1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
-- THLib contains lots of useful helper functions for
-- generating and manipulating Template Haskell terms
module Language.Haskell.TH.THLib where
-- All of the exports from this module should
-- be "public" functions. The main module TH
-- re-exports them all.
import Text.PrettyPrint.HughesPJ
import Language.Haskell.TH.THSyntax
import Control.Monad( liftM, liftM2 )
import Data.Char ( toLower )
----------------------------------------------------------
-- Type synonyms
----------------------------------------------------------
type InfoQ = Q Info
type ExpQ = Q Exp
type DecQ = Q Dec
type ConQ = Q Con
type TypeQ = Q Type
type CxtQ = Q Cxt
type MatchQ = Q Match
type ClauseQ = Q Clause
type BodyQ = Q Body
type StmtQ = Q Stmt
type RangeQ = Q Range
type StrictTypeQ = Q StrictType
type VarStrictTypeQ = Q VarStrictType
----------------------------------------------------------
-- Lowercase pattern syntax functions
----------------------------------------------------------
intPrimL :: Integer -> Lit
intPrimL = IntPrimL
floatPrimL :: Rational -> Lit
floatPrimL = FloatPrimL
doublePrimL :: Rational -> Lit
doublePrimL = DoublePrimL
integerL :: Integer -> Lit
integerL = IntegerL
charL :: Char -> Lit
charL = CharL
stringL :: String -> Lit
stringL = StringL
rationalL :: Rational -> Lit
rationalL = RationalL
litP :: Lit -> Pat
litP = LitP
varP :: Name -> Pat
varP = VarP
tupP :: [Pat] -> Pat
tupP = TupP
conP :: Name -> [Pat] -> Pat
conP = ConP
tildeP :: Pat -> Pat
tildeP = TildeP
asP :: Name -> Pat -> Pat
asP = AsP
wildP :: Pat
wildP = WildP
recP :: Name -> [FieldPat] -> Pat
recP = RecP
listP :: [Pat] -> Pat
listP = ListP
fieldPat :: Name -> Pat -> (Name, Pat)
fieldPat = (,)
-------------------------------------------------------------------------------
-- Stmt
bindS :: Pat -> ExpQ -> StmtQ
bindS p e = liftM (BindS p) e
letS :: [DecQ] -> StmtQ
letS ds = do { ds1 <- sequence ds; return (LetS ds1) }
noBindS :: ExpQ -> StmtQ
noBindS e = do { e1 <- e; return (NoBindS e1) }
parS :: [[StmtQ]] -> StmtQ
parS _ = fail "No parallel comprehensions yet"
-------------------------------------------------------------------------------
-- Range
fromR :: ExpQ -> RangeQ
fromR x = do { a <- x; return (FromR a) }
fromThenR :: ExpQ -> ExpQ -> RangeQ
fromThenR x y = do { a <- x; b <- y; return (FromThenR a b) }
fromToR :: ExpQ -> ExpQ -> RangeQ
fromToR x y = do { a <- x; b <- y; return (FromToR a b) }
fromThenToR :: ExpQ -> ExpQ -> ExpQ -> RangeQ
fromThenToR x y z = do { a <- x; b <- y; c <- z;
return (FromThenToR a b c) }
-------------------------------------------------------------------------------
-- Body
normalB :: ExpQ -> BodyQ
normalB e = do { e1 <- e; return (NormalB e1) }
guardedB :: [(ExpQ,ExpQ)] -> BodyQ
guardedB ges = do { ges' <- mapM f ges; return (GuardedB ges') }
where f (g, e) = do { g' <- g; e' <- e; return (g', e') }
-------------------------------------------------------------------------------
-- Match and Clause
match :: Pat -> BodyQ -> [DecQ] -> MatchQ
match p rhs ds = do { r' <- rhs;
ds' <- sequence ds;
return (Match p r' ds') }
clause :: [Pat] -> BodyQ -> [DecQ] -> ClauseQ
clause ps r ds = do { r' <- r;
ds' <- sequence ds;
return (Clause ps r' ds') }
---------------------------------------------------------------------------
