1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Typeable
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- The Typeable class reifies types to some extent by associating type
-- representations to types. These type representations can be compared,
-- and one can in turn define a type-safe cast operation. To this end,
-- an unsafe cast is guarded by a test for type (representation)
-- equivalence. The module Data.Dynamic uses Typeable for an
-- implementation of dynamics. The module Data.Generics uses Typeable
-- and type-safe cast (but not dynamics) to support the \"Scrap your
-- boilerplate\" style of generic programming.
--
-----------------------------------------------------------------------------
module Data.Typeable
(
-- * The Typeable class
Typeable( typeOf ), -- :: a -> TypeRep
-- * Type-safe cast
cast, -- :: (Typeable a, Typeable b) => a -> Maybe b
castss, -- a cast for kind "* -> *"
castarr, -- another convenient variation
-- * Type representations
TypeRep, -- abstract, instance of: Eq, Show, Typeable
TyCon, -- abstract, instance of: Eq, Show, Typeable
-- * Construction of type representations
mkTyCon, -- :: String -> TyCon
mkAppTy, -- :: TyCon -> [TypeRep] -> TypeRep
mkFunTy, -- :: TypeRep -> TypeRep -> TypeRep
applyTy, -- :: TypeRep -> TypeRep -> Maybe TypeRep
-- * Observation of type representations
typerepTyCon, -- :: TypeRep -> TyCon
typerepArgs, -- :: TypeRep -> [TypeRep]
tyconString -- :: TyCon -> String
) where
import qualified Data.HashTable as HT
import Data.Maybe
import Data.Either
import Data.Int
import Data.Word
import Data.List( foldl )
#ifdef __GLASGOW_HASKELL__
import GHC.Base
import GHC.Show
import GHC.Err
import GHC.Num
import GHC.Float
import GHC.Real( rem, Ratio )
import GHC.IOBase
import GHC.Ptr -- So we can give Typeable instance for Ptr
import GHC.Stable -- So we can give Typeable instance for StablePtr
#endif
#ifdef __HUGS__
import Hugs.Prelude
import Hugs.IO
import Hugs.IORef
import Hugs.IOExts
#endif
#ifdef __GLASGOW_HASKELL__
unsafeCoerce :: a -> b
unsafeCoerce = unsafeCoerce#
#endif
#ifdef __NHC__
import NonStdUnsafeCoerce (unsafeCoerce)
import NHC.IOExtras (IORef,newIORef,readIORef,writeIORef,unsafePerformIO)
#else
#include "Typeable.h"
#endif
#ifndef __HUGS__
-------------------------------------------------------------
--
-- Type representations
--
-------------------------------------------------------------
-- | A concrete representation of a (monomorphic) type. 'TypeRep'
-- supports reasonably efficient equality.
data TypeRep = TypeRep !Key TyCon [TypeRep]
-- Compare keys for equality
instance Eq TypeRep where
(TypeRep k1 _ _) == (TypeRep k2 _ _) = k1 == k2
-- | An abstract representation of a type constructor. 'TyCon' objects can
-- be built using 'mkTyCon'.
data TyCon = TyCon !Key String
instance Eq TyCon where
(TyCon t1 _) == (TyCon t2 _) = t1 == t2
#endif
--
-- let fTy = mkTyCon "Foo" in show (mkAppTy (mkTyCon ",,")
-- [fTy,fTy,fTy])
--
-- returns "(Foo,Foo,Foo)"
--
-- The TypeRep Show instance promises to print tuple types
-- correctly. Tuple type constructors are specified by a
-- sequence of commas, e.g., (mkTyCon ",,,,") returns
-- the 5-tuple tycon.
