1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
|
// Hyperbolic Rogue -- Arbitrary Tilings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file arbitrile.cpp
* \brief Arbitrary tilings
*
* Arbitrary tilings, defined in .tes files.
*/
#include "hyper.h"
namespace hr {
EX namespace arb {
EX int affine_limit = 200;
#if HDR
/** a type used to specify the connections between shapes */
struct connection_t {
/** the index of the connected shape in the 'shapes' table */
int sid;
/** the index of the edge in the 'shapes' table */
int eid;
/** 1 if this connection mirrored, 0 otherwise. do_unmirror() removes all mirrors by doubling shapes */
int mirror;
bool operator == (const arb::connection_t& b) const { return tie(sid, eid, mirror) == tie(b.sid, b.eid, b.mirror); }
bool operator < (const arb::connection_t& b) const { return tie(sid, eid, mirror) < tie(b.sid, b.eid, b.mirror); }
};
inline void print(hstream& hs, const connection_t& conn) { print(hs, tie(conn.sid, conn.eid, conn.mirror)); }
/** \brief each shape of the arb tessellation
* note: the usual HyperRogue convention is: vertex 0, edge 0, vertex 1, edge 1, ...
* note: the tesfile convention is: edge 0, vertex 0, edge 1, vertex 1, ...
*/
/** edge with infinite end on the left */
constexpr ld INFINITE_LEFT = -1;
/** edge with infinite end on the right */
constexpr ld INFINITE_RIGHT = -2;
/** edge with two infinite ends */
constexpr ld INFINITE_BOTH = -3;
struct shape {
/** index in the arbi_tiling::shapes */
int id;
/** index in the original file */
int orig_id;
/** flags such as sfLINE and sfPH */
int flags;
/** list of vertices in the usual convention */
vector<hyperpoint> vertices;
/** list of angles in the tesfile convention */
vector<ld> angles;
/** list of edge lengths */
vector<ld> edges;
/** list of input edges */
vector<ld> in_edges;
/** list of input angles */
vector<ld> in_angles;
/** (ultra)ideal markers */
vector<bool> ideal_markers;
/** list of edge connections */
vector<connection_t> connections;
int size() const { return isize(vertices); }
void build_from_angles_edges(bool is_comb);
vector<pair<int, int> > sublines;
vector<pair<ld, ld>> stretch_shear;
/** '*inf' was applied to represent an apeirogon/pseudogon */
bool apeirogonal;
/** connections repeat `repeat_value` times */
int repeat_value;
/** 0 if the no mirror symmetries are declared; otherwise, edge i is the mirror of edge gmod(symmetric_value-i, size()). Make sure symmetric_value != 0, e.g., by adding size() */
int symmetric_value;
/** if a tile/edge combination may be connected to edges j1 and j2 of this, j1-j2 must be divisible by cycle_length */
int cycle_length;
/** list of valences of vertices in the tesfile convention */
vector<int> vertex_valence;
/** list of periods of vertices in the tesfile convention */
vector<int> vertex_period;
/** list of angles at vertices in the tesfile convention */
vector<vector<ld>> vertex_angles;
/** football types */
int football_type;
/** is it a mirrored version of an original tile */
bool is_mirrored;
/** auxiliary function for symmetric_value: is the edge index reflectable? */
bool reflectable(int id) {
if(!symmetric_value) return false;
if(apeirogonal && gmod(id, size()) >= size() - 2) return false;
return true;
}
/** reflect a reflectable reflect index */
int reflect(int id) {
return gmod(symmetric_value - id, size() - (apeirogonal ? 2 : 0));
}
};
struct slider {
string name;
ld zero;
ld current;
ld min;
ld max;
};
struct intslider {
string name;
int zero;
int current;
int min;
int max;
};
struct arbi_tiling {
int order;
/* line flags have been marked for tiles */
bool have_line;
/* pseudohept flags have been marked for tiles (1), or the tiling is football-colorable (2), or neither (0) */
int have_ph;
/* is the tree structure given in the tes file */
bool have_tree;
/* is the valence data reliable */
bool have_valence;
/* use "star." if the tessellation includs star polygons */
bool is_star;
/* use "combinatorial." for combinatorial tessellations; vertex valences computed based on their angles. Currently only rulegen works for combinatorial tessellations */
bool is_combinatorial;
/* reserved for future flags */
bool res0, res1, res2, res3;
int yendor_backsteps;
vector<shape> shapes;
string name;
string comment;
vector<slider> sliders;
vector<intslider> intsliders;
ld cscale;
int range;
ld floor_scale;
ld boundary_ratio;
string filename;
int mirror_rules;
vector<string> options;
int min_valence, max_valence;
bool is_football_colorable;
bool was_unmirrored;
bool was_split_for_football;
geometryinfo1& get_geometry();
eGeometryClass get_class() { return get_geometry().kind; }
ld scale();
};
#endif
/** currently loaded tiling */
EX arbi_tiling current;
/** is the currently displayed map current or slided */
EX bool using_slided;
/** for real-valued sliders, current is the tiling used by the map, while slided is the tiling used for the display */
EX arbi_tiling slided;
EX bool in_slided() { return in() && using_slided; }
EX arbi_tiling& current_or_slided() {
return using_slided ? slided : current;
}
/** id of vertex in the arbitrary tiling */
EX short& id_of(heptagon *h) { return h->zebraval; }
#if HDR
struct hr_polygon_error : hr_exception {
vector<transmatrix> v;
eGeometryClass c;
int id;
transmatrix end;
map<string, cld> params;
hr_polygon_error(const vector<transmatrix>& _v, int _id, transmatrix _e) : v(_v), c(cgclass), id(_id), end(_e) {}