-- Exp
global :: Name -> ExpQ
global s = return (VarE s)
varE :: Name -> ExpQ
varE s = return (VarE s)
conE :: Name -> ExpQ
conE s = return (ConE s)
litE :: Lit -> ExpQ
litE c = return (LitE c)
appE :: ExpQ -> ExpQ -> ExpQ
appE x y = do { a <- x; b <- y; return (AppE a b)}
infixE :: Maybe ExpQ -> ExpQ -> Maybe ExpQ -> ExpQ
infixE (Just x) s (Just y) = do { a <- x; s' <- s; b <- y;
return (InfixE (Just a) s' (Just b))}
infixE Nothing s (Just y) = do { s' <- s; b <- y;
return (InfixE Nothing s' (Just b))}
infixE (Just x) s Nothing = do { a <- x; s' <- s;
return (InfixE (Just a) s' Nothing)}
infixE Nothing s Nothing = do { s' <- s; return (InfixE Nothing s' Nothing) }
infixApp :: ExpQ -> ExpQ -> ExpQ -> ExpQ
infixApp x y z = infixE (Just x) y (Just z)
sectionL :: ExpQ -> ExpQ -> ExpQ
sectionL x y = infixE (Just x) y Nothing
sectionR :: ExpQ -> ExpQ -> ExpQ
sectionR x y = infixE Nothing x (Just y)
lamE :: [Pat] -> ExpQ -> ExpQ
lamE ps e = liftM (LamE ps) e
lam1E :: Pat -> ExpQ -> ExpQ -- Single-arg lambda
lam1E p e = lamE [p] e
tupE :: [ExpQ] -> ExpQ
tupE es = do { es1 <- sequence es; return (TupE es1)}
condE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
condE x y z = do { a <- x; b <- y; c <- z; return (CondE a b c)}
letE :: [DecQ] -> ExpQ -> ExpQ
letE ds e = do { ds2 <- sequence ds; e2 <- e; return (LetE ds2 e2) }
caseE :: ExpQ -> [MatchQ] -> ExpQ
caseE e ms = do { e1 <- e; ms1 <- sequence ms; return (CaseE e1 ms1) }
doE :: [StmtQ] -> ExpQ
doE ss = do { ss1 <- sequence ss; return (DoE ss1) }
compE :: [StmtQ] -> ExpQ
compE ss = do { ss1 <- sequence ss; return (CompE ss1) }
arithSeqE :: RangeQ -> ExpQ
arithSeqE r = do { r' <- r; return (ArithSeqE r') }
-- arithSeqE Shortcuts
fromE :: ExpQ -> ExpQ
fromE x = do { a <- x; return (ArithSeqE (FromR a)) }
fromThenE :: ExpQ -> ExpQ -> ExpQ
fromThenE x y = do { a <- x; b <- y; return (ArithSeqE (FromThenR a b)) }
fromToE :: ExpQ -> ExpQ -> ExpQ
fromToE x y = do { a <- x; b <- y; return (ArithSeqE (FromToR a b)) }
fromThenToE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
fromThenToE x y z = do { a <- x; b <- y; c <- z;
return (ArithSeqE (FromThenToR a b c)) }
-- End arithSeqE shortcuts
listE :: [ExpQ] -> ExpQ
listE es = do { es1 <- sequence es; return (ListE es1) }
sigE :: ExpQ -> TypeQ -> ExpQ
sigE e t = do { e1 <- e; t1 <- t; return (SigE e1 t1) }
recConE :: Name -> [Q (Name,Exp)] -> ExpQ
recConE c fs = do { flds <- sequence fs; return (RecConE c flds) }
recUpdE :: ExpQ -> [Q (Name,Exp)] -> ExpQ
recUpdE e fs = do { e1 <- e; flds <- sequence fs; return (RecUpdE e1 flds) }
stringE :: String -> ExpQ
stringE = litE . stringL
fieldExp :: Name -> ExpQ -> Q (Name, Exp)
fieldExp s e = do { e' <- e; return (s,e') }
-------------------------------------------------------------------------------
-- Dec
valD :: Pat -> BodyQ -> [DecQ] -> DecQ
valD p b ds =
do { ds' <- sequence ds
; b' <- b
; return (ValD p b' ds')
}
funD :: Name -> [ClauseQ] -> DecQ
funD nm cs =
do { cs1 <- sequence cs
; return (FunD nm cs1)
}
tySynD :: Name -> [Name] -> TypeQ -> DecQ
tySynD tc tvs rhs = do { rhs1 <- rhs; return (TySynD tc tvs rhs1) }
dataD :: CxtQ -> Name -> [Name] -> [ConQ] -> [Name] -> DecQ
dataD ctxt tc tvs cons derivs =
do
ctxt1 <- ctxt
cons1 <- sequence cons