----------------- Construction --------------------
-- | Applies a type constructor to a sequence of types
mkAppTy :: TyCon -> [TypeRep] -> TypeRep
mkAppTy tc@(TyCon tc_k _) args
= TypeRep (appKeys tc_k arg_ks) tc args
where
arg_ks = [k | TypeRep k _ _ <- args]
funTc :: TyCon
funTc = mkTyCon "->"
-- | A special case of 'mkAppTy', which applies the function
-- type constructor to a pair of types.
mkFunTy :: TypeRep -> TypeRep -> TypeRep
mkFunTy f a = mkAppTy funTc [f,a]
-- | Applies a type to a function type. Returns: @'Just' u@ if the
-- first argument represents a function of type @t -> u@ and the
-- second argument represents a function of type @t@. Otherwise,
-- returns 'Nothing'.
applyTy :: TypeRep -> TypeRep -> Maybe TypeRep
applyTy (TypeRep _ tc [t1,t2]) t3
| tc == funTc && t1 == t3 = Just t2
applyTy _ _ = Nothing
-- If we enforce the restriction that there is only one
-- @TyCon@ for a type & it is shared among all its uses,
-- we can map them onto Ints very simply. The benefit is,
-- of course, that @TyCon@s can then be compared efficiently.
-- Provided the implementor of other @Typeable@ instances
-- takes care of making all the @TyCon@s CAFs (toplevel constants),
-- this will work.
-- If this constraint does turn out to be a sore thumb, changing
-- the Eq instance for TyCons is trivial.
-- | Builds a 'TyCon' object representing a type constructor. An
-- implementation of "Data.Typeable" should ensure that the following holds:
--
-- > mkTyCon "a" == mkTyCon "a"
--
mkTyCon :: String -- ^ the name of the type constructor (should be unique
-- in the program, so it might be wise to use the
-- fully qualified name).
-> TyCon -- ^ A unique 'TyCon' object
mkTyCon str = TyCon (mkTyConKey str) str
----------------- Observation ---------------------
-- | Observe the type constructor of a type representation
typerepTyCon :: TypeRep -> TyCon
typerepTyCon (TypeRep _ tc _) = tc
-- | Observe the argument types of a type representation
typerepArgs :: TypeRep -> [TypeRep]
typerepArgs (TypeRep _ _ args) = args
-- | Observe string encoding of a type representation
tyconString :: TyCon -> String
tyconString (TyCon _ str) = str
----------------- Showing TypeReps --------------------
instance Show TypeRep where
showsPrec p (TypeRep _ tycon tys) =
case tys of
[] -> showsPrec p tycon
[x] | tycon == listTc -> showChar '[' . shows x . showChar ']'
[a,r] | tycon == funTc -> showParen (p > 8) $
showsPrec 9 a . showString " -> " . showsPrec 8 r
xs | isTupleTyCon tycon -> showTuple tycon xs
| otherwise ->
showParen (p > 9) $
showsPrec p tycon .
showChar ' ' .
showArgs tys
instance Show TyCon where
showsPrec _ (TyCon _ s) = showString s
isTupleTyCon :: TyCon -> Bool
isTupleTyCon (TyCon _ (',':_)) = True
isTupleTyCon _ = False
-- Some (Show.TypeRep) helpers:
showArgs :: Show a => [a] -> ShowS
showArgs [] = id
showArgs [a] = showsPrec 10 a
showArgs (a:as) = showsPrec 10 a . showString " " . showArgs as
showTuple :: TyCon -> [TypeRep] -> ShowS
showTuple (TyCon _ str) args = showChar '(' . go str args
where
go [] [a] = showsPrec 10 a . showChar ')'
go _ [] = showChar ')' -- a failure condition, really.
go (',':xs) (a:as) = showsPrec 10 a . showChar ',' . go xs as
go _ _ = showChar ')'
-------------------------------------------------------------
--
-- The Typeable class
--
-------------------------------------------------------------
-- | The class 'Typeable' allows a concrete representation of a type to
-- be calculated.
class Typeable a where
typeOf :: a -> TypeRep
-- ^ Takes a value of type @a@ and returns a concrete representation
-- of that type. The /value/ of the argument should be ignored by
-- any instance of 'Typeable', so that it is safe to pass 'undefined' as
-- the argument.
-------------------------------------------------------------
--
-- Type-safe cast
--
-------------------------------------------------------------
-- | The type-safe cast operation
cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x = r
where
r = if typeOf x == typeOf (fromJust r)
then Just $ unsafeCoerce x
else Nothing
-- | A convenient variation for kind \"* -> *\"
castss :: (Typeable a, Typeable b) => t a -> Maybe (t b)
castss x = r
where
r = if typeOf (get x) == typeOf (get (fromJust r))
then Just $ unsafeCoerce x
else Nothing
get :: t c -> c
get = undefined
-- | Another variation
castarr :: (Typeable a, Typeable b, Typeable c, Typeable d)
=> (a -> t b) -> Maybe (c -> t d)
castarr x = r
where
r = if typeOf (get x) == typeOf (get (fromJust r))
then Just $ unsafeCoerce x
else Nothing
get :: (e -> t f) -> (e, f)
get = undefined
{-
The variations castss and castarr are arguably not really needed.