~hr_polygon_error() noexcept(true) {}
string generate_error();
};
#endif
string hr_polygon_error::generate_error() {
cld dist = (hdist0(tC0(end)) / params["distunit"]);
bool angle = abs(dist) < 1e-9;
if(angle) dist = (atan2(end * lxpush0(1)) / params["angleunit"]);
return
XLAT("Polygon number %1 did not close correctly (%2 %3). Here is the picture to help you understand the issue.\n\n", its(id),
angle ? "angle" : "distance",
lalign(0, dist)
);
}
struct connection_debug_request : hr_exception {
int id;
eGeometryClass c;
connection_debug_request(int i): id(i), c(cgclass) {}
};
void ensure_geometry(eGeometryClass c) {
stop_game();
if(c != cgclass) {
if(c == gcEuclid) set_geometry(gEuclid);
if(c == gcHyperbolic) set_geometry(gNormal);
if(c == gcSphere) set_geometry(gSphere);
}
if(specialland != laCanvas) {
canvas_default_wall = waInvisibleFloor;
patterns::whichCanvas = 'g';
patterns::canvasback = 0xFFFFFF;
enable_canvas();
}
start_game();
}
void start_poly_debugger(hr_polygon_error& err) {
#if CAP_EDIT
ensure_geometry(err.c);
drawthemap();
mapeditor::drawing_tool = true;
pushScreen(mapeditor::showDrawEditor);
mapeditor::initdraw(cwt.at);
int n = isize(err.v);
mapeditor::dtcolor = 0xFF0000FF;
mapeditor::dtwidth = 0.02;
for(int i=0; i<n-1; i++)
mapeditor::dt_add_line(shiftless(tC0(err.v[i])), shiftless(tC0(err.v[i+1])), 0);
mapeditor::dtcolor = 0xFFFFFFFF;
for(int i=0; i<n; i++)
mapeditor::dt_add_text(shiftless(tC0(err.v[i])), 0.5, its(i));
#endif
}
void shape::build_from_angles_edges(bool is_comb) {
transmatrix at = Id;
int n = isize(in_angles);
hyperpoint ctr = Hypc;
vector<transmatrix> matrices;
for(int i=0; i<n; i++) {
matrices.push_back(at);
if(debugflags & DF_GEOM) println(hlog, "at = ", at);
ctr += tC0(at);
at = at * lxpush(in_edges[i]) * spin(in_angles[i]+M_PI);
}
matrices.push_back(at);
if(is_comb) return;
if(!eqmatrix(at, Id) && !apeirogonal) {
throw hr_polygon_error(matrices, id, at);
}
if(sqhypot_d(3, ctr) < 1e-2) {
// this may happen for some spherical tilings
// try to move towards the center
if(debugflags & DF_GEOM) println(hlog, "special case encountered");
for(int i=0; i<n; i++) {
ctr += at * lxpush(in_edges[i]) * spin((in_angles[i]+M_PI)/2) * lxpush0(.01);
at = at * lxpush(in_edges[i]) * spin(in_angles[i]);
}
if(debugflags & DF_GEOM) println(hlog, "ctr = ", ctr);
}
hyperpoint inf_point;
if(apeirogonal) {
transmatrix U = at;
for(int i=0; i<3; i++) for(int j=0; j<3; j++) U[i][j] -= Id[i][j];
hyperpoint v;
ld det = U[0][1] * U[1][0] - U[1][1] * U[0][0];
v[1] = (U[1][2] * U[0][0] - U[0][2] * U[1][0]) / det;
v[0] = (U[0][2] * U[1][1] - U[1][2] * U[0][1]) / det;
v[2] = 1;
inf_point = v;
ctr = mid(C0, tC0(at));
ctr = towards_inf(ctr, inf_point);
}
ctr = normalize(ctr);
vertices.clear();
angles.clear();
for(int i=0; i<n; i++) {
edges.push_back(in_edges[i]);
if(!ideal_markers[i]) {
vertices.push_back(tC0(gpushxto0(ctr) * matrices[i]));
angles.push_back(in_angles[i]);
}
else {
angles.push_back(0);
hyperpoint a1 = tC0(matrices[i]);
hyperpoint t1 = get_column(matrices[i], 0);
hyperpoint a2 = tC0(matrices[i+2]);
hyperpoint t2 = get_column(matrices[i+2], 0);
a1 /= a1[2];
a2 /= a2[2];
t1 -= a1 * t1[2];
t2 -= a2 * t2[2];
ld c1 = a2[0] - a1[0], c2 = a2[1] - a1[1];
ld v1 = t1[0], v2 = t1[1];
ld u1 = t2[0], u2 = t2[1];
ld r = (u2 * c1 - c2 * u1) / (v1 * u2 - v2 * u1);
// ld s = (v2 * c1 - c2 * v1) / (v1 * u2 - v2 * u1);
hyperpoint v = a1 + r * t1;
// also v == a2 + s * t2;
v[2] = 1;
v = gpushxto0(ctr) * v;
v /= v[2];
vertices.push_back(v);
i++;
}
}
if(apeirogonal) {
vertices.push_back(gpushxto0(ctr) * tC0(at));
hyperpoint v = gpushxto0(ctr) * inf_point;
v /= v[2];
vertices.push_back(v);
auto b = angles.back() / 2;
angles.back() = b;
angles.push_back(0);
angles.push_back(b);
edges.push_back(0);
edges.push_back(0);
}
n = isize(angles);
for(int i=0; i<n; i++) {
bool left = angles[i] == 0;
bool right = angles[gmod(i-1, isize(vertices))] == 0;
if(left && right) edges[i] = INFINITE_BOTH;
else if(left) edges[i] = INFINITE_LEFT;
else if(right) edges[i] = INFINITE_RIGHT;
}
}
EX bool correct_index(int index, int size) { return index >= 0 && index < size; }
template<class T> bool correct_index(int index, const T& v) { return correct_index(index, isize(v)); }
template<class T> void verify_index(int index, const T& v, exp_parser& ep) { if(!correct_index(index, v)) throw hr_parse_exception("bad index: " + its(index) + " at " + ep.where()); }
string unnamed = "unnamed";
EX void load_tile(exp_parser& ep, arbi_tiling& c, bool unit) {
c.shapes.emplace_back();
auto& cc = c.shapes.back();
cc.id = isize(c.shapes) - 1;
cc.orig_id = cc.id;
cc.is_mirrored = false;
cc.symmetric_value = 0;
cc.flags = 0;
cc.repeat_value = 1;
bool is_symmetric = false;
while(ep.next() != ')') {
cld dist = 1;
ep.skip_white();
if(ep.eat("|")) {
cc.symmetric_value = ep.iparse();
is_symmetric = true;
ep.force_eat(")");
break;
}
if(ep.eat("*")) {
ld frep = ep.rparse(0);
if(isinf(frep)) {
cc.apeirogonal = true;
set_flag(ginf[gArbitrary].flags, qIDEAL, true);
if(ep.eat(",") && ep.eat("|")) {
is_symmetric = true;
if(isize(cc.in_edges) == 1 && ep.eat(")")) break;
cc.symmetric_value = ep.iparse();
}
ep.force_eat(")");
break;
}
int rep = int(frep+.5);
int repeat_from = 0;
int repeat_to = cc.in_edges.size();
if(rep == 0) {
cc.in_edges.resize(repeat_from);
cc.in_angles.resize(repeat_from);