return (DataD ctxt1 tc tvs cons1 derivs)
newtypeD :: CxtQ -> Name -> [Name] -> ConQ -> [Name] -> DecQ
newtypeD ctxt tc tvs con derivs =
do
ctxt1 <- ctxt
con1 <- con
return (NewtypeD ctxt1 tc tvs con1 derivs)
classD :: CxtQ -> Name -> [Name] -> [DecQ] -> DecQ
classD ctxt cls tvs decs =
do
decs1 <- sequence decs
ctxt1 <- ctxt
return $ ClassD ctxt1 cls tvs decs1
instanceD :: CxtQ -> TypeQ -> [DecQ] -> DecQ
instanceD ctxt ty decs =
do
ctxt1 <- ctxt
decs1 <- sequence decs
ty1 <- ty
return $ InstanceD ctxt1 ty1 decs1
sigD :: Name -> TypeQ -> DecQ
sigD fun ty = liftM (SigD fun) $ ty
cxt :: [TypeQ] -> CxtQ
cxt = sequence
normalC :: Name -> [StrictTypeQ] -> ConQ
normalC con strtys = liftM (NormalC con) $ sequence strtys
recC :: Name -> [VarStrictTypeQ] -> ConQ
recC con varstrtys = liftM (RecC con) $ sequence varstrtys
infixC :: Q (Strict, Type) -> Name -> Q (Strict, Type) -> ConQ
infixC st1 con st2 = do st1' <- st1
st2' <- st2
return $ InfixC st1' con st2'
-------------------------------------------------------------------------------
-- Type
forallT :: [Name] -> CxtQ -> TypeQ -> TypeQ
forallT tvars ctxt ty = do
ctxt1 <- ctxt
ty1 <- ty
return $ ForallT tvars ctxt1 ty1
varT :: Name -> TypeQ
varT = return . VarT
conT :: Name -> TypeQ
conT = return . ConT
appT :: TypeQ -> TypeQ -> TypeQ
appT t1 t2 = do
t1' <- t1
t2' <- t2
return $ AppT t1' t2'
arrowT :: TypeQ
arrowT = return ArrowT
listT :: TypeQ
listT = return ListT
tupleT :: Int -> TypeQ
tupleT i = return (TupleT i)
isStrict, notStrict :: Q Strict
isStrict = return $ IsStrict
notStrict = return $ NotStrict
strictType :: Q Strict -> TypeQ -> StrictTypeQ
strictType = liftM2 (,)
varStrictType :: Name -> StrictTypeQ -> VarStrictTypeQ
varStrictType v st = do (s, t) <- st
return (v, s, t)
--------------------------------------------------------------
-- Useful helper functions
combine :: [([(Name, Name)], Pat)] -> ([(Name, Name)], [Pat])
combine pairs = foldr f ([],[]) pairs
where f (env,p) (es,ps) = (env++es,p:ps)
rename :: Pat -> Q ([(Name, Name)], Pat)
rename (LitP c) = return([],LitP c)
rename (VarP s) = do { s1 <- newName (nameBase s); return([(s,s1)],VarP s1) }
rename (TupP pats) = do { pairs <- mapM rename pats; g(combine pairs) }
where g (es,ps) = return (es,TupP ps)
rename (ConP nm pats) = do { pairs <- mapM rename pats; g(combine pairs) }
where g (es,ps) = return (es,ConP nm ps)
rename (TildeP p) = do { (env,p2) <- rename p; return(env,TildeP p2) }
rename (AsP s p) =
do { s1 <- newName (nameBase s); (env,p2) <- rename p; return((s,s1):env,AsP s1 p2) }
rename WildP = return([],WildP)
rename (RecP nm fs) = do { pairs <- mapM rename ps; g(combine pairs) }
where g (env,ps') = return (env,RecP nm (zip ss ps'))
(ss,ps) = unzip fs
rename (ListP pats) = do { pairs <- mapM rename pats; g(combine pairs) }
where g (es,ps) = return (es,ListP ps)
genpat :: Pat -> Q ((Name -> ExpQ), Pat)
genpat p = do { (env,p2) <- rename p; return (alpha env,p2) }
alpha :: [(Name, Name)] -> Name -> ExpQ
alpha env s = case lookup s env of
Just x -> varE x
Nothing -> varE s
appsE :: [ExpQ] -> ExpQ
appsE [] = error "appsExp []"
appsE [x] = x
appsE (x:y:zs) = appsE ( (appE x y) : zs )
simpleMatch :: Pat -> Exp -> Match
simpleMatch p e = Match p (NormalB e) []
--------------------------------------------------------------
