1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Monad
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- The 'Functor', 'Monad' and 'MonadPlus' classes,
-- with some useful operations on monads.
module Control.Monad
(
-- * Functor and monad classes
Functor(fmap)
, Monad((>>=), (>>), return, fail)
, MonadPlus ( -- class context: Monad
mzero -- :: (MonadPlus m) => m a
, mplus -- :: (MonadPlus m) => m a -> m a -> m a
)
-- * Functions
-- ** Naming conventions
-- $naming
-- ** Basic functions from the "Prelude"
, mapM -- :: (Monad m) => (a -> m b) -> [a] -> m [b]
, mapM_ -- :: (Monad m) => (a -> m b) -> [a] -> m ()
, sequence -- :: (Monad m) => [m a] -> m [a]
, sequence_ -- :: (Monad m) => [m a] -> m ()
, (=<<) -- :: (Monad m) => (a -> m b) -> m a -> m b
-- ** Generalisations of list functions
, join -- :: (Monad m) => m (m a) -> m a
, msum -- :: (MonadPlus m) => [m a] -> m a
, filterM -- :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
, mapAndUnzipM -- :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
, zipWithM -- :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
, zipWithM_ -- :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
, foldM -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
, foldM_ -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m ()
, replicateM -- :: (Monad m) => Int -> m a -> m [a]
, replicateM_ -- :: (Monad m) => Int -> m a -> m ()
-- ** Conditional execution of monadic expressions
, guard -- :: (MonadPlus m) => Bool -> m ()
, when -- :: (Monad m) => Bool -> m () -> m ()
, unless -- :: (Monad m) => Bool -> m () -> m ()
-- ** Monadic lifting operators
-- $lifting
, liftM -- :: (Monad m) => (a -> b) -> (m a -> m b)
, liftM2 -- :: (Monad m) => (a -> b -> c) -> (m a -> m b -> m c)
, liftM3 -- :: ...
, liftM4 -- :: ...
, liftM5 -- :: ...
, ap -- :: (Monad m) => m (a -> b) -> m a -> m b
) where
import Data.Maybe
#ifdef __GLASGOW_HASKELL__
import GHC.List
import GHC.Base
#endif
#ifdef __GLASGOW_HASKELL__
infixr 1 =<<
-- -----------------------------------------------------------------------------
-- Prelude monad functions
{-# SPECIALISE (=<<) :: (a -> [b]) -> [a] -> [b] #-}
(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x = x >>= f
sequence :: Monad m => [m a] -> m [a]
{-# INLINE sequence #-}
sequence ms = foldr k (return []) ms
where
k m m' = do { x <- m; xs <- m'; return (x:xs) }
sequence_ :: Monad m => [m a] -> m ()
{-# INLINE sequence_ #-}
sequence_ ms = foldr (>>) (return ()) ms
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
{-# INLINE mapM #-}
mapM f as = sequence (map f as)
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
{-# INLINE mapM_ #-}
mapM_ f as = sequence_ (map f as)
#endif /* __GLASGOW_HASKELL__ */
-- -----------------------------------------------------------------------------
-- |The MonadPlus class definition
class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a
instance MonadPlus [] where
mzero = []
mplus = (++)
instance MonadPlus Maybe where
mzero = Nothing
Nothing `mplus` ys = ys
xs `mplus` _ys = xs
-- -----------------------------------------------------------------------------
-- Functions mandated by the Prelude
guard :: (MonadPlus m) => Bool -> m ()
guard True = return ()
guard False = mzero
-- This subsumes the list-based filter function.
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
filterM _ [] = return []
filterM p (x:xs) = do
flg <- p x
ys <- filterM p xs
return (if flg then x:ys else ys)
-- This subsumes the list-based concat function.
msum :: MonadPlus m => [m a] -> m a
{-# INLINE msum #-}
msum = foldr mplus mzero
-- -----------------------------------------------------------------------------
-- Other monad functions
-- | The 'join' function is the conventional monad join operator. It is used to
-- remove one level of monadic structure, projecting its bound argument into the
-- outer level.
join :: (Monad m) => m (m a) -> m a
join x = x >>= id
-- | The 'mapAndUnzipM' function maps its first argument over a list, returning
-- the result as a pair of lists. This function is mainly used with complicated
-- data structures or a state-transforming monad.
mapAndUnzipM :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip
-- | The 'zipWithM' function generalises 'zipWith' to arbitrary monads.
zipWithM :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM f xs ys = sequence (zipWith f xs ys)
-- | 'zipWithM_' is the extension of 'zipWithM' which ignores the final result.
zipWithM_ :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ f xs ys = sequence_ (zipWith f xs ys)
{- | The 'foldM' function is analogous to 'foldl', except that its result is
encapsulated in a monad. Note that 'foldM' works from left-to-right over
the list arguments. This could be an issue where '(>>)' and the `folded
function' are not commutative.
> foldM f a1 [x1, x2, ..., xm ]
==
> do
> a2 <- f a1 x1
> a3 <- f a2 x2
> ...
> f am xm
If right-to-left evaluation is required, the input list should be reversed.
-}
foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldM _ a [] = return a
foldM f a (x:xs) = f a x >>= \fax -> foldM f fax xs
foldM_ :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m ()
foldM_ f a xs = foldM f a xs >> return ()
replicateM :: (Monad m) => Int -> m a -> m [a]
replicateM n x = sequence (replicate n x)
replicateM_ :: (Monad m) => Int -> m a -> m ()
replicateM_ n x = sequence_ (replicate n x)
{- | Conditional execution of monadic expressions. For example,
> when debug (putStr "Debugging\n")
will output the string @Debugging\\n@ if the Boolean value @debug@ is 'True',
and otherwise do nothing.
-}
when :: (Monad m) => Bool -> m () -> m ()
when p s = if p then s else return ()
-- | The reverse of 'when'.
unless :: (Monad m) => Bool -> m () -> m ()
unless p s = if p then return () else s
{- $lifting
The monadic lifting operators promote a function to a monad.
The function arguments are scanned left to right. For example,
> liftM2 (+) [0,1] [0,2] = [0,2,1,3]
> liftM2 (+) (Just 1) Nothing = Nothing
-}
liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r
liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM3 :: (Monad m) => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
liftM4 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
liftM5 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
liftM f m1 = do { x1 <- m1; return (f x1) }
liftM2 f m1 m2 = do { x1 <- m1; x2 <- m2; return (f x1 x2) }
liftM3 f m1 m2 m3 = do { x1 <- m1; x2 <- m2; x3 <- m3; return (f x1 x2 x3) }
liftM4 f m1 m2 m3 m4 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; return (f x1 x2 x3 x4) }
liftM5 f m1 m2 m3 m4 m5 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; x5 <- m5; return (f x1 x2 x3 x4 x5) }
{- | In many situations, the 'liftM' operations can be replaced by uses of
'ap', which promotes function application.
> return f `ap` x1 `ap` ... `ap` xn
is equivalent to
> liftMn f x1 x2 ... xn
-}
ap :: (Monad m) => m (a -> b) -> m a -> m b
ap = liftM2 id
{- $naming
The functions in this library use the following naming conventions:
* A postfix \`M\' always stands for a function in the Kleisli category:
@m@ is added to function results (modulo currying) and nowhere else.
So, for example,
> filter :: (a -> Bool) -> [a] -> [a]
> filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
* A postfix \`_\' changes the result type from @(m a)@ to @(m ())@.
Thus (in the "Prelude"):
> sequence :: Monad m => [m a] -> m [a]
> sequence_ :: Monad m => [m a] -> m ()
* A prefix \`m\' generalises an existing function to a monadic form.
Thus, for example:
> sum :: Num a => [a] -> a
> msum :: MonadPlus m => [m a] -> m a
-}
|