cc.ideal_markers.resize(repeat_from);
}
else if(rep < 0) throw hr_parse_exception("don't know how to use a negative repeat in tile definition");
for(int i=1; i<rep; i++)
for(int j=repeat_from; j<repeat_to; j++) {
cc.in_edges.push_back(cc.in_edges[j]);
cc.in_angles.push_back(cc.in_angles[j]);
cc.ideal_markers.push_back(cc.ideal_markers[j]);
}
ep.skip_white();
if(ep.eat(",")) {
ep.force_eat("|");
is_symmetric = true;
if(repeat_to == 1 && ep.eat(")")) goto skip;
cc.symmetric_value = ep.iparse();
}
if(ep.eat(")")) {
skip:
if(repeat_from == 0) cc.repeat_value = rep;
break;
}
else throw hr_parse_exception("expecting ) after repeat");
}
if(!unit) {
dist = ep.parse(0);
ep.force_eat(",");
}
cld angle;
ep.skip_white();
if(ep.eat("[")) {
cc.in_edges.push_back(ep.validate_real(dist * ep.extra_params["distunit"]));
angle = ep.parse(0); ep.force_eat(",");
cc.in_angles.push_back(ep.validate_real(angle * ep.extra_params["angleunit"]));
cc.ideal_markers.push_back(true);
dist = ep.parse(0); ep.force_eat(",");
angle = ep.parse(0); ep.force_eat("]");
set_flag(ginf[gArbitrary].flags, qIDEAL, true);
}
else
angle = ep.parse(0);
cc.in_edges.push_back(ep.validate_real(dist * ep.extra_params["distunit"]));
cc.in_angles.push_back(ep.validate_real(angle * ep.extra_params["angleunit"]));
cc.ideal_markers.push_back(false);
if(ep.eat(",")) continue;
else if(ep.eat(")")) break;
else throw hr_parse_exception("expecting , or )");
}
try {
cc.build_from_angles_edges(c.is_combinatorial);
}
catch(hr_parse_exception& ex) {
throw hr_parse_exception(ex.s + ep.where());
}
catch(hr_polygon_error& poly) {
poly.params = ep.extra_params;
throw;
}
int n = cc.size();
if(is_symmetric && !cc.symmetric_value) cc.symmetric_value += n - (cc.apeirogonal ? 2 : 0);
cc.connections.resize(n);
for(int i=0; i<isize(cc.connections); i++)
cc.connections[i] = connection_t{cc.id, i, false};
if(cc.apeirogonal) {
cc.connections[n-2].eid = n-1;
cc.connections[n-1].eid = n-2;
}
cc.stretch_shear.resize(n, make_pair(1, 0));
}
EX bool do_unmirror = true;
template<class T> void cycle(vector<T>& t) {
std::rotate(t.begin(), t.begin() + 2, t.end());
}
/** \brief for tessellations which contain mirror rules, remove them by taking the orientable double cover */
EX void unmirror(arbi_tiling& c) {
if(cgflags & qAFFINE) return;
auto& mirror_rules = c.mirror_rules;
mirror_rules = 0;
for(auto& s: c.shapes)
for(auto& t: s.connections)
if(t.mirror)
mirror_rules++;
if(!mirror_rules) return;
auto& sh = c.shapes;
int s = isize(sh);
vector<int> mirrored_id(s, -1);
for(int i=0; i<s; i++)
if(!sh[i].symmetric_value) {
mirrored_id[i] = isize(sh);
sh.push_back(sh[i]);
}
int ss = isize(sh);
for(int i=0; i<ss; i++) {
sh[i].id = i;
if(i >= s) sh[i].is_mirrored = true;
}
for(int i=s; i<ss; i++) {
for(auto& v: sh[i].vertices)
v[1] = -v[1];
reverse(sh[i].edges.begin(), sh[i].edges.end());
for(auto& e: sh[i].edges) {
if(e == INFINITE_LEFT) e = INFINITE_RIGHT;
else if(e == INFINITE_RIGHT) e = INFINITE_LEFT;
}
reverse(sh[i].vertices.begin()+1, sh[i].vertices.end());
reverse(sh[i].angles.begin(), sh[i].angles.end()-1);
reverse(sh[i].connections.begin(), sh[i].connections.end());
if(sh[i].apeirogonal) {
cycle(sh[i].edges);
cycle(sh[i].vertices);
if(debugflags & DF_GEOM) println(hlog, "angles before = ", sh[i].angles);
cycle(sh[i].angles);
if(debugflags & DF_GEOM) println(hlog, "angles now = ", sh[i].angles);
cycle(sh[i].connections);
}
}
if(true) for(int i=0; i<ss; i++) {
for(auto& co: sh[i].connections) {
bool mirr = co.mirror ^ (i >= s);
co.mirror = false;
if(mirr && mirrored_id[co.sid] == -1) {
if(sh[co.sid].reflectable(co.eid)) {
co.eid = sh[co.sid].reflect(co.eid);
}
}
else if(mirr) {
co.sid = mirrored_id[co.sid];
co.eid = isize(sh[co.sid].angles) - 1 - co.eid;
if(sh[co.sid].apeirogonal)
co.eid = gmod(co.eid - 2, isize(sh[co.sid].angles));
}
}
}
c.was_unmirrored = true;
}
static void reduce_gcd(int& a, int b) {
a = abs(gcd(a, b));
}
EX void mirror_connection(arb::arbi_tiling& ac, connection_t& co) {
if(co.mirror && ac.shapes[co.sid].reflectable(co.eid)) {
co.eid = ac.shapes[co.sid].reflect(co.eid);
co.mirror = !co.mirror;
}
}
EX void compute_vertex_valence_prepare(arb::arbi_tiling& ac) {
int tcl = -1;
while(true) {
for(auto& sh: ac.shapes) {
int i = sh.id;
int n = isize(sh.vertices);
for(int k=sh.cycle_length; k<n; k++) {
auto co = sh.connections[k];
auto co1 = sh.connections[k-sh.cycle_length];
if(co.sid != co1.sid) {
println(hlog, "ik = ", tie(i,k), " co=", co, " co1=", co1, " cl=", sh.cycle_length);
throw hr_parse_exception("connection error #2 in compute_vertex_valence");
}
mirror_connection(ac, co);
mirror_connection(ac, co1);
reduce_gcd(ac.shapes[co.sid].cycle_length, co.eid - co1.eid);
}
for(int k=0; k<n; k++) {
auto co = sh.connections[k];
auto co0 = co;
co = ac.shapes[co.sid].connections[co.eid];
if(co.sid != i) throw hr_parse_exception("connection error in compute_vertex_valence");
co.mirror ^= co0.mirror;
mirror_connection(ac, co);
reduce_gcd(sh.cycle_length, k-co.eid);
}
if(debugflags & DF_GEOM)
println(hlog, "tile ", i, " cycle_length = ", sh.cycle_length, " / ", n);
}
int new_tcl = 0;
for(auto& sh: ac.shapes) {
auto& len = sh.cycle_length;
if(len < 0) len = -len;
new_tcl += len;
}
if(new_tcl == tcl) break;
tcl = new_tcl;
}
}
/** returns true if we need to recompute */
EX bool compute_vertex_valence_flat(arb::arbi_tiling& ac) {
for(auto& sh: ac.shapes) {
int n = sh.size();