Let's discuss castss in some detail. To get rid of castss, we can
require "Typeable (t a)" and "Typeable (t b)" rather than just
"Typeable a" and "Typeable b". In that case, the ordinary cast would
work. Eventually, all kinds of library instances should become
Typeable. (There is another potential use of variations as those given
above. It allows quantification on type constructors.
-}
-------------------------------------------------------------
--
-- Instances of the Typeable class for Prelude types
--
-------------------------------------------------------------
listTc :: TyCon
listTc = mkTyCon "[]"
instance Typeable a => Typeable [a] where
typeOf ls = mkAppTy listTc [typeOf ((undefined :: [a] -> a) ls)]
-- In GHC we can say
-- typeOf (undefined :: a)
-- using scoped type variables, but we use the
-- more verbose form here, for compatibility with Hugs
unitTc :: TyCon
unitTc = mkTyCon "()"
instance Typeable () where
typeOf _ = mkAppTy unitTc []
tup2Tc :: TyCon
tup2Tc = mkTyCon ","
instance (Typeable a, Typeable b) => Typeable (a,b) where
typeOf tu = mkAppTy tup2Tc [typeOf ((undefined :: (a,b) -> a) tu),
typeOf ((undefined :: (a,b) -> b) tu)]
tup3Tc :: TyCon
tup3Tc = mkTyCon ",,"
instance ( Typeable a , Typeable b , Typeable c) => Typeable (a,b,c) where
typeOf tu = mkAppTy tup3Tc [typeOf ((undefined :: (a,b,c) -> a) tu),
typeOf ((undefined :: (a,b,c) -> b) tu),
typeOf ((undefined :: (a,b,c) -> c) tu)]
tup4Tc :: TyCon
tup4Tc = mkTyCon ",,,"
instance ( Typeable a
, Typeable b
, Typeable c
, Typeable d) => Typeable (a,b,c,d) where
typeOf tu = mkAppTy tup4Tc [typeOf ((undefined :: (a,b,c,d) -> a) tu),
typeOf ((undefined :: (a,b,c,d) -> b) tu),
typeOf ((undefined :: (a,b,c,d) -> c) tu),
typeOf ((undefined :: (a,b,c,d) -> d) tu)]
tup5Tc :: TyCon
tup5Tc = mkTyCon ",,,,"
instance ( Typeable a
, Typeable b
, Typeable c
, Typeable d
, Typeable e) => Typeable (a,b,c,d,e) where
typeOf tu = mkAppTy tup5Tc [typeOf ((undefined :: (a,b,c,d,e) -> a) tu),
typeOf ((undefined :: (a,b,c,d,e) -> b) tu),
typeOf ((undefined :: (a,b,c,d,e) -> c) tu),
typeOf ((undefined :: (a,b,c,d,e) -> d) tu),
typeOf ((undefined :: (a,b,c,d,e) -> e) tu)]
instance (Typeable a, Typeable b) => Typeable (a -> b) where
typeOf f = mkFunTy (typeOf ((undefined :: (a -> b) -> a) f))
(typeOf ((undefined :: (a -> b) -> b) f))
-------------------------------------------------------
--
-- Generate Typeable instances for standard datatypes
--
-------------------------------------------------------
#ifndef __NHC__
INSTANCE_TYPEABLE0(Bool,boolTc,"Bool")
INSTANCE_TYPEABLE0(Char,charTc,"Char")
INSTANCE_TYPEABLE0(Float,floatTc,"Float")
INSTANCE_TYPEABLE0(Double,doubleTc,"Double")
INSTANCE_TYPEABLE0(Int,intTc,"Int")
INSTANCE_TYPEABLE0(Integer,integerTc,"Integer")
INSTANCE_TYPEABLE1(Ratio,ratioTc,"Ratio")
INSTANCE_TYPEABLE2(Either,eitherTc,"Either")
INSTANCE_TYPEABLE1(IO,ioTc,"IO")
