File: Complex.hs

package info (click to toggle)
hugs98 98.200311-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 12,964 kB
  • ctags: 8,084
  • sloc: ansic: 67,521; haskell: 61,497; xml: 4,566; sh: 3,264; cpp: 1,936; yacc: 1,094; makefile: 915; cs: 883; sed: 10
file content (171 lines) | stat: -rw-r--r-- 5,970 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Complex
-- Copyright   :  (c) The University of Glasgow 2001
-- License     :  BSD-style (see the file libraries/base/LICENSE)
-- 
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- Complex numbers.
--
-----------------------------------------------------------------------------

module Data.Complex
	( Complex((:+))
	
	, realPart	-- :: (RealFloat a) => Complex a -> a
	, imagPart      -- :: (RealFloat a) => Complex a -> a
	, conjugate     -- :: (RealFloat a) => Complex a -> Complex a
	, mkPolar       -- :: (RealFloat a) => a -> a -> Complex a
	, cis           -- :: (RealFloat a) => a -> Complex a
	, polar         -- :: (RealFloat a) => Complex a -> (a,a)
	, magnitude     -- :: (RealFloat a) => Complex a -> a
	, phase         -- :: (RealFloat a) => Complex a -> a
	
	-- Complex instances:
	--
	--  (RealFloat a) => Eq         (Complex a)
	--  (RealFloat a) => Read       (Complex a)
	--  (RealFloat a) => Show       (Complex a)
	--  (RealFloat a) => Num        (Complex a)
	--  (RealFloat a) => Fractional (Complex a)
	--  (RealFloat a) => Floating   (Complex a)
	-- 
        -- Implementation checked wrt. Haskell 98 lib report, 1/99.

        )  where

import Prelude

#ifndef __NHC__
import Data.Typeable
#endif

#ifdef __HUGS__
import Hugs.Prelude(Num(fromInt), Fractional(fromDouble))
#endif

infix  6  :+

-- -----------------------------------------------------------------------------
-- The Complex type

data  (RealFloat a)     => Complex a = !a :+ !a  deriving (Eq, Read, Show)


-- -----------------------------------------------------------------------------
-- Functions over Complex

realPart, imagPart :: (RealFloat a) => Complex a -> a
realPart (x :+ _) =  x
imagPart (_ :+ y) =  y

{-# SPECIALISE conjugate :: Complex Double -> Complex Double #-}
conjugate	 :: (RealFloat a) => Complex a -> Complex a
conjugate (x:+y) =  x :+ (-y)

{-# SPECIALISE mkPolar :: Double -> Double -> Complex Double #-}
mkPolar		 :: (RealFloat a) => a -> a -> Complex a
mkPolar r theta	 =  r * cos theta :+ r * sin theta

{-# SPECIALISE cis :: Double -> Complex Double #-}
cis		 :: (RealFloat a) => a -> Complex a
cis theta	 =  cos theta :+ sin theta

{-# SPECIALISE polar :: Complex Double -> (Double,Double) #-}
polar		 :: (RealFloat a) => Complex a -> (a,a)
polar z		 =  (magnitude z, phase z)

{-# SPECIALISE magnitude :: Complex Double -> Double #-}
magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) =  scaleFloat k
		     (sqrt ((scaleFloat mk x)^(2::Int) + (scaleFloat mk y)^(2::Int)))
		    where k  = max (exponent x) (exponent y)
		          mk = - k

{-# SPECIALISE phase :: Complex Double -> Double #-}
phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0)   = 0		-- SLPJ July 97 from John Peterson
phase (x:+y)	 = atan2 y x


-- -----------------------------------------------------------------------------
-- Instances of Complex

#ifndef __NHC__
#include "Typeable.h"
INSTANCE_TYPEABLE1(Complex,complexTc,"Complex")
#endif

instance  (RealFloat a) => Num (Complex a)  where
    {-# SPECIALISE instance Num (Complex Float) #-}
    {-# SPECIALISE instance Num (Complex Double) #-}
    (x:+y) + (x':+y')	=  (x+x') :+ (y+y')
    (x:+y) - (x':+y')	=  (x-x') :+ (y-y')
    (x:+y) * (x':+y')	=  (x*x'-y*y') :+ (x*y'+y*x')
    negate (x:+y)	=  negate x :+ negate y
    abs z		=  magnitude z :+ 0
    signum 0		=  0
    signum z@(x:+y)	=  x/r :+ y/r  where r = magnitude z
    fromInteger n	=  fromInteger n :+ 0
#ifdef __HUGS__
    fromInt n		=  fromInt n :+ 0
#endif

instance  (RealFloat a) => Fractional (Complex a)  where
    {-# SPECIALISE instance Fractional (Complex Float) #-}
    {-# SPECIALISE instance Fractional (Complex Double) #-}
    (x:+y) / (x':+y')	=  (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
			   where x'' = scaleFloat k x'
				 y'' = scaleFloat k y'
				 k   = - max (exponent x') (exponent y')
				 d   = x'*x'' + y'*y''

    fromRational a	=  fromRational a :+ 0
#ifdef __HUGS__
    fromDouble a	=  fromDouble a :+ 0
#endif

instance  (RealFloat a) => Floating (Complex a)	where
    {-# SPECIALISE instance Floating (Complex Float) #-}
    {-# SPECIALISE instance Floating (Complex Double) #-}
    pi             =  pi :+ 0
    exp (x:+y)     =  expx * cos y :+ expx * sin y
                      where expx = exp x
    log z          =  log (magnitude z) :+ phase z

    sqrt 0         =  0
    sqrt z@(x:+y)  =  u :+ (if y < 0 then -v else v)
                      where (u,v) = if x < 0 then (v',u') else (u',v')
                            v'    = abs y / (u'*2)
                            u'    = sqrt ((magnitude z + abs x) / 2)

    sin (x:+y)     =  sin x * cosh y :+ cos x * sinh y
    cos (x:+y)     =  cos x * cosh y :+ (- sin x * sinh y)
    tan (x:+y)     =  (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
                      where sinx  = sin x
                            cosx  = cos x
                            sinhy = sinh y
                            coshy = cosh y

    sinh (x:+y)    =  cos y * sinh x :+ sin  y * cosh x
    cosh (x:+y)    =  cos y * cosh x :+ sin y * sinh x
    tanh (x:+y)    =  (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
                      where siny  = sin y
                            cosy  = cos y
                            sinhx = sinh x
                            coshx = cosh x

    asin z@(x:+y)  =  y':+(-x')
                      where  (x':+y') = log (((-y):+x) + sqrt (1 - z*z))
    acos z         =  y'':+(-x'')
                      where (x'':+y'') = log (z + ((-y'):+x'))
                            (x':+y')   = sqrt (1 - z*z)
    atan z@(x:+y)  =  y':+(-x')
                      where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))

    asinh z        =  log (z + sqrt (1+z*z))
    acosh z        =  log (z + (z+1) * sqrt ((z-1)/(z+1)))
    atanh z        =  log ((1+z) / sqrt (1-z*z))