int i = sh.id;
sh.vertex_valence.resize(n);
sh.vertex_period.resize(n);
sh.vertex_angles.resize(n);
for(int k=0; k<n; k++) {
ld total = 0;
int qty = 0, pqty = 0;
connection_t at = {i, k, false};
connection_t at1 = at;
vector<ld> anglelist;
do {
if(at.sid == at1.sid && (at.eid-at1.eid) % ac.shapes[at.sid].cycle_length == 0) pqty = 0;
if(qty && pqty == 0 && !total) break;
ld a = ac.shapes[at.sid].angles[at.eid];
while(a < 0) a += TAU;
while(a > TAU) a -= TAU;
total += a;
anglelist.push_back(a);
qty++;
pqty++;
at.eid++;
if(at.eid == isize(ac.shapes[at.sid].angles)) at.eid = 0;
at = ac.shapes[at.sid].connections[at.eid];
}
while(total < TAU - 1e-6);
if(total == 0) qty = OINF;
if(total > TAU + 1e-6) throw hr_parse_exception("improper total in compute_stats");
if(at.sid != i) throw hr_parse_exception("ended at wrong type determining vertex_valence");
if((at.eid - k) % ac.shapes[i].cycle_length) {
reduce_gcd(ac.shapes[i].cycle_length, at.eid - k);
return true;
}
sh.vertex_valence[k] = qty;
sh.vertex_period[k] = pqty;
sh.vertex_angles[k] = std::move(anglelist);
}
if(debugflags & DF_GEOM)
println(hlog, "computed vertex_valence of ", i, " as ", ac.shapes[i].vertex_valence);
}
return false;
}
/** returns true if we need to recompute */
EX bool compute_vertex_valence_generic(arb::arbi_tiling& ac) {
for(auto& sh: ac.shapes) {
int n = sh.size();
int i = sh.id;
sh.vertex_valence.resize(n);
for(int k=0; k<n; k++) {
connection_t at = {i, k, false};
transmatrix T = Id;
int qty = 0;
do {
if(qty && at.sid == i) {
auto co1 = at;
bool found = find_connection(T, Id, co1);
if(found) {
mirror_connection(ac, co1);
if((co1.eid - k) % ac.shapes[i].cycle_length) {
reduce_gcd(ac.shapes[i].cycle_length, co1.eid - k);
return true;
}
break;
}
}
if(at.mirror) {
if(at.eid == 0) at.eid = isize(ac.shapes[at.sid].angles);
at.eid--;
}
else {
at.eid++;
if(at.eid == isize(ac.shapes[at.sid].angles)) at.eid = 0;
}
auto at0 = at;
at = ac.shapes[at.sid].connections[at.eid];
T = T * get_adj(ac, at0.sid, at0.eid, at.sid, at.eid, at.mirror);
at.mirror ^= at0.mirror;
qty++;
}
while(qty < OINF);
sh.vertex_valence[k] = qty;
}
if(debugflags & DF_GEOM)
println(hlog, "computed vertex_valence of ", i, " as ", ac.shapes[i].vertex_valence);
}
return false;
}
EX void compute_vertex_valence(arb::arbi_tiling& ac) {
for(auto& sh: ac.shapes)
sh.cycle_length = isize(sh.vertices) / sh.repeat_value;
bool generic = false;
if(!ac.was_unmirrored) for(auto& sh: ac.shapes) if(sh.symmetric_value) generic = true;
for(auto& sh: ac.shapes) for(auto& co: sh.connections) if(co.mirror) generic = true;
if(cgflags & qAFFINE) generic = true;
if(ac.is_star) generic = true;
recompute:
compute_vertex_valence_prepare(ac);
if(generic ? compute_vertex_valence_generic(ac) : compute_vertex_valence_flat(ac)) goto recompute;
ac.have_valence = true;
ac.min_valence = UNKNOWN; ac.max_valence = 0;
for(auto& sh: ac.shapes)
for(auto& val: sh.vertex_valence) {
if(val < ac.min_valence) ac.min_valence = val;
if(val > ac.max_valence) ac.max_valence = val;
}
}
EX bool extended_football = true;
EX void check_football_colorability(arbi_tiling& c) {
if(!c.have_valence) return;
for(auto&sh: c.shapes) for(auto v: sh.vertex_valence)
if(v % 3) return;
for(int i=0; i<3; i++) {
for(auto&sh: c.shapes) sh.football_type = 3;
vector<int> aqueue;
c.shapes[0].football_type = i;
aqueue = {0};
bool bad = false;
for(int qi=0; qi<isize(aqueue); qi++) {
int sid = aqueue[qi];
auto& sh = c.shapes[sid];
for(int j=0; j<sh.size(); j++) {
auto &co = sh.connections[j];
auto t = sh.football_type;
if(c.have_ph && ((sh.flags & arcm::sfPH) != (t==2))) bad = true;
if(sh.apeirogonal && t < 2 && (isize(sh) & 1)) bad = true;
auto assign = [&] (int tt) {
auto& t1 = c.shapes[co.sid].football_type;
if(t1 == 3) {
t1 = tt;
aqueue.push_back(co.sid);
}
else {
if(t1 != tt) bad = true;
}
};
if(t < 2) {
if((j & 1) == t) assign(2); else assign((co.eid & 1) ? 0 : 1);
}
else {
assign((co.eid & 1) ? 1 : 0);
}
}
}
if(!bad) {
c.have_ph = 2;
for(auto& sh: c.shapes) if(sh.football_type == 2) sh.flags |= arcm::sfPH;
return;
}
}
if(extended_football && !c.have_tree) {
for(auto&sh: c.shapes)
sh.football_type = 0;
for(int i=0; i<3*isize(c.shapes); i++) {
for(auto&sh: c.shapes) {
int &res = sh.football_type;
int siz = sh.size();
if(sh.apeirogonal) siz -= 2;
else if(siz & 1) res |= 3;
if((sh.cycle_length & 1) && !sh.apeirogonal) {
if(res & 3) res |= 3;
}
if(sh.apeirogonal && (siz & 1)) {
if(res & 3) res |= 3;
}
if(sh.flags & arcm::sfPH) res |= 3;
for(int i=0; i<sh.size(); i++) {
auto co = sh.connections[i];
co.eid %= c.shapes[co.sid].cycle_length;
if(res & 1) {
if(i&1) {
if(co.eid & 1)
c.shapes[co.sid].football_type |= 1;
else
c.shapes[co.sid].football_type |= 2;
}
else
c.shapes[co.sid].football_type |= 4;
}
if(res & 2) {
if(!(i&1)) {
if(co.eid & 1)
c.shapes[co.sid].football_type |= 1;
else
c.shapes[co.sid].football_type |= 2;
}
else
c.shapes[co.sid].football_type |= 4;
}
if(res & 4) {
if(co.eid & 1)
c.shapes[co.sid].football_type |= 2;
else
c.shapes[co.sid].football_type |= 1;
}
}
}
}
c.is_football_colorable = true;
c.was_split_for_football = true;
for(auto&sh: c.shapes)
if(sh.football_type == 7)
c.is_football_colorable = false;
if(c.is_football_colorable) {
vector<array<int, 3> > new_indices(isize(c.shapes), make_array(-1, -1, -1));
auto oldshapes = c.shapes;
c.shapes.clear();
for(int i=0; i<isize(oldshapes); i++)
for(int t=0; t<3; t++)
