1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
{-# OPTIONS -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Text.Read.Lex
-- Copyright : (c) The University of Glasgow 2002
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : non-portable (uses Text.ParserCombinators.ReadP)
--
-- The cut-down Haskell lexer, used by Text.Read
--
-----------------------------------------------------------------------------
module Text.Read.Lex
-- lexing types
( Lexeme(..) -- :: *; Show, Eq
-- lexer
, lex -- :: ReadP Lexeme Skips leading spaces
, hsLex -- :: ReadP String
, lexChar -- :: ReadP Char Reads just one char, with H98 escapes
, readIntP -- :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadP a
, readOctP -- :: Num a => ReadP a
, readDecP -- :: Num a => ReadP a
, readHexP -- :: Num a => ReadP a
)
where
import Text.ParserCombinators.ReadP
#ifdef __GLASGOW_HASKELL__
import GHC.Base
import GHC.Num( Num(..), Integer )
import GHC.Show( Show(..) )
#ifndef __HADDOCK__
import {-# SOURCE #-} GHC.Unicode ( isSpace, isAlpha, isAlphaNum )
#endif
import GHC.Real( Ratio(..), Integral, Rational, (%), fromIntegral,
toInteger, (^), (^^), infinity, notANumber )
import GHC.List
import GHC.Enum( maxBound )
#else
import Prelude hiding ( lex )
import Data.Char( chr, ord, isSpace, isAlpha, isAlphaNum )
import Data.Ratio( Ratio, (%) )
#endif
#ifdef __HUGS__
import Hugs.Prelude( Ratio(..) )
#endif
import Data.Maybe
import Control.Monad
-- -----------------------------------------------------------------------------
-- Lexing types
data Lexeme
= Char Char -- Quotes removed,
| String String -- escapes interpreted
| Punc String -- Punctuation, eg "(", "::"
| Ident String -- Haskell identifiers, e.g. foo, baz
| Symbol String -- Haskell symbols, e.g. >>, %
| Int Integer
| Rat Rational
| EOF
deriving (Eq, Show)
-- -----------------------------------------------------------------------------
-- Lexing
lex :: ReadP Lexeme
lex = skipSpaces >> lexToken
hsLex :: ReadP String
-- ^ Haskell lexer: returns the lexed string, rather than the lexeme
hsLex = do skipSpaces
(s,_) <- gather lexToken
return s
lexToken :: ReadP Lexeme
lexToken = lexEOF +++
lexLitChar +++
lexString +++
lexPunc +++
lexSymbol +++
lexId +++
lexNumber
-- ----------------------------------------------------------------------
-- End of file
lexEOF :: ReadP Lexeme
lexEOF = do s <- look
guard (null s)
return EOF
-- ---------------------------------------------------------------------------
-- Single character lexemes
lexPunc :: ReadP Lexeme
lexPunc =
do c <- satisfy isPuncChar
return (Punc [c])
where
isPuncChar c = c `elem` ",;()[]{}`"
-- ----------------------------------------------------------------------
-- Symbols
lexSymbol :: ReadP Lexeme
lexSymbol =
do s <- munch1 isSymbolChar
if s `elem` reserved_ops then
return (Punc s) -- Reserved-ops count as punctuation
else
return (Symbol s)
where
isSymbolChar c = c `elem` "!@#$%&*+./<=>?\\^|:-~"
reserved_ops = ["..", "::", "=", "\\", "|", "<-", "->", "@", "~", "=>"]
-- ----------------------------------------------------------------------
-- identifiers
lexId :: ReadP Lexeme
lexId = lex_nan <++ lex_id
where
-- NaN and Infinity look like identifiers, so
-- we parse them first.
lex_nan = (string "NaN" >> return (Rat notANumber)) +++
(string "Infinity" >> return (Rat infinity))
lex_id = do c <- satisfy isIdsChar
s <- munch isIdfChar
return (Ident (c:s))
-- Identifiers can start with a '_'
isIdsChar c = isAlpha c || c == '_'
isIdfChar c = isAlphaNum c || c `elem` "_'"
#ifndef __GLASGOW_HASKELL__
infinity, notANumber :: Rational
infinity = 1 :% 0
notANumber = 0 :% 0
#endif
-- ---------------------------------------------------------------------------
-- Lexing character literals
lexLitChar :: ReadP Lexeme
lexLitChar =
do char '\''
(c,esc) <- lexCharE
guard (esc || c /= '\'') -- Eliminate '' possibility
char '\''
return (Char c)
lexChar :: ReadP Char
lexChar = do { (c,_) <- lexCharE; return c }
lexCharE :: ReadP (Char, Bool) -- "escaped or not"?
lexCharE =
do c <- get
if c == '\\'
then do c <- lexEsc; return (c, True)
else do return (c, False)
where
lexEsc =
lexEscChar
+++ lexNumeric
+++ lexCntrlChar
+++ lexAscii
lexEscChar =
do c <- get
case c of
'a' -> return '\a'
'b' -> return '\b'
'f' -> return '\f'
'n' -> return '\n'
'r' -> return '\r'
't' -> return '\t'
'v' -> return '\v'
'\\' -> return '\\'
'\"' -> return '\"'
'\'' -> return '\''
_ -> pfail
lexNumeric =
do base <- lexBaseChar <++ return 10
n <- lexInteger base
guard (n <= toInteger (ord maxBound))
return (chr (fromInteger n))
lexCntrlChar =
do char '^'
c <- get
case c of
'@' -> return '\^@'
'A' -> return '\^A'
'B' -> return '\^B'
'C' -> return '\^C'
'D' -> return '\^D'
'E' -> return '\^E'
'F' -> return '\^F'
'G' -> return '\^G'
'H' -> return '\^H'
'I' -> return '\^I'
'J' -> return '\^J'
'K' -> return '\^K'
'L' -> return '\^L'
'M' -> return '\^M'
'N' -> return '\^N'
'O' -> return '\^O'
'P' -> return '\^P'
'Q' -> return '\^Q'
'R' -> return '\^R'
'S' -> return '\^S'
'T' -> return '\^T'
'U' -> return '\^U'
'V' -> return '\^V'
'W' -> return '\^W'
'X' -> return '\^X'
'Y' -> return '\^Y'
'Z' -> return '\^Z'
'[' -> return '\^['
'\\' -> return '\^\'
']' -> return '\^]'
'^' -> return '\^^'
'_' -> return '\^_'
_ -> pfail
lexAscii =
do choice
[ (string "SOH" >> return '\SOH') <++
(string "SO" >> return '\SO')
-- \SO and \SOH need maximal-munch treatment
-- See the Haskell report Sect 2.6
, string "NUL" >> return '\NUL'
, string "STX" >> return '\STX'
, string "ETX" >> return '\ETX'
, string "EOT" >> return '\EOT'
, string "ENQ" >> return '\ENQ'
, string "ACK" >> return '\ACK'
, string "BEL" >> return '\BEL'
, string "BS" >> return '\BS'
, string "HT" >> return '\HT'
, string "LF" >> return '\LF'
, string "VT" >> return '\VT'
, string "FF" >> return '\FF'
, string "CR" >> return '\CR'
, string "SI" >> return '\SI'
, string "DLE" >> return '\DLE'
, string "DC1" >> return '\DC1'
, string "DC2" >> return '\DC2'
, string "DC3" >> return '\DC3'
, string "DC4" >> return '\DC4'
, string "NAK" >> return '\NAK'
, string "SYN" >> return '\SYN'
, string "ETB" >> return '\ETB'
, string "CAN" >> return '\CAN'
, string "EM" >> return '\EM'
, string "SUB" >> return '\SUB'
, string "ESC" >> return '\ESC'
, string "FS" >> return '\FS'
, string "GS" >> return '\GS'
, string "RS" >> return '\RS'
, string "US" >> return '\US'
, string "SP" >> return '\SP'
, string "DEL" >> return '\DEL'
]
-- ---------------------------------------------------------------------------
-- string literal
lexString :: ReadP Lexeme
lexString =
do char '"'
body id
where
body f =
do (c,esc) <- lexStrItem
if c /= '"' || esc
then body (f.(c:))
else let s = f "" in
return (String s)
lexStrItem = (lexEmpty >> lexStrItem)
+++ lexCharE
lexEmpty =
do char '\\'
c <- get
case c of
'&' -> do return ()
_ | isSpace c -> do skipSpaces; char '\\'; return ()
_ -> do pfail
-- ---------------------------------------------------------------------------
-- Lexing numbers
type Base = Int
type Digits = [Int]
lexNumber :: ReadP Lexeme
lexNumber
= lexHexOct <++ -- First try for hex or octal 0x, 0o etc
-- If that fails, try for a decimal number
lexDecNumber -- Start with ordinary digits
lexHexOct :: ReadP Lexeme
lexHexOct
= do char '0'
base <- lexBaseChar
digits <- lexDigits base
return (Int (val (fromIntegral base) 0 digits))
lexBaseChar :: ReadP Int
-- Lex a single character indicating the base; fail if not there
lexBaseChar = do { c <- get;
case c of
'o' -> return 8
'O' -> return 8
'x' -> return 16
'X' -> return 16
_ -> pfail }
lexDecNumber :: ReadP Lexeme
lexDecNumber =
do xs <- lexDigits 10
mFrac <- lexFrac <++ return Nothing
mExp <- lexExp <++ return Nothing
return (value xs mFrac mExp)
where
value xs mFrac mExp = valueFracExp (val 10 0 xs) mFrac mExp
valueFracExp :: Integer -> Maybe Digits -> Maybe Integer
-> Lexeme
valueFracExp a Nothing Nothing
= Int a -- 43
valueFracExp a Nothing (Just exp)
| exp >= 0 = Int (a * (10 ^ exp)) -- 43e7
| otherwise = Rat (valExp (fromInteger a) exp) -- 43e-7
valueFracExp a (Just fs) mExp
= case mExp of
Nothing -> Rat rat -- 4.3
Just exp -> Rat (valExp rat exp) -- 4.3e-4
where
rat :: Rational
rat = fromInteger a + frac 10 0 1 fs
valExp :: Rational -> Integer -> Rational
valExp rat exp = rat * (10 ^^ exp)
lexFrac :: ReadP (Maybe Digits)
-- Read the fractional part; fail if it doesn't
-- start ".d" where d is a digit
lexFrac = do char '.'
frac <- lexDigits 10
return (Just frac)
lexExp :: ReadP (Maybe Integer)
lexExp = do char 'e' +++ char 'E'
exp <- signedExp +++ lexInteger 10
return (Just exp)
where
signedExp
= do c <- char '-' +++ char '+'
n <- lexInteger 10
return (if c == '-' then -n else n)
lexDigits :: Int -> ReadP Digits
-- Lex a non-empty sequence of digits in specified base
lexDigits base =
do s <- look
xs <- scan s id
guard (not (null xs))
return xs
where
scan (c:cs) f = case valDig base c of
Just n -> do get; scan cs (f.(n:))
Nothing -> do return (f [])
scan [] f = do return (f [])
lexInteger :: Base -> ReadP Integer
lexInteger base =
do xs <- lexDigits base
return (val (fromIntegral base) 0 xs)
val :: Num a => a -> a -> Digits -> a
-- val base y [d1,..,dn] = y ++ [d1,..,dn], as it were
val base y [] = y
val base y (x:xs) = y' `seq` val base y' xs
where
y' = y * base + fromIntegral x
frac :: Integral a => a -> a -> a -> Digits -> Ratio a
frac base a b [] = a % b
frac base a b (x:xs) = a' `seq` b' `seq` frac base a' b' xs
where
a' = a * base + fromIntegral x
b' = b * base
valDig :: Num a => a -> Char -> Maybe Int
valDig 8 c
| '0' <= c && c <= '7' = Just (ord c - ord '0')
| otherwise = Nothing
valDig 10 c = valDecDig c
valDig 16 c
| '0' <= c && c <= '9' = Just (ord c - ord '0')
| 'a' <= c && c <= 'f' = Just (ord c - ord 'a' + 10)
| 'A' <= c && c <= 'F' = Just (ord c - ord 'A' + 10)
| otherwise = Nothing
valDecDig c
| '0' <= c && c <= '9' = Just (ord c - ord '0')
| otherwise = Nothing
-- ----------------------------------------------------------------------
-- other numeric lexing functions
readIntP :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadP a
readIntP base isDigit valDigit =
do s <- munch1 isDigit
return (val base 0 (map valDigit s))
readIntP' :: Num a => a -> ReadP a
readIntP' base = readIntP base isDigit valDigit
where
isDigit c = maybe False (const True) (valDig base c)
valDigit c = maybe 0 id (valDig base c)
readOctP, readDecP, readHexP :: Num a => ReadP a
readOctP = readIntP' 8
readDecP = readIntP' 10
readHexP = readIntP' 16
|