1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/* -----------------------------------------------------------------------------
* $Id: CTypes.h,v 1.7 2003/07/24 12:05:42 panne Exp $
*
* Dirty CPP hackery for CTypes/CTypesISO
*
* (c) The FFI task force, 2000
* -------------------------------------------------------------------------- */
#include "MachDeps.h"
/* As long as there is no automatic derivation of classes for newtypes we resort
to extremely dirty cpp-hackery. :-P Some care has to be taken when the
macros below are modified, otherwise the layout rule will bite you. */
/* A hacked version for GHC follows the Haskell 98 version... */
#ifndef __GLASGOW_HASKELL__
#define NUMERIC_TYPE(T,C,S,B) \
newtype T = T B deriving (Eq, Ord) ; \
INSTANCE_NUM(T) ; \
INSTANCE_READ(T,B) ; \
INSTANCE_SHOW(T,B) ; \
INSTANCE_ENUM(T) ; \
INSTANCE_STORABLE(T) ; \
INSTANCE_TYPEABLE0(T,C,S) ;
#define INTEGRAL_TYPE(T,C,S,B) \
NUMERIC_TYPE(T,C,S,B) ; \
INSTANCE_BOUNDED(T) ; \
INSTANCE_REAL(T) ; \
INSTANCE_INTEGRAL(T) ; \
INSTANCE_BITS(T)
#define FLOATING_TYPE(T,C,S,B) \
NUMERIC_TYPE(T,C,S,B) ; \
INSTANCE_REAL(T) ; \
INSTANCE_FRACTIONAL(T) ; \
INSTANCE_FLOATING(T) ; \
INSTANCE_REALFRAC(T) ; \
INSTANCE_REALFLOAT(T)
#ifndef __GLASGOW_HASKELL__
#define fakeMap map
#endif
#define INSTANCE_READ(T,B) \
instance Read T where { \
readsPrec p s = fakeMap (\(x, t) -> (T x, t)) (readsPrec p s) }
#define INSTANCE_SHOW(T,B) \
instance Show T where { \
showsPrec p (T x) = showsPrec p x }
#define INSTANCE_NUM(T) \
instance Num T where { \
(T i) + (T j) = T (i + j) ; \
(T i) - (T j) = T (i - j) ; \
(T i) * (T j) = T (i * j) ; \
negate (T i) = T (negate i) ; \
abs (T i) = T (abs i) ; \
signum (T i) = T (signum i) ; \
fromInteger x = T (fromInteger x) }
#define INSTANCE_BOUNDED(T) \
instance Bounded T where { \
minBound = T minBound ; \
maxBound = T maxBound }
#define INSTANCE_ENUM(T) \
instance Enum T where { \
succ (T i) = T (succ i) ; \
pred (T i) = T (pred i) ; \
toEnum x = T (toEnum x) ; \
fromEnum (T i) = fromEnum i ; \
enumFrom (T i) = fakeMap T (enumFrom i) ; \
enumFromThen (T i) (T j) = fakeMap T (enumFromThen i j) ; \
enumFromTo (T i) (T j) = fakeMap T (enumFromTo i j) ; \
enumFromThenTo (T i) (T j) (T k) = fakeMap T (enumFromThenTo i j k) }
#define INSTANCE_REAL(T) \
instance Real T where { \
toRational (T i) = toRational i }
#define INSTANCE_INTEGRAL(T) \
instance Integral T where { \
(T i) `quot` (T j) = T (i `quot` j) ; \
(T i) `rem` (T j) = T (i `rem` j) ; \
(T i) `div` (T j) = T (i `div` j) ; \
(T i) `mod` (T j) = T (i `mod` j) ; \
(T i) `quotRem` (T j) = let (q,r) = i `quotRem` j in (T q, T r) ; \
(T i) `divMod` (T j) = let (d,m) = i `divMod` j in (T d, T m) ; \
toInteger (T i) = toInteger i }
#define INSTANCE_BITS(T) \
instance Bits T where { \
(T x) .&. (T y) = T (x .&. y) ; \
(T x) .|. (T y) = T (x .|. y) ; \
(T x) `xor` (T y) = T (x `xor` y) ; \
complement (T x) = T (complement x) ; \
shift (T x) n = T (shift x n) ; \
rotate (T x) n = T (rotate x n) ; \
bit n = T (bit n) ; \
setBit (T x) n = T (setBit x n) ; \
clearBit (T x) n = T (clearBit x n) ; \
complementBit (T x) n = T (complementBit x n) ; \
testBit (T x) n = testBit x n ; \
bitSize (T x) = bitSize x ; \
isSigned (T x) = isSigned x }
#define INSTANCE_FRACTIONAL(T) \
instance Fractional T where { \
(T x) / (T y) = T (x / y) ; \
recip (T x) = T (recip x) ; \
fromRational r = T (fromRational r) }
#define INSTANCE_FLOATING(T) \
instance Floating T where { \
pi = pi ; \
exp (T x) = T (exp x) ; \
log (T x) = T (log x) ; \
sqrt (T x) = T (sqrt x) ; \
(T x) ** (T y) = T (x ** y) ; \
(T x) `logBase` (T y) = T (x `logBase` y) ; \
sin (T x) = T (sin x) ; \
cos (T x) = T (cos x) ; \
tan (T x) = T (tan x) ; \
asin (T x) = T (asin x) ; \
acos (T x) = T (acos x) ; \
atan (T x) = T (atan x) ; \
sinh (T x) = T (sinh x) ; \
cosh (T x) = T (cosh x) ; \
tanh (T x) = T (tanh x) ; \
asinh (T x) = T (asinh x) ; \
acosh (T x) = T (acosh x) ; \
atanh (T x) = T (atanh x) }
#define INSTANCE_REALFRAC(T) \
instance RealFrac T where { \
properFraction (T x) = let (m,y) = properFraction x in (m, T y) ; \
truncate (T x) = truncate x ; \
round (T x) = round x ; \
ceiling (T x) = ceiling x ; \
floor (T x) = floor x }
#define INSTANCE_REALFLOAT(T) \
instance RealFloat T where { \
floatRadix (T x) = floatRadix x ; \
floatDigits (T x) = floatDigits x ; \
floatRange (T x) = floatRange x ; \
decodeFloat (T x) = decodeFloat x ; \
encodeFloat m n = T (encodeFloat m n) ; \
exponent (T x) = exponent x ; \
significand (T x) = T (significand x) ; \
scaleFloat n (T x) = T (scaleFloat n x) ; \
isNaN (T x) = isNaN x ; \
isInfinite (T x) = isInfinite x ; \
isDenormalized (T x) = isDenormalized x ; \
isNegativeZero (T x) = isNegativeZero x ; \
isIEEE (T x) = isIEEE x ; \
(T x) `atan2` (T y) = T (x `atan2` y) }
#define INSTANCE_STORABLE(T) \
instance Storable T where { \
sizeOf (T x) = sizeOf x ; \
alignment (T x) = alignment x ; \
peekElemOff a i = liftM T (peekElemOff (castPtr a) i) ; \
pokeElemOff a i (T x) = pokeElemOff (castPtr a) i x }
#else /* __GLASGOW_HASKELL__ */
/* GHC can derive any class for a newtype, so we make use of that
* here...
*/
#define NUMERIC_CLASSES Eq,Ord,Num,Enum,Storable
#define INTEGRAL_CLASSES Bounded,Real,Integral,Bits
#define FLOATING_CLASSES Real,Fractional,Floating,RealFrac,RealFloat
#define NUMERIC_TYPE(T,C,S,B) \
newtype T = T B deriving (NUMERIC_CLASSES); \
INSTANCE_READ(T,B); \
INSTANCE_SHOW(T,B); \
INSTANCE_TYPEABLE0(T,C,S) ;
#define INTEGRAL_TYPE(T,C,S,B) \
newtype T = T B deriving (NUMERIC_CLASSES, INTEGRAL_CLASSES); \
INSTANCE_READ(T,B); \
INSTANCE_SHOW(T,B); \
INSTANCE_TYPEABLE0(T,C,S) ;
#define FLOATING_TYPE(T,C,S,B) \
newtype T = T B deriving (NUMERIC_CLASSES, FLOATING_CLASSES); \
INSTANCE_READ(T,B); \
INSTANCE_SHOW(T,B); \
INSTANCE_TYPEABLE0(T,C,S) ;
#define INSTANCE_READ(T,B) \
instance Read T where { \
readsPrec = unsafeCoerce# (readsPrec :: Int -> ReadS B); \
readList = unsafeCoerce# (readList :: ReadS [B]); }
#define INSTANCE_SHOW(T,B) \
instance Show T where { \
showsPrec = unsafeCoerce# (showsPrec :: Int -> B -> ShowS); \
show = unsafeCoerce# (show :: B -> String); \
showList = unsafeCoerce# (showList :: [B] -> ShowS); }
#endif /* __GLASGOW_HASKELL__ */
|