INSTANCE_TYPEABLE1(Maybe,maybeTc,"Maybe")
INSTANCE_TYPEABLE0(Ordering,orderingTc,"Ordering")
INSTANCE_TYPEABLE0(Handle,handleTc,"Handle")
INSTANCE_TYPEABLE1(Ptr,ptrTc,"Ptr")
INSTANCE_TYPEABLE1(StablePtr,stablePtrTc,"StablePtr")
INSTANCE_TYPEABLE0(Int8,int8Tc,"Int8")
INSTANCE_TYPEABLE0(Int16,int16Tc,"Int16")
INSTANCE_TYPEABLE0(Int32,int32Tc,"Int32")
INSTANCE_TYPEABLE0(Int64,int64Tc,"Int64")
INSTANCE_TYPEABLE0(Word8,word8Tc,"Word8" )
INSTANCE_TYPEABLE0(Word16,word16Tc,"Word16")
INSTANCE_TYPEABLE0(Word32,word32Tc,"Word32")
INSTANCE_TYPEABLE0(Word64,word64Tc,"Word64")
INSTANCE_TYPEABLE0(TyCon,tyconTc,"TyCon")
INSTANCE_TYPEABLE0(TypeRep,typeRepTc,"TypeRep")
INSTANCE_TYPEABLE1(IORef,ioRefTc,"IORef")
#endif
---------------------------------------------
--
-- Internals
--
---------------------------------------------
#ifndef __HUGS__
newtype Key = Key Int deriving( Eq )
#endif
data KeyPr = KeyPr !Key !Key deriving( Eq )
hashKP :: KeyPr -> Int32
hashKP (KeyPr (Key k1) (Key k2)) = (HT.hashInt k1 + HT.hashInt k2) `rem` HT.prime
data Cache = Cache { next_key :: !(IORef Key),
tc_tbl :: !(HT.HashTable String Key),
ap_tbl :: !(HT.HashTable KeyPr Key) }
{-# NOINLINE cache #-}
cache :: Cache
cache = unsafePerformIO $ do
empty_tc_tbl <- HT.new (==) HT.hashString
empty_ap_tbl <- HT.new (==) hashKP
key_loc <- newIORef (Key 1)
return (Cache { next_key = key_loc,
tc_tbl = empty_tc_tbl,
ap_tbl = empty_ap_tbl })
newKey :: IORef Key -> IO Key
#ifdef __GLASGOW_HASKELL__
newKey kloc = do i <- genSym; return (Key i)
#else
newKey kloc = do { k@(Key i) <- readIORef kloc ;
writeIORef kloc (Key (i+1)) ;
return k }
#endif
#ifdef __GLASGOW_HASKELL__
-- In GHC we use the RTS's genSym function to get a new unique,
-- because in GHCi we might have two copies of the Data.Typeable
-- library running (one in the compiler and one in the running
-- program), and we need to make sure they don't share any keys.
--
-- This is really a hack. A better solution would be to centralise the
-- whole mutable state used by this module, i.e. both hashtables. But
-- the current solution solves the immediate problem, which is that
-- dynamics generated in one world with one type were erroneously
-- being recognised by the other world as having a different type.
foreign import ccall unsafe "genSymZh"
genSym :: IO Int
#endif
mkTyConKey :: String -> Key
mkTyConKey str
= unsafePerformIO $ do
let Cache {next_key = kloc, tc_tbl = tbl} = cache
mb_k <- HT.lookup tbl str
case mb_k of
Just k -> return k
Nothing -> do { k <- newKey kloc ;
HT.insert tbl str k ;
return k }
appKey :: Key -> Key -> Key
appKey k1 k2
= unsafePerformIO $ do
let Cache {next_key = kloc, ap_tbl = tbl} = cache
mb_k <- HT.lookup tbl kpr
case mb_k of
Just k -> return k
Nothing -> do { k <- newKey kloc ;
HT.insert tbl kpr k ;
return k }
where
kpr = KeyPr k1 k2
appKeys :: Key -> [Key] -> Key
appKeys k ks = foldl appKey k ks
|