if(!(oldshapes[i].football_type & (1<<t))) {
if(t == 1 && (oldshapes[i].cycle_length & 1) && !oldshapes[i].apeirogonal) continue;
new_indices[i][t] = isize(c.shapes);
c.shapes.push_back(oldshapes[i]);
c.shapes.back().football_type = t;
if(t == 2) c.shapes.back().flags |= arcm::sfPH;
}
for(int i=0; i<isize(oldshapes); i++)
for(int t=0; t<3; t++) {
int ni = new_indices[i][t];
if(ni == -1) continue;
auto& sh = c.shapes[ni];
sh.id = ni;
for(int j=0; j<isize(sh); j++) {
auto &co = sh.connections[j];
auto assign = [&] (int tt) {
auto ni1 = new_indices[co.sid][tt];
if(ni1 == -1 && tt == 1) {
ni1 = new_indices[co.sid][0];
co.eid += oldshapes[co.sid].cycle_length;
co.eid %= isize(oldshapes[co.sid]);
}
co.sid = ni1;
};
if(sh.apeirogonal && j >= isize(sh)-2) {
co.sid = ni;
if(t < 2 && (isize(sh) & 1)) co.sid = new_indices[i][t^1];
continue;
}
co.eid %= oldshapes[co.sid].cycle_length;
if(t < 2) {
if((j & 1) == t) assign(2); else assign((co.eid & 1) ? 0 : 1);
}
else {
assign((co.eid & 1) ? 1 : 0);
}
}
if((sh.cycle_length&1) && (t < 2) && !sh.apeirogonal) sh.cycle_length *= 2;
if(debugflags & DF_GEOM)
println(hlog, tie(i,t), " becomes ", ni, " with connections ", sh.connections, " and cycle length = ", sh.cycle_length);
}
c.have_ph = 2;
return;
}
}
for(auto&sh: c.shapes) sh.football_type = 3;
}
EX void add_connection_sub(arbi_tiling& c, int ai, int as, int bi, int bs, int m) {
int as0 = as, bs0 = bs;
auto& ash = c.shapes[ai];
auto& bsh = c.shapes[bi];
do {
ash.connections[as] = connection_t{bi, bs, m};
as = gmod(as + ash.size() / ash.repeat_value, ash.size());
}
while(as != as0);
do {
c.shapes[bi].connections[bs] = connection_t{ai, as, m};
bs = gmod(bs + bsh.size() / bsh.repeat_value, bsh.size());
}
while(bs != bs0);
}
EX void add_connection(arbi_tiling& c, int ai, int as, int bi, int bs, int m) {
auto& ash = c.shapes[ai];
auto& bsh = c.shapes[bi];
add_connection_sub(c, ai, as, bi, bs, m);
int as1, bs1;
if(ash.symmetric_value) {
as1 = ash.reflect(as);
add_connection_sub(c, ai, as1, bi, bs, !m);
}
if(bsh.symmetric_value) {
bs1 = bsh.reflect(bs);
add_connection_sub(c, ai, as, bi, bs1, !m);
}
if(ash.symmetric_value && bsh.symmetric_value)
add_connection_sub(c, ai, as1, bi, bs1, m);
}
EX void set_defaults(arb::arbi_tiling& c, bool keep_sliders, string fname) {
c.order++;
c.name = unnamed;
c.comment = "";
c.filename = fname;
c.cscale = 1;
c.range = 0;
c.boundary_ratio = 1;
c.floor_scale = .5;
c.have_ph = 0;
c.have_line = false;
c.is_football_colorable = false;
c.have_tree = false;
c.have_valence = false;
c.yendor_backsteps = 0;
c.is_star = false;
c.is_combinatorial = false;
c.was_unmirrored = false;
c.was_split_for_football = false;
c.shapes.clear();
if(!keep_sliders) {
c.sliders.clear();
c.intsliders.clear();
}
}
EX void load(const string& fname, bool load_as_slided IS(false), bool keep_sliders IS(false)) {
fhstream f(fname, "rt");
if(!f.f) throw hr_parse_exception("file " + fname + " does not exist");
string s;
while(true) {
int c = fgetc(f.f);
if(c < 0) break;
s += c;
}
auto& c = load_as_slided ? slided : current;
set_defaults(c, keep_sliders, fname);
int qsliders = 0, qintsliders = 0;
exp_parser ep;
ep.s = s;
ld angleunit = 1, distunit = 1;
auto addflag = [&] (int f) {
int ai;
if(ep.next() == ')') ai = isize(c.shapes)-1;
else ai = ep.iparse();
verify_index(ai, c.shapes, ep);
c.shapes[ai].flags |= f;
ep.force_eat(")");
};
while(true) {
ep.extra_params["distunit"] = distunit;
ep.extra_params["angleunit"] = angleunit;
ep.skip_white();
if(ep.next() == 0) break;
if(ep.eat("#")) {
bool doubled = ep.eat("#");
while(ep.eat(" ")) ;
string s = "";
while(ep.next() >= 32) s += ep.next(), ep.at++;
if(doubled) {
if(c.name == unnamed) c.name = s;
else {
c.comment += s;
c.comment += "\n";
}
}
}
else if(ep.eat("c2(")) {
ld curv = ep.rparse(0);
ep.force_eat(")");
ginf[gArbitrary].g = curv > 0 ? giSphere2 : curv < 0 ? giHyperb2 : giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, curv > 0);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("e2.")) {
ginf[gArbitrary].g = giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("a2.")) {
ginf[gArbitrary].g = giEuclid2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, true);
affine_limit = 200;
geom3::apply_always3();
}
else if(ep.eat("h2.")) {
ginf[gArbitrary].g = giHyperb2;
ginf[gArbitrary].sides = 7;
set_flag(ginf[gArbitrary].flags, qCLOSED, false);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("s2.")) {
ginf[gArbitrary].g = giSphere2;
ginf[gArbitrary].sides = 5;
set_flag(ginf[gArbitrary].flags, qCLOSED, true);
set_flag(ginf[gArbitrary].flags, qAFFINE, false);
geom3::apply_always3();
}
else if(ep.eat("star.")) {
c.is_star = true;
}
else if(ep.eat("combinatorial.")) {
c.is_combinatorial = true;
}
else if(ep.eat("option(\"")) {
next:
string s = "";
while(ep.next() != '"') s += ep.eatchar();
ep.force_eat("\"");
c.options.push_back(s);
ep.skip_white();
if(ep.eat(",")) { ep.skip_white(); ep.force_eat("\""); goto next; }
ep.force_eat(")");
}
else if(ep.eat("angleunit(")) angleunit = real(ep.parsepar());
else if(ep.eat("distunit(")) distunit = real(ep.parsepar());
else if(ep.eat("line(")) {
addflag(arcm::sfLINE);
c.have_line = true;
}
else if(ep.eat("grave(")) {
addflag(arcm::sfPH);
c.have_ph = true;
}
else if(ep.eat("slider(")) {
slider sl;
sl.name = ep.next_token();
ep.force_eat(",");
sl.current = sl.zero = ep.rparse();
ep.force_eat(",");
