File: Typeable.hs

package info (click to toggle)
hugs98 98.200311-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 12,964 kB
  • ctags: 8,084
  • sloc: ansic: 67,521; haskell: 61,497; xml: 4,566; sh: 3,264; cpp: 1,936; yacc: 1,094; makefile: 915; cs: 883; sed: 10
file content (489 lines) | stat: -rw-r--r-- 14,539 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Typeable
-- Copyright   :  (c) The University of Glasgow 2001
-- License     :  BSD-style (see the file libraries/base/LICENSE)
-- 
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- The Typeable class reifies types to some extent by associating type
-- representations to types. These type representations can be compared,
-- and one can in turn define a type-safe cast operation. To this end,
-- an unsafe cast is guarded by a test for type (representation)
-- equivalence. The module Data.Dynamic uses Typeable for an
-- implementation of dynamics. The module Data.Generics uses Typeable
-- and type-safe cast (but not dynamics) to support the \"Scrap your
-- boilerplate\" style of generic programming.
--
-----------------------------------------------------------------------------

module Data.Typeable
  (

	-- * The Typeable class
	Typeable( typeOf ),	-- :: a -> TypeRep

	-- * Type-safe cast
	cast,			-- :: (Typeable a, Typeable b) => a -> Maybe b
	castss,			-- a cast for kind "* -> *"
	castarr,		-- another convenient variation

	-- * Type representations
	TypeRep,	-- abstract, instance of: Eq, Show, Typeable
	TyCon,		-- abstract, instance of: Eq, Show, Typeable

	-- * Construction of type representations
	mkTyCon,	-- :: String  -> TyCon
	mkAppTy,	-- :: TyCon   -> [TypeRep] -> TypeRep
	mkFunTy,	-- :: TypeRep -> TypeRep   -> TypeRep
	applyTy,	-- :: TypeRep -> TypeRep   -> Maybe TypeRep

	-- * Observation of type representations
	typerepTyCon,	-- :: TypeRep -> TyCon
	typerepArgs,	-- :: TypeRep -> [TypeRep]
	tyconString	-- :: TyCon   -> String


  ) where


import qualified Data.HashTable as HT
import Data.Maybe
import Data.Either
import Data.Int
import Data.Word
import Data.List( foldl )

#ifdef __GLASGOW_HASKELL__
import GHC.Base
import GHC.Show
import GHC.Err
import GHC.Num
import GHC.Float
import GHC.Real( rem, Ratio )
import GHC.IOBase
import GHC.Ptr		-- So we can give Typeable instance for Ptr
import GHC.Stable	-- So we can give Typeable instance for StablePtr
#endif

#ifdef __HUGS__
import Hugs.Prelude
import Hugs.IO
import Hugs.IORef
import Hugs.IOExts
#endif

#ifdef __GLASGOW_HASKELL__
unsafeCoerce :: a -> b
unsafeCoerce = unsafeCoerce#
#endif

#ifdef __NHC__
import NonStdUnsafeCoerce (unsafeCoerce)
import NHC.IOExtras (IORef,newIORef,readIORef,writeIORef,unsafePerformIO)
#else
#include "Typeable.h"
#endif


#ifndef __HUGS__
-------------------------------------------------------------
--
--		Type representations
--
-------------------------------------------------------------


-- | A concrete representation of a (monomorphic) type.  'TypeRep'
-- supports reasonably efficient equality.
data TypeRep = TypeRep !Key TyCon [TypeRep] 

-- Compare keys for equality
instance Eq TypeRep where
  (TypeRep k1 _ _) == (TypeRep k2 _ _) = k1 == k2

-- | An abstract representation of a type constructor.  'TyCon' objects can
-- be built using 'mkTyCon'.
data TyCon = TyCon !Key String

instance Eq TyCon where
  (TyCon t1 _) == (TyCon t2 _) = t1 == t2

#endif

	-- 
	-- let fTy = mkTyCon "Foo" in show (mkAppTy (mkTyCon ",,")
	--                                 [fTy,fTy,fTy])
	-- 
	-- returns "(Foo,Foo,Foo)"
	--
	-- The TypeRep Show instance promises to print tuple types
	-- correctly. Tuple type constructors are specified by a 
	-- sequence of commas, e.g., (mkTyCon ",,,,") returns
	-- the 5-tuple tycon.

