.
You can wrap a series of foreign function calls that rely on thread-local state
with @runInBoundThread@ so that you can use them without knowing whether the
current thread is /bound/.
-}
runInBoundThread :: IO a -> IO a
runInBoundThread action
| rtsSupportsBoundThreads = do
bound <- isCurrentThreadBound
if bound
then action
else do
ref <- newIORef undefined
let action_plus = Exception.try action >>= writeIORef ref
resultOrException <-
bracket (newStablePtr action_plus)
freeStablePtr
(\cEntry -> forkOS_entry_reimported cEntry >> readIORef ref)
case resultOrException of
Left exception -> Exception.throw exception
Right result -> return result
| otherwise = fail "RTS not built to support multiple OS threads."
{- |
Run the 'IO' computation passed as the first argument. If the calling thread
is /bound/, an unbound thread is created temporarily using 'forkIO'.
@runInBoundThread@ doesn't finish until the 'IO' computation finishes.
Use this function /only/ in the rare case that you have actually observed a
performance loss due to the use of bound threads. A program that
doesn't need it's main thread to be bound and makes /heavy/ use of concurrency
(e.g. a web server), might want to wrap it's @main@ action in
@runInUnboundThread@.
-}
runInUnboundThread :: IO a -> IO a
runInUnboundThread action = do
bound <- isCurrentThreadBound
if bound
then do
mv <- newEmptyMVar
forkIO (Exception.try action >>= putMVar mv)
takeMVar mv >>= \either -> case either of
Left exception -> Exception.throw exception
Right result -> return result
else action
#endif /* __GLASGOW_HASKELL__ */
-- ---------------------------------------------------------------------------
-- More docs
{- $termination
In a standalone GHC program, only the main thread is
required to terminate in order for the process to terminate.
Thus all other forked threads will simply terminate at the same
time as the main thread (the terminology for this kind of
behaviour is \"daemonic threads\").
If you want the program to wait for child threads to
finish before exiting, you need to program this yourself. A
simple mechanism is to have each child thread write to an
'MVar' when it completes, and have the main
thread wait on all the 'MVar's before
exiting:
> myForkIO :: IO () -> IO (MVar ())
> myForkIO io = do
> mvar \<- newEmptyMVar
> forkIO (io \`finally\` putMVar mvar ())
> return mvar
Note that we use 'finally' from the
"Control.Exception" module to make sure that the
'MVar' is written to even if the thread dies or
is killed for some reason.
A better method is to keep a global list of all child
threads which we should wait for at the end of the program:
> children :: MVar [MVar ()]
> children = unsafePerformIO (newMVar [])
>
> waitForChildren :: IO ()
> waitForChildren = do
> (mvar:mvars) \<- takeMVar children
> putMVar children mvars
> takeMVar mvar
> waitForChildren
>
> forkChild :: IO () -> IO ()
> forkChild io = do
> mvar \<- newEmptyMVar
> forkIO (p \`finally\` putMVar mvar ())
> childs \<- takeMVar children
> putMVar children (mvar:childs)
>
> later = flip finally
>
> main =
> later waitForChildren $
> ...
The main thread principle also applies to calls to Haskell from
outside, using @foreign export@. When the @foreign export@ed
function is invoked, it starts a new main thread, and it returns
when this main thread terminates. If the call causes new
threads to be forked, they may remain in the system after the
@foreign export@ed function has returned.
-}
{- $preemption
GHC implements pre-emptive multitasking: the execution of
threads are interleaved in a random fashion. More specifically,
a thread may be pre-empted whenever it allocates some memory,
which unfortunately means that tight loops which do no
allocation tend to lock out other threads (this only seems to
happen with pathalogical benchmark-style code, however).
The rescheduling timer runs on a 20ms granularity by
default, but this may be altered using the
@-i\<n\>@ RTS option. After a rescheduling
\"tick\" the running thread is pre-empted as soon as
possible.
One final note: the
@aaaa@ @bbbb@ example may not
work too well on GHC (see Scheduling, above), due
to the locking on a 'System.IO.Handle'. Only one thread
may hold the lock on a 'System.IO.Handle' at any one
time, so if a reschedule happens while a thread is holding the
lock, the other thread won't be able to run. The upshot is that
the switch from @aaaa@ to
@bbbbb@ happens infrequently. It can be
improved by lowering the reschedule tick period. We also have a
patch that causes a reschedule whenever a thread waiting on a
lock is woken up, but haven't found it to be useful for anything
other than this example :-)
-}
|