sl.min = ep.rparse();
ep.force_eat(",");
sl.max = ep.rparse();
ep.force_eat(")");
if(load_as_slided || !keep_sliders)
c.sliders.push_back(sl);
if(load_as_slided || keep_sliders)
ep.extra_params[sl.name] = current.sliders[qsliders++].current;
else
ep.extra_params[sl.name] = sl.zero;
}
else if(ep.eat("intslider(")) {
intslider sl;
sl.name = ep.next_token();
ep.force_eat(",");
sl.current = sl.zero = ep.iparse();
ep.force_eat(",");
sl.min = ep.iparse();
ep.force_eat(",");
sl.max = ep.iparse();
ep.force_eat(")");
if(load_as_slided || !keep_sliders)
c.intsliders.push_back(sl);
if(load_as_slided || keep_sliders)
ep.extra_params[sl.name] = current.intsliders[qintsliders++].current;
else
ep.extra_params[sl.name] = sl.zero;
}
else if(ep.eat("let(")) {
string tok = ep.next_token();
ep.force_eat("=");
ep.extra_params[tok] =ep.parsepar();
if(debugflags & DF_GEOM)
println(hlog, "let ", tok, " = ", ep.extra_params[tok]);
}
else if(ep.eat("unittile(")) load_tile(ep, c, true);
else if(ep.eat("tile(")) load_tile(ep, c, false);
else if(ep.eat("affine_limit(")) {
affine_limit = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("cscale(")) {
c.cscale = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("treestate(")) {
rulegen::parse_treestate(c, ep);
}
else if(ep.eat("first_treestate(")) {
rulegen::rule_root = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("yendor_backsteps(")) {
c.yendor_backsteps = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("range(")) {
c.range = ep.iparse();
ep.force_eat(")");
}
else if(ep.eat("floor_scale(")) {
c.floor_scale = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("boundary_ratio(")) {
c.boundary_ratio = ep.rparse();
ep.force_eat(")");
}
else if(ep.eat("conway(\"")) {
string s = "";
while(true) {
int m = 0;
if(ep.eat("(")) m = 0;
else if(ep.eat("[")) m = 1;
else if(ep.eat("\"")) break;
else throw hr_parse_exception("cannot parse Conway notation, " + ep.where());
int ai = 0;
int as = ep.iparse();
while(ep.eat("'")) ai++;
if(ep.eat("@")) ai = ep.iparse();
int bi = 0, bs = 0;
if(ep.eat(")") || ep.eat("]")) bs = as, bi = ai;
else {
bs = ep.iparse();
while(ep.eat("'")) bi++;
if(ep.eat("@")) bi = ep.iparse();
}
if(ep.eat(")") || ep.eat("]")) {}
verify_index(ai, c.shapes, ep);
verify_index(as, c.shapes[ai], ep);
verify_index(bi, c.shapes, ep);
verify_index(bs, c.shapes[bi], ep);
add_connection(c, ai, as, bi, bs, m);
}
ep.force_eat(")");
}
else if(ep.eat("c(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bi = ep.iparse(); verify_index(bi, c.shapes, ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[bi], ep); ep.force_eat(",");
int m = ep.iparse(); ep.force_eat(")");
add_connection(c, ai, as, bi, bs, m);
}
else if(ep.eat("subline(")) {
int ai = ep.iparse(); verify_index(ai, c.shapes, ep); ep.force_eat(",");
int as = ep.iparse(); verify_index(as, c.shapes[ai], ep); ep.force_eat(",");
int bs = ep.iparse(); verify_index(bs, c.shapes[ai], ep); ep.force_eat(")");
c.shapes[ai].sublines.emplace_back(as, bs);
}
else if(ep.eat("sublines(")) {
ld d = ep.rparse() * distunit;
ld eps = 1e-4;
if(ep.eat(",")) eps = ep.rparse() * distunit;
ep.force_eat(")");
for(auto& sh: c.shapes) {
for(int i=0; i<isize(sh.vertices); i++)
for(int j=0; j<i; j++)
if(j != i+1 && i != j+1 && !(i==0 && j == isize(sh.vertices)-1) && !(j==0 && i == isize(sh.vertices)-1) && i != j) {
ld dist = hdist(sh.vertices[i], sh.vertices[j]);
if(abs(dist - d) < eps) {
sh.sublines.emplace_back(i, j);
if(debugflags & DF_GEOM) println(hlog, "add subline ", i, "-", j);
}
}
}
}
else if(ep.eat("repeat(")) {
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(",");
int rep = ep.iparse(0);
ep.force_eat(")");
auto& sh = c.shapes[i];
int N = isize(sh.angles);
if(N % rep)
throw hr_parse_exception("repeat value should be a factor of the number of vertices, " + ep.where());
sh.repeat_value = rep;
int d = N / rep;
for(int i=d; i<N; i++)
sh.connections[i] = sh.connections[i-d];
}
else if(ep.eat("debug(")) {
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(")");
throw connection_debug_request(i);
}
else if(ep.eat("stretch_shear(")) {
ld stretch = ep.rparse(0);
ep.force_eat(",");
ld shear = ep.rparse(0);
ep.force_eat(",");
int i = ep.iparse(0);
verify_index(i, c.shapes, ep);
ep.force_eat(",");
int j = ep.iparse(0);
verify_index(j, c.shapes[i], ep);
ep.force_eat(")");
auto& sh = c.shapes[i];
sh.stretch_shear[j] = {stretch, shear};
auto& co = sh.connections[j];
auto& xsh = c.shapes[co.sid];
ld scale = sh.edges[j] / xsh.edges[co.eid];
println(hlog, "scale = ", scale);
xsh.stretch_shear[co.eid] = {1/stretch, shear * (co.mirror ? 1 : -1) * stretch };
}
else throw hr_parse_exception("expecting command, " + ep.where());
}
if(!(cgflags & qAFFINE)) {
for(int i=0; i<isize(c.shapes); i++) {
auto& sh = c.shapes[i];
for(int j=0; j<isize(sh.edges); j++) {
ld d1 = sh.edges[j];
auto con = sh.connections[j];
auto& xsh = c.shapes[con.sid];
ld d2 = xsh.edges[con.eid];
if(d1 == INFINITE_LEFT) d1 = INFINITE_RIGHT;
else if(d1 == INFINITE_RIGHT) d1 = INFINITE_LEFT;
if(abs(d1 - d2) > 1e-6)
throw hr_parse_exception(lalign(0, "connecting ", make_pair(i,j), " to ", con, " of different lengths only possible in a2"));
}
}
}
if(do_unmirror) {
unmirror(c);
}
if(!c.have_tree) compute_vertex_valence(c);
check_football_colorability(c);
if(c.have_tree) rulegen::verify_parsed_treestates(c);
if(!load_as_slided) slided = current;
}
arbi_tiling debugged;
vector<pair<transmatrix, int> > debug_polys;
string primes(int i) {
string res;
while(i--) res += "'";
return res;
}
void connection_debugger() {
cmode = sm::SIDE | sm::DIALOG_STRICT_X;
gamescreen();
auto& last = debug_polys.back();
initquickqueue();
for(auto& p: debug_polys) {
int id = p.second;
shiftmatrix V = gmatrix[cwt.at] * p.first;
auto& sh = debugged.shapes[id].vertices;
for(auto& v: sh)
curvepoint(v);
curvepoint(sh[0]);
color_t col = colortables['A'][id];
col = darkena(col, 0, 0xFF);
if(&p == &last) {
vid.linewidth *= 2;
queuecurve(V, 0xFFFF00FF, col, PPR::LINE);
vid.linewidth /= 2;
for(int i=0; i<isize(sh); i++)
queuestr(V * sh[i], vid.fsize, its(i), 0xFFFFFFFF);
}
else
queuecurve(V, 0xFFFFFFFF, col, PPR::LINE);
}
quickqueue();
dialog::init(XLAT("connection debugger"));
dialog::addInfo(debugged.name);
dialog::addHelp(debugged.comment);
dialog::addBreak(50);
dialog::addInfo("face index " + its(last.second));
dialog::addBreak(50);
auto& sh = debugged.shapes[last.second];
int N = isize(sh.edges);
for(int k=0; k<N; k++) {
auto con = sh.connections[k];
string cap = its(k) + primes(last.second) + " -> " + its(con.eid) + primes(con.sid) + (con.mirror ? " (m) " : "");
dialog::addSelItem(cap, "go", '0' + k);
dialog::add_action([k, last, con] {
if(euclid) cgflags |= qAFFINE;
debug_polys.emplace_back(last.first * get_adj(debugged, last.second, k), con.sid);
if(euclid) cgflags &= ~qAFFINE;
});
}
dialog::addItem("undo", 'u');
dialog::add_action([] {
if(isize(debug_polys) > 1)
debug_polys.pop_back();
});
dialog::addBack();
dialog::display();
keyhandler = [] (int sym, int uni) {
handlePanning(sym, uni);
dialog::handleNavigation(sym, uni);
if(doexiton(sym, uni)) popScreen();
};
}
geometryinfo1& arbi_tiling::get_geometry() {
return ginf[gEuclid].g;
}
map<heptagon*, vector<pair<heptagon*, transmatrix> > > altmap;
EX map<heptagon*, pair<heptagon*, transmatrix>> arbi_matrix;
EX hrmap *current_altmap;
heptagon *build_child(heptspin p, pair<int, int> adj);
/** get the midedge of lr; it takes infinite vertices into account */
EX hyperpoint get_midedge(ld len, const hyperpoint &l, const hyperpoint &r) {
if(len == INFINITE_BOTH) {
return normalize(closest_to_zero(l, r));
}
else if(len == INFINITE_RIGHT) {
return towards_inf(r, l);
}
else if(len == INFINITE_LEFT) {
return towards_inf(l, r);
}
else return mid(l, r);
}
EX bool is_apeirogonal(cell *c) {
if(!in()) return false;
return current_or_slided().shapes[id_of(c->master)].apeirogonal;
}
EX bool is_apeirogonal() {
if(!in()) return false;
for(auto& sh: current_or_slided().shapes)
if(sh.apeirogonal) return true;
return false;
}
EX bool apeirogon_consistent_coloring = true;
EX bool apeirogon_hide_grid_edges = true;
EX bool apeirogon_simplified_display = false;
/** get the adj matrix corresponding to the connection of (t,dl) to connection_t{t1, xdl, xmirror} */
EX transmatrix get_adj(arbi_tiling& c, int t, int dl, int t1, int xdl, bool xmirror) {
auto& sh = c.shapes[t];
int dr = gmod(dl+1, sh.size());
auto& xsh = c.shapes[t1];
int xdr = gmod(xdl+1, xsh.size());
hyperpoint vl = sh.vertices[dl];
hyperpoint vr = sh.vertices[dr];
hyperpoint xvl = xsh.vertices[xdl];
hyperpoint xvr = xsh.vertices[xdr];
bool emb = embedded_plane;
if(emb) {
vl = cgi.emb->actual_to_base(vl);
vr = cgi.emb->actual_to_base(vr);
xvl = cgi.emb->actual_to_base(xvl);
xvr = cgi.emb->actual_to_base(xvr);
geom3::light_flip(true);
}
hyperpoint vm = get_midedge(sh.edges[dl], vl, vr);
transmatrix rm = gpushxto0(vm);
hyperpoint xvm = get_midedge(xsh.edges[xdl], xvl, xvr);
transmatrix xrm = gpushxto0(xvm);
transmatrix Res = rgpushxto0(vm) * rspintox(rm*vr);
if(cgflags & qAFFINE) {
ld sca = hdist(vl, vr) / hdist(xvl, xvr);
transmatrix Tsca = Id;
Tsca[0][0] = Tsca[1][1] = sca;
auto& ss = sh.stretch_shear[dl];
Tsca[0][1] = ss.first * ss.second * sca;
Tsca[1][1] *= ss.first;
Res = Res * Tsca;
}
if(xmirror) Res = Res * MirrorX;
Res = Res * spintox(xrm*xvl) * xrm;
if(xmirror) swap(vl, vr);
if(hdist(vl, Res*xvr) + hdist(vr, Res*xvl) > .1 && !c.is_combinatorial) {
println(hlog, "s1 = ", kz(spintox(rm*vr)), " s2 = ", kz(rspintox(xrm*xvr)));
println(hlog, tie(t, dl), " = ", kz(Res));
println(hlog, hdist(vl, Res * xvr), " # ", hdist(vr, Res * xvl));
throw hr_exception("error in arb::get_adj");
}
if(emb) {
Res = cgi.emb->base_to_actual(Res);
geom3::light_flip(false);
}
return Res;
}
/** get the adj matrix corresponding to the connection of (t,dl) -- note: it may be incorrect for rotated/symmetric connections */
EX transmatrix get_adj(arbi_tiling& c, int t, int dl) {
auto& sh = c.shapes[t];
auto& co = sh.connections[dl];
return get_adj(c, t, dl, co.sid, co.eid, co.mirror);
}
/** Returns if F describes the same tile as T, taking possible symmetries into account. Paramater co is the expected edge (co.sid tells us the tile type); if yes, co may be adjusted */
EX bool find_connection(const transmatrix& T, const transmatrix& F, connection_t& co) {
if(!same_point_may_warn(tC0(F), tC0(T))) return false;
auto& xsh = current.shapes[co.sid];
int n = isize(xsh.connections);
for(int oth = 0; oth < n; oth++) {
int oth1 = gmod(oth+1, n);
int eid1 = gmod(co.eid+1, n);
if(same_point_may_warn(F * xsh.vertices[oth], T * xsh.vertices[co.eid]) && same_point_may_warn(F * xsh.vertices[oth1], T * xsh.vertices[eid1])) {
co.eid = oth;
return true;
}
if(same_point_may_warn(F * xsh.vertices[oth], T * xsh.vertices[eid1]) && same_point_may_warn(F * xsh.vertices[oth1], T * xsh.vertices[co.eid])) {
co.eid = oth; co.mirror = !co.mirror;
return true;
}
}
return false;
}
struct hrmap_arbi : hrmap {
heptagon *origin;
heptagon *getOrigin() override { return origin; }
hrmap_arbi() {
dynamicval<hrmap*> curmap(currentmap, this);
origin = init_heptagon(current.shapes[0].size());
origin->s = hsOrigin;
origin->c7 = newCell(origin->type, origin);
heptagon *alt = NULL;
if(mhyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
alt = init_heptagon(S7);
alt->s = hsOrigin;
alt->alt = alt;
current_altmap = newAltMap(alt);
}
transmatrix T = lxpush(.01241) * spin(1.4117) * lxpush(0.1241) * Id;
arbi_matrix[origin] = make_pair(alt, T);
altmap[alt].emplace_back(origin, T);
if(!current.range)
current.range = auto_compute_range(origin->c7);
}
~hrmap_arbi() {
clearfrom(origin);
altmap.clear();
arbi_matrix.clear();
if(current_altmap) {
dynamicval<eGeometry> g(geometry, gNormal);
delete current_altmap;
current_altmap = NULL;
}
}
void verify() override { }
transmatrix adj(heptagon *h, int dl) override {
if(h->c.move(dl))
return get_adj(current_or_slided(), id_of(h), dl, id_of(h->c.move(dl)), h->c.spin(dl), h->c.mirror(dl));
else
return get_adj(current_or_slided(), id_of(h), dl);
}
heptagon *create_step(heptagon *h, int d) override {
if(geom3::flipped) return geom3::in_not_flipped([&] { return create_step(h, d); });
dynamicval<bool> sl(using_slided, false);
int t = id_of(h);
auto& sh = current.shapes[t];
auto& co = sh.connections[d];
if(cgflags & qAFFINE) {
set<heptagon*> visited;
vector<pair<heptagon*, transmatrix> > v;
visited.insert(h);
v.emplace_back(h, Id);
transmatrix goal = adj(h, d);
for(int i=0; i<affine_limit && i < isize(v); i++) {
transmatrix T = v[i].second;
heptagon *h2 = v[i].first;
if(eqmatrix(T, goal)) {
h->c.connect(d, h2, co.eid, co.mirror);
return h2;
}
for(int i=0; i<h2->type; i++) {
heptagon *h3 = h2->move(i);
if(!h3) continue;
if(visited.count(h3)) continue;
visited.insert(h3);
v.emplace_back(h3, T * adj(h2, i));
}
}
auto h1 = init_heptagon(current.shapes[co.sid].size());
h1->distance = h->distance + 1;
h1->zebraval = co.sid;
h1->c7 = newCell(h1->type, h1);
h1->emeraldval = h->emeraldval ^ co.mirror;
h->c.connect(d, h1, co.eid, co.mirror);
return h1;
}
const auto& p = arbi_matrix[h];
heptagon *alt = p.first;
transmatrix T = p.second * adj(h, d);
if(mhyperbolic) {
dynamicval<eGeometry> g(geometry, gNormal);
dynamicval<hrmap*> cm(currentmap, current_altmap);
// transmatrix U = T;
current_altmap->virtualRebase(alt, T);
// U = U * inverse(T);
}
fixmatrix(T);
if(meuclid) {
/* hash the rough coordinates as heptagon* alt */
size_t s = size_t(T[0][LDIM]+.261) * 124101 + size_t(T[1][LDIM]+.261) * 82143;
alt = (heptagon*) s;
}
for(auto& p2: altmap[alt]) if(id_of(p2.first) == co.sid) {
connection_t co1 = co;
if(find_connection(T, p2.second, co1)) {
if(p2.first->move(co1.eid)) {
throw hr_exception("already connected!");
}
h->c.connect(d, p2.first, co1.eid, co1.mirror);
return p2.first;
}
}
auto h1 = init_heptagon(current.shapes[co.sid].size());
h1->distance = h->distance + 1;
h1->zebraval = co.sid;
h1->c7 = newCell(h1->type, h1);
h1->emeraldval = h->emeraldval ^ co.mirror;
h->c.connect(d, h1, co.eid, co.mirror);
arbi_matrix[h1] = make_pair(alt, T);
altmap[alt].emplace_back(h1, T);
return h1;
}
transmatrix relative_matrixh(heptagon *h2, heptagon *h1, const hyperpoint& hint) override {
return relative_matrix_recursive(h2, h1);
}
transmatrix adj(cell *c, int dir) override { return adj(c->master, dir); }
ld spin_angle(cell *c, int d) override { return SPIN_NOT_AVAILABLE; }
int shvid(cell *c) override {
return id_of(c->master);
}
hyperpoint get_corner(cell *c, int cid, ld cf) override {
auto& sh = arb::current_or_slided().shapes[arb::id_of(c->master)];
int id = gmod(cid, c->type);
if(sh.angles[gmod(id-1, c->type)] <= 0)
return sh.vertices[id];
return normalize(C0 + (sh.vertices[id] - C0) * 3 / cf);
}
};
EX hrmap *new_map() { return new hrmap_arbi; }
EX void run(string fname) {
stop_game();
eGeometry g = geometry;
arbi_tiling t = current;
auto v = variation;
set_geometry(gArbitrary);
try {
load(fname);
ginf[gArbitrary].tiling_name = current.name;
tes = fname;
}
catch(hr_polygon_error& poly) {
set_geometry(g);
set_variation(v);
current = t;
start_poly_debugger(poly);
string help = poly.generate_error();
showstartmenu = false;
for(auto& p: poly.params)
help += lalign(-1, p.first, " = ", p.second, "\n");
gotoHelp(help);
}
catch(hr_parse_exception& ex) {
println(hlog, "failed: ", ex.s);
set_geometry(g);
current = t;
start_game();
addMessage("failed: " + ex.s);
}
catch(connection_debug_request& cr) {
set_geometry(g);
debugged = current;
current = t;
ensure_geometry(cr.c);
debug_polys.clear();
debug_polys.emplace_back(Id, cr.id);
pushScreen(connection_debugger);
}
start_game();
}
string slider_error;
EX void sliders_changed(bool need_restart, bool need_start) {
if(need_restart) stop_game();
auto& c = current_or_slided();
arbi_tiling backup = c;
try {
load(current.filename, !need_restart, need_restart);
using_slided = !need_restart;
slider_error = "OK";
#if CAP_TEXTURE
texture::config.remap();
#endif
}
catch(hr_parse_exception& ex) {
c = backup;
slider_error = ex.s;
}
catch(hr_polygon_error& poly) {
c = backup;
slider_error = poly.generate_error();
}
if(need_restart && need_start) start_game();
}
EX void set_sliders() {
cmode = