1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
-----------------------------------------------------------------------------
-- |
-- Module : Data.Complex
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- Complex numbers.
--
-----------------------------------------------------------------------------
module Data.Complex
( Complex((:+))
, realPart -- :: (RealFloat a) => Complex a -> a
, imagPart -- :: (RealFloat a) => Complex a -> a
, conjugate -- :: (RealFloat a) => Complex a -> Complex a
, mkPolar -- :: (RealFloat a) => a -> a -> Complex a
, cis -- :: (RealFloat a) => a -> Complex a
, polar -- :: (RealFloat a) => Complex a -> (a,a)
, magnitude -- :: (RealFloat a) => Complex a -> a
, phase -- :: (RealFloat a) => Complex a -> a
-- Complex instances:
--
-- (RealFloat a) => Eq (Complex a)
-- (RealFloat a) => Read (Complex a)
-- (RealFloat a) => Show (Complex a)
-- (RealFloat a) => Num (Complex a)
-- (RealFloat a) => Fractional (Complex a)
-- (RealFloat a) => Floating (Complex a)
--
-- Implementation checked wrt. Haskell 98 lib report, 1/99.
) where
import Prelude
#ifndef __NHC__
import Data.Typeable
#endif
#ifdef __HUGS__
import Hugs.Prelude(Num(fromInt), Fractional(fromDouble))
#endif
infix 6 :+
-- -----------------------------------------------------------------------------
-- The Complex type
data (RealFloat a) => Complex a = !a :+ !a deriving (Eq, Read, Show)
-- -----------------------------------------------------------------------------
-- Functions over Complex
realPart, imagPart :: (RealFloat a) => Complex a -> a
realPart (x :+ _) = x
imagPart (_ :+ y) = y
{-# SPECIALISE conjugate :: Complex Double -> Complex Double #-}
conjugate :: (RealFloat a) => Complex a -> Complex a
conjugate (x:+y) = x :+ (-y)
{-# SPECIALISE mkPolar :: Double -> Double -> Complex Double #-}
mkPolar :: (RealFloat a) => a -> a -> Complex a
mkPolar r theta = r * cos theta :+ r * sin theta
{-# SPECIALISE cis :: Double -> Complex Double #-}
cis :: (RealFloat a) => a -> Complex a
cis theta = cos theta :+ sin theta
{-# SPECIALISE polar :: Complex Double -> (Double,Double) #-}
polar :: (RealFloat a) => Complex a -> (a,a)
polar z = (magnitude z, phase z)
{-# SPECIALISE magnitude :: Complex Double -> Double #-}
magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) = scaleFloat k
(sqrt ((scaleFloat mk x)^(2::Int) + (scaleFloat mk y)^(2::Int)))
where k = max (exponent x) (exponent y)
mk = - k
{-# SPECIALISE phase :: Complex Double -> Double #-}
phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0) = 0 -- SLPJ July 97 from John Peterson
phase (x:+y) = atan2 y x
-- -----------------------------------------------------------------------------
-- Instances of Complex
#ifndef __NHC__
#include "Typeable.h"
INSTANCE_TYPEABLE1(Complex,complexTc,"Complex")
#endif
instance (RealFloat a) => Num (Complex a) where
{-# SPECIALISE instance Num (Complex Float) #-}
{-# SPECIALISE instance Num (Complex Double) #-}
(x:+y) + (x':+y') = (x+x') :+ (y+y')
(x:+y) - (x':+y') = (x-x') :+ (y-y')
(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')
negate (x:+y) = negate x :+ negate y
abs z = magnitude z :+ 0
signum 0 = 0
signum z@(x:+y) = x/r :+ y/r where r = magnitude z
fromInteger n = fromInteger n :+ 0
#ifdef __HUGS__
fromInt n = fromInt n :+ 0
#endif
instance (RealFloat a) => Fractional (Complex a) where
{-# SPECIALISE instance Fractional (Complex Float) #-}
{-# SPECIALISE instance Fractional (Complex Double) #-}
(x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
where x'' = scaleFloat k x'
y'' = scaleFloat k y'
k = - max (exponent x') (exponent y')
d = x'*x'' + y'*y''
fromRational a = fromRational a :+ 0
#ifdef __HUGS__
fromDouble a = fromDouble a :+ 0
#endif
instance (RealFloat a) => Floating (Complex a) where
{-# SPECIALISE instance Floating (Complex Float) #-}
{-# SPECIALISE instance Floating (Complex Double) #-}
pi = pi :+ 0
exp (x:+y) = expx * cos y :+ expx * sin y
where expx = exp x
log z = log (magnitude z) :+ phase z
sqrt 0 = 0
sqrt z@(x:+y) = u :+ (if y < 0 then -v else v)
where (u,v) = if x < 0 then (v',u') else (u',v')
v' = abs y / (u'*2)
u' = sqrt ((magnitude z + abs x) / 2)
sin (x:+y) = sin x * cosh y :+ cos x * sinh y
cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)
tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
where sinx = sin x
cosx = cos x
sinhy = sinh y
coshy = cosh y
sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
where siny = sin y
cosy = cos y
sinhx = sinh x
coshx = cosh x
asin z@(x:+y) = y':+(-x')
where (x':+y') = log (((-y):+x) + sqrt (1 - z*z))
acos z = y'':+(-x'')
where (x'':+y'') = log (z + ((-y'):+x'))
(x':+y') = sqrt (1 - z*z)
atan z@(x:+y) = y':+(-x')
where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))
asinh z = log (z + sqrt (1+z*z))
acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))
atanh z = log ((1+z) / sqrt (1-z*z))
|