----------------- Construction --------------------

-- | Applies a type constructor to a sequence of types
mkAppTy  :: TyCon -> [TypeRep] -> TypeRep
mkAppTy tc@(TyCon tc_k _) args 
  = TypeRep (appKeys tc_k arg_ks) tc args
  where
    arg_ks = [k | TypeRep k _ _ <- args]

funTc :: TyCon
funTc = mkTyCon "->"

-- | A special case of 'mkAppTy', which applies the function 
-- type constructor to a pair of types.
mkFunTy  :: TypeRep -> TypeRep -> TypeRep
mkFunTy f a = mkAppTy funTc [f,a]

-- | Applies a type to a function type.  Returns: @'Just' u@ if the
-- first argument represents a function of type @t -> u@ and the
-- second argument represents a function of type @t@.  Otherwise,
-- returns 'Nothing'.
applyTy :: TypeRep -> TypeRep -> Maybe TypeRep
applyTy (TypeRep _ tc [t1,t2]) t3
  | tc == funTc && t1 == t3	= Just t2
applyTy _ _     		= Nothing

-- If we enforce the restriction that there is only one
-- @TyCon@ for a type & it is shared among all its uses,
-- we can map them onto Ints very simply. The benefit is,
-- of course, that @TyCon@s can then be compared efficiently.

-- Provided the implementor of other @Typeable@ instances
-- takes care of making all the @TyCon@s CAFs (toplevel constants),
-- this will work. 

-- If this constraint does turn out to be a sore thumb, changing
-- the Eq instance for TyCons is trivial.

-- | Builds a 'TyCon' object representing a type constructor.  An
-- implementation of "Data.Typeable" should ensure that the following holds:
--
-- >  mkTyCon "a" == mkTyCon "a"
--

mkTyCon :: String	-- ^ the name of the type constructor (should be unique
			-- in the program, so it might be wise to use the
			-- fully qualified name).
	-> TyCon	-- ^ A unique 'TyCon' object
mkTyCon str = TyCon (mkTyConKey str) str



----------------- Observation ---------------------


-- | Observe the type constructor of a type representation
typerepTyCon :: TypeRep -> TyCon
typerepTyCon (TypeRep _ tc _) = tc


-- | Observe the argument types of a type representation
typerepArgs :: TypeRep -> [TypeRep]
typerepArgs (TypeRep _ _ args) = args


-- | Observe string encoding of a type representation
tyconString :: TyCon   -> String
tyconString  (TyCon _ str) = str


----------------- Showing TypeReps --------------------

instance Show TypeRep where
  showsPrec p (TypeRep _ tycon tys) =
    case tys of
      [] -> showsPrec p tycon
      [x]   | tycon == listTc -> showChar '[' . shows x . showChar ']'
      [a,r] | tycon == funTc  -> showParen (p > 8) $
			         showsPrec 9 a . showString " -> " . showsPrec 8 r
      xs | isTupleTyCon tycon -> showTuple tycon xs
	 | otherwise	     ->
	    showParen (p > 9) $
   	    showsPrec p tycon . 
	    showChar ' '      . 
	    showArgs tys

instance Show TyCon where
  showsPrec _ (TyCon _ s) = showString s

isTupleTyCon :: TyCon -> Bool
isTupleTyCon (TyCon _ (',':_)) = True
isTupleTyCon _		       = False

-- Some (Show.TypeRep) helpers:

showArgs :: Show a => [a] -> ShowS
showArgs [] = id
showArgs [a] = showsPrec 10 a
showArgs (a:as) = showsPrec 10 a . showString " " . showArgs as 

showTuple :: TyCon -> [TypeRep] -> ShowS
showTuple (TyCon _ str) args = showChar '(' . go str args
 where
  go [] [a] = showsPrec 10 a . showChar ')'
  go _  []  = showChar ')' -- a failure condition, really.
  go (',':xs) (a:as) = showsPrec 10 a . showChar ',' . go xs as
  go _ _   = showChar ')'


-------------------------------------------------------------
--
--	The Typeable class
--
-------------------------------------------------------------

-- | The class 'Typeable' allows a concrete representation of a type to
-- be calculated.
class Typeable a where
  typeOf :: a -> TypeRep
  -- ^ Takes a value of type @a@ and returns a concrete representation
  -- of that type.  The /value/ of the argument should be ignored by
  -- any instance of 'Typeable', so that it is safe to pass 'undefined' as
  -- the argument.


-------------------------------------------------------------
--
--		Type-safe cast
--
-------------------------------------------------------------

-- | The type-safe cast operation
cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x = r
       where
	 r = if typeOf x == typeOf (fromJust r)
               then Just $ unsafeCoerce x
	       else Nothing


-- | A convenient variation for kind \"* -> *\"
castss :: (Typeable a, Typeable b) => t a -> Maybe (t b)
castss x = r
       where
	 r = if typeOf (get x) == typeOf (get (fromJust r))
               then Just $ unsafeCoerce x
	       else Nothing
         get :: t c -> c
	 get = undefined


-- | Another variation
castarr :: (Typeable a, Typeable b, Typeable c, Typeable d)
        => (a -> t b) -> Maybe (c -> t d)
castarr x = r
       where
	 r = if typeOf (get x) == typeOf (get (fromJust r))
               then Just $ unsafeCoerce x
	       else Nothing
         get :: (e -> t f) -> (e, f)
	 get = undefined

{-

The variations castss and castarr are arguably not really needed.
Let's discuss castss in some detail. To get rid of castss, we can
require "Typeable (t a)" and "Typeable (t b)" rather than just
"Typeable a" and "Typeable b". In that case, the ordinary cast would
work. Eventually, all kinds of library instances should become
Typeable. (There is another potential use of variations as those given
above. It allows quantification on type constructors.

-}


-------------------------------------------------------------
--
--	Instances of the Typeable class for Prelude types
--
-------------------------------------------------------------

listTc :: TyCon
listTc = mkTyCon "[]"

instance Typeable a => Typeable [a] where
  typeOf ls = mkAppTy listTc [typeOf ((undefined :: [a] -> a) ls)]
	-- In GHC we can say
	--	typeOf (undefined :: a)
	-- using scoped type variables, but we use the 
	-- more verbose form here, for compatibility with Hugs

unitTc :: TyCon
unitTc = mkTyCon "()"

instance Typeable () where
  typeOf _ = mkAppTy unitTc []

tup2Tc :: TyCon
tup2Tc = mkTyCon ","

instance (Typeable a, Typeable b) => Typeable (a,b) where
  typeOf tu = mkAppTy tup2Tc [typeOf ((undefined :: (a,b) -> a) tu),
			      typeOf ((undefined :: (a,b) -> b) tu)]

tup3Tc :: TyCon
tup3Tc = mkTyCon ",,"

instance ( Typeable a , Typeable b , Typeable c) => Typeable (a,b,c) where
  typeOf tu = mkAppTy tup3Tc [typeOf ((undefined :: (a,b,c) -> a) tu),
			      typeOf ((undefined :: (a,b,c) -> b) tu),
			      typeOf ((undefined :: (a,b,c) -> c) tu)]

tup4Tc :: TyCon
tup4Tc = mkTyCon ",,,"

instance ( Typeable a
	 , Typeable b
	 , Typeable c
	 , Typeable d) => Typeable (a,b,c,d) where
  typeOf tu = mkAppTy tup4Tc [typeOf ((undefined :: (a,b,c,d) -> a) tu),
			      typeOf ((undefined :: (a,b,c,d) -> b) tu),
			      typeOf ((undefined :: (a,b,c,d) -> c) tu),
			      typeOf ((undefined :: (a,b,c,d) -> d) tu)]
tup5Tc :: TyCon
tup5Tc = mkTyCon ",,,,"

instance ( Typeable a
	 , Typeable b
	 , Typeable c
	 , Typeable d
	 , Typeable e) => Typeable (a,b,c,d,e) where
  typeOf tu = mkAppTy tup5Tc [typeOf ((undefined :: (a,b,c,d,e) -> a) tu),
			      typeOf ((undefined :: (a,b,c,d,e) -> b) tu),
			      typeOf ((undefined :: (a,b,c,d,e) -> c) tu),
			      typeOf ((undefined :: (a,b,c,d,e) -> d) tu),
			      typeOf ((undefined :: (a,b,c,d,e) -> e) tu)]

instance (Typeable a, Typeable b) => Typeable (a -> b) where
  typeOf f = mkFunTy (typeOf ((undefined :: (a -> b) -> a) f))
		     (typeOf ((undefined :: (a -> b) -> b) f))



-------------------------------------------------------
--
-- Generate Typeable instances for standard datatypes
--
-------------------------------------------------------

#ifndef __NHC__
INSTANCE_TYPEABLE0(Bool,boolTc,"Bool")
INSTANCE_TYPEABLE0(Char,charTc,"Char")
INSTANCE_TYPEABLE0(Float,floatTc,"Float")
INSTANCE_TYPEABLE0(Double,doubleTc,"Double")
INSTANCE_TYPEABLE0(Int,intTc,"Int")
INSTANCE_TYPEABLE0(Integer,integerTc,"Integer")
INSTANCE_TYPEABLE1(Ratio,ratioTc,"Ratio")
INSTANCE_TYPEABLE2(Either,eitherTc,"Either")
INSTANCE_TYPEABLE1(IO,ioTc,"IO")
INSTANCE_TYPEABLE1(Maybe,maybeTc,"Maybe")
INSTANCE_TYPEABLE0(Ordering,orderingTc,"Ordering")
INSTANCE_TYPEABLE0(Handle,handleTc,"Handle")
INSTANCE_TYPEABLE1(Ptr,ptrTc,"Ptr")
INSTANCE_TYPEABLE1(StablePtr,stablePtrTc,"StablePtr")

INSTANCE_TYPEABLE0(Int8,int8Tc,"Int8")
INSTANCE_TYPEABLE0(Int16,int16Tc,"Int16")
INSTANCE_TYPEABLE0(Int32,int32Tc,"Int32")
INSTANCE_TYPEABLE0(Int64,int64Tc,"Int64")

INSTANCE_TYPEABLE0(Word8,word8Tc,"Word8" )
INSTANCE_TYPEABLE0(Word16,word16Tc,"Word16")
INSTANCE_TYPEABLE0(Word32,word32Tc,"Word32")
INSTANCE_TYPEABLE0(Word64,word64Tc,"Word64")

INSTANCE_TYPEABLE0(TyCon,tyconTc,"TyCon")
INSTANCE_TYPEABLE0(TypeRep,typeRepTc,"TypeRep")

INSTANCE_TYPEABLE1(IORef,ioRefTc,"IORef")
#endif



---------------------------------------------
--
--		Internals 
--
---------------------------------------------

#ifndef __HUGS__
newtype Key = Key Int deriving( Eq )
#endif

data KeyPr = KeyPr !Key !Key deriving( Eq )

hashKP :: KeyPr -> Int32
hashKP (KeyPr (Key k1) (Key k2)) = (HT.hashInt k1 + HT.hashInt k2) `rem` HT.prime

data Cache = Cache { next_key :: !(IORef Key),
		     tc_tbl   :: !(HT.HashTable String Key),
		     ap_tbl   :: !(HT.HashTable KeyPr Key) }

{-# NOINLINE cache #-}
cache :: Cache
cache = unsafePerformIO $ do
		empty_tc_tbl <- HT.new (==) HT.hashString
		empty_ap_tbl <- HT.new (==) hashKP
		key_loc      <- newIORef (Key 1) 
		return (Cache { next_key = key_loc,
				tc_tbl = empty_tc_tbl, 
				ap_tbl = empty_ap_tbl })

newKey :: IORef Key -> IO Key
#ifdef __GLASGOW_HASKELL__
newKey kloc = do i <- genSym; return (Key i)
#else
newKey kloc = do { k@(Key i) <- readIORef kloc ;
		   writeIORef kloc (Key (i+1)) ;
		   return k }
#endif

#ifdef __GLASGOW_HASKELL__
-- In GHC we use the RTS's genSym function to get a new unique,
-- because in GHCi we might have two copies of the Data.Typeable
-- library running (one in the compiler and one in the running
-- program), and we need to make sure they don't share any keys.  
--
-- This is really a hack.  A better solution would be to centralise the
-- whole mutable state used by this module, i.e. both hashtables.  But
-- the current solution solves the immediate problem, which is that
-- dynamics generated in one world with one type were erroneously
-- being recognised by the other world as having a different type.
foreign import ccall unsafe "genSymZh"
  genSym :: IO Int
#endif

mkTyConKey :: String -> Key
mkTyConKey str 
  = unsafePerformIO $ do
	let Cache {next_key = kloc, tc_tbl = tbl} = cache
	mb_k <- HT.lookup tbl str
	case mb_k of
	  Just k  -> return k
	  Nothing -> do { k <- newKey kloc ;
			  HT.insert tbl str k ;
			  return k }

appKey :: Key -> Key -> Key
appKey k1 k2
  = unsafePerformIO $ do
	let Cache {next_key = kloc, ap_tbl = tbl} = cache
	mb_k <- HT.lookup tbl kpr
	case mb_k of
	  Just k  -> return k
	  Nothing -> do { k <- newKey kloc ;
			  HT.insert tbl kpr k ;
			  return k }
  where
    kpr = KeyPr k1 k2

appKeys :: Key -> [Key] -> Key
appKeys k ks = foldl appKey k ks