-- A pretty printer (due to Ian Lynagh)
--------------------------------------------------------------
nestDepth :: Int
nestDepth = 4
type Precedence = Int
appPrec, opPrec, noPrec :: Precedence
appPrec = 2 -- Argument of a function application
opPrec = 1 -- Argument of an infix operator
noPrec = 0 -- Others
parensIf :: Bool -> Doc -> Doc
parensIf True d = parens d
parensIf False d = d
------------------------------
pprName :: Name -> Doc
pprName v = text (show v)
------------------------------
pprInfo :: Info -> Doc
pprInfo (ClassI d) = pprDec d
pprInfo (TyConI d) = pprDec d
pprInfo (ClassOpI v ty cls fix)
= text "Class op from" <+> pprName cls <> colon <+>
vcat [ppr_sig v ty, pprFixity v fix]
pprInfo (DataConI v ty tc fix)
= text "Constructor from" <+> pprName tc <> colon <+>
vcat [ppr_sig v ty, pprFixity v fix]
pprInfo (TyVarI v ty)
= text "Type variable" <+> pprName v <+> equals <+> pprType ty
pprInfo (VarI v ty mb_d fix)
= vcat [ppr_sig v ty, pprFixity v fix,
case mb_d of { Nothing -> empty; Just d -> pprDec d }]
ppr_sig v ty = pprName v <+> text "::" <+> pprType ty
pprFixity :: Name -> Fixity -> Doc
pprFixity v f | f == defaultFixity = empty
pprFixity v (Fixity i d) = ppr_fix d <+> int i <+> pprName v
where
ppr_fix InfixR = text "infixr"
ppr_fix InfixL = text "infixl"
ppr_fix InfixN = text "infix"
------------------------------
pprExp :: Exp -> Doc
pprExp = pprExpI noPrec
pprExpI :: Precedence -> Exp -> Doc
pprExpI _ (VarE v) = pprName v
pprExpI _ (ConE c) = pprName c
pprExpI i (LitE l) = pprLit i l
pprExpI i (AppE e1 e2) = parensIf (i >= appPrec) $ pprExpI opPrec e1
<+> pprExpI appPrec e2
pprExpI i (InfixE (Just e1) op (Just e2))
= parensIf (i >= opPrec) $ pprExpI opPrec e1
<+> pprExp op
<+> pprExpI opPrec e2
pprExpI _ (InfixE me1 op me2) = parens $ pprMaybeExp noPrec me1
<+> pprExp op
<+> pprMaybeExp noPrec me2
pprExpI i (LamE ps e) = parensIf (i > noPrec) $ char '\\'
<> hsep (map pprPat ps)
<+> text "->" <+> pprExp e
pprExpI _ (TupE es) = parens $ sep $ punctuate comma $ map pprExp es
-- Nesting in Cond is to avoid potential problems in do statments
pprExpI i (CondE guard true false)
= parensIf (i > noPrec) $ sep [text "if" <+> pprExp guard,
nest 1 $ text "then" <+> pprExp true,
nest 1 $ text "else" <+> pprExp false]
pprExpI i (LetE ds e)
= parensIf (i > noPrec) $ text "let" <+> vcat (map pprDec ds)
$$ text " in" <+> pprExp e
pprExpI i (CaseE e ms)
= parensIf (i > noPrec) $ text "case" <+> pprExp e <+> text "of"
$$ nest nestDepth (vcat $ map pprMatch ms)
pprExpI i (DoE ss) = parensIf (i > noPrec) $ text "do"
<+> vcat (map pprStmt ss)
pprExpI _ (CompE []) = error "Can't happen: pprExpI (CompExp [])"
-- This will probably break with fixity declarations - would need a ';'
pprExpI _ (CompE ss) = text "[" <> pprStmt s
<+> text "|"
<+> (sep $ punctuate comma $ map pprStmt ss')
<> text "]"
where s = last ss
ss' = init ss
pprExpI _ (ArithSeqE d) = pprRange d
pprExpI _ (ListE es) = brackets $ sep $ punctuate comma $ map pprExp es
-- 5 :: Int :: Int will break, but that's a silly thing to do anyway
pprExpI i (SigE e t)
= parensIf (i > noPrec) $ pprExp e <+> text "::" <+> pprType t
pprExpI _ (RecConE nm fs) = pprName nm <> braces (pprFields fs)
pprExpI _ (RecUpdE e fs) = pprExpI appPrec e <> braces (pprFields fs)
pprFields :: [(Name,Exp)] -> Doc
pprFields = sep . punctuate comma
. map (\(s,e) -> pprName s <+> equals <+> pprExp e)
pprMaybeExp :: Precedence -> Maybe Exp -> Doc
pprMaybeExp _ Nothing = empty
pprMaybeExp i (Just e) = pprExpI i e
------------------------------
pprStmt :: Stmt -> Doc
pprStmt (BindS p e) = pprPat p <+> text "<-" <+> pprExp e
pprStmt (LetS ds) = text "let" <+> vcat (map pprDec ds)
pprStmt (NoBindS e) = pprExp e
pprStmt (ParS sss) = sep $ punctuate (text "|")
$ map (sep . punctuate comma . map pprStmt) sss
------------------------------
pprMatch :: Match -> Doc
pprMatch (Match p rhs ds) = pprPat p <+> pprBody False rhs
$$ where_clause ds
------------------------------
pprBody :: Bool -> Body -> Doc
pprBody eq (GuardedB xs) = nest nestDepth $ vcat $ map do_guard xs
where eqd = if eq then text "=" else text "->"
do_guard (lhs, rhs) = text "|" <+> pprExp lhs <+> eqd <+> pprExp rhs
pprBody eq (NormalB e) = (if eq then text "=" else text "->")
<+> pprExp e
------------------------------
pprLit :: Precedence -> Lit -> Doc
pprLit i (IntPrimL x) = parensIf (i > noPrec && x < 0)
(integer x <> char '#')
pprLit i (FloatPrimL x) = parensIf (i > noPrec && x < 0)
(float (fromRational x) <> char '#')
pprLit i (DoublePrimL x) = parensIf (i > noPrec && x < 0)
(double (fromRational x) <> text "##")
pprLit i (IntegerL x) = parensIf (i > noPrec && x < 0) (integer x)
pprLit _ (CharL c) = text (show c)
pprLit _ (StringL s) = text (show s)
pprLit i (RationalL rat) = parensIf (i > noPrec) $ rational rat
------------------------------
pprPat :: Pat -> Doc
pprPat = pprPatI noPrec
pprPatI :: Precedence -> Pat -> Doc
pprPatI i (LitP l) = pprLit i l
pprPatI _ (VarP v) = pprName v
pprPatI _ (TupP ps) = parens $ sep $ punctuate comma $ map pprPat ps
pprPatI i (ConP s ps) = parensIf (i > noPrec) $ pprName s
<+> sep (map (pprPatI appPrec) ps)
pprPatI i (TildeP p) = parensIf (i > noPrec) $ pprPatI appPrec p
pprPatI i (AsP v p) = parensIf (i > noPrec) $ pprName v <> text "@"
<> pprPatI appPrec p
pprPatI _ WildP = text "_"
pprPatI _ (RecP nm fs)
= parens $ pprName nm
<+> braces (sep $ punctuate comma $
map (\(s,p) -> pprName s <+> equals <+> pprPat p) fs)
pprPatI _ (ListP ps) = brackets $ sep $ punctuate comma $ map pprPat ps
------------------------------
pprDec :: Dec -> Doc
pprDec (FunD f cs) = vcat $ map (\c -> pprName f <+> pprClause c) cs
pprDec (ValD p r ds) = pprPat p <+> pprBody True r
$$ where_clause ds
pprDec (TySynD t xs rhs) = text "type" <+> pprName t <+> hsep (map pprName xs)
<+> text "=" <+> pprType rhs
pprDec (DataD ctxt t xs cs decs)
= text "data"
<+> pprCxt ctxt
<+> pprName t <+> hsep (map pprName xs)
<+> sep (pref $ map pprCon cs)
$$ if null decs
then empty
else nest nestDepth
$ text "deriving"
<+> parens (hsep $ punctuate comma $ map pprName decs)
where pref :: [Doc] -> [Doc]
pref [] = [char '='] -- Can't happen in H98
pref (d:ds) = (char '=' <+> d):map (char '|' <+>) ds
pprDec (NewtypeD ctxt t xs c decs)
= text "newtype"
<+> pprCxt ctxt
<+> pprName t <+> hsep (map pprName xs)
<+> char '=' <+> pprCon c
$$ if null decs
then empty
else nest nestDepth
$ text "deriving"
<+> parens (hsep $ punctuate comma $ map pprName decs)
pprDec (ClassD ctxt c xs ds) = text "class" <+> pprCxt ctxt
<+> pprName c <+> hsep (map pprName xs)
$$ where_clause ds
pprDec (InstanceD ctxt i ds) = text "instance" <+> pprCxt ctxt <+> pprType i
$$ where_clause ds
pprDec (SigD f t) = pprName f <+> text "::" <+> pprType t
pprDec (ForeignD f) = pprForeign f
------------------------------
pprForeign :: Foreign -> Doc
pprForeign (ImportF callconv safety impent as typ)
= text "foreign import"
<+> showtextl callconv
<+> showtextl safety
<+> text (show impent)
<+> pprName as
<+> text "::" <+> pprType typ
pprForeign (ExportF callconv expent as typ)
= text "foreign export"
<+> showtextl callconv
<+> text (show expent)
<+> pprName as
<+> text "::" <+> pprType typ
------------------------------
pprClause :: Clause -> Doc
pprClause (Clause ps rhs ds) = hsep (map pprPat ps) <+> pprBody True rhs
$$ where_clause ds
------------------------------
pprCon :: Con -> Doc
pprCon (NormalC c sts) = pprName c <+> hsep (map pprStrictType sts)
pprCon (RecC c vsts) = pprName c
<+> char '{'
<> hsep (punctuate comma $ map pprVarStrictType vsts)
<> char '}'
pprCon (InfixC st1 c st2) = pprStrictType st1
<+> pprName c
<+> pprStrictType st2
------------------------------
pprVarStrictType :: (Name, Strict, Type) -> Doc
pprVarStrictType (v, str, t) = pprName v <+> text "::" <+> pprStrictType (str, t)
------------------------------
pprStrictType :: (Strict, Type) -> Doc
pprStrictType (IsStrict, t) = char '!' <> pprType t
pprStrictType (NotStrict, t) = pprType t
------------------------------
pprParendType :: Type -> Doc
pprParendType (VarT v) = pprName v
pprParendType (ConT c) = pprName c
pprParendType (TupleT 0) = text "()"
pprParendType (TupleT n) = parens (hcat (replicate (n-1) comma))
pprParendType ArrowT = parens (text "->")
pprParendType ListT = text "[]"
pprParendType other = parens (pprType other)
pprType :: Type -> Doc
pprType (ForallT tvars ctxt ty) =
text "forall" <+> hsep (map pprName tvars) <+> text "." <+>
ctxtDoc <+> pprType ty
where
ctxtDoc | null ctxt = empty
| otherwise = parens (sep (punctuate comma (map pprType ctxt))) <+>
text "=>"
pprType ty = pprTyApp (split ty)
pprTyApp :: (Type, [Type]) -> Doc
pprTyApp (ArrowT, [arg1,arg2])
= sep [pprType arg1 <+> text "->", pprType arg2]
pprTyApp (ListT, [arg]) = brackets (pprType arg)
pprTyApp (TupleT n, args)
| length args == n
= parens (sep (punctuate comma (map pprType args)))
pprTyApp (fun, args)
= pprParendType fun <+> sep (map pprParendType args)
split :: Type -> (Type, [Type]) -- Split into function and args
split t = go t []
where
go (AppT t1 t2) args = go t1 (t2:args)
go ty args = (ty, args)
------------------------------
pprCxt :: Cxt -> Doc
pprCxt [] = empty
pprCxt [t] = pprType t <+> text "=>"
pprCxt ts = parens (hsep $ punctuate comma $ map pprType ts) <+> text "=>"
------------------------------
pprRange :: Range -> Doc
pprRange = brackets . pprRangeI
pprRangeI :: Range -> Doc
pprRangeI (FromR e) = pprExp e <> text ".."
pprRangeI (FromThenR e1 e2) = pprExp e1 <> text ","
<> pprExp e2 <> text ".."
pprRangeI (FromToR e1 e2) = pprExp e1 <> text ".." <> pprExp e2
pprRangeI (FromThenToR e1 e2 e3) = pprExp e1 <> text ","
<> pprExp e2 <> text ".."
<> pprExp e3
------------------------------
where_clause :: [Dec] -> Doc
where_clause [] = empty
where_clause ds = text "where" <+> vcat (map pprDec ds)
showtextl :: Show a => a -> Doc
showtextl = text . map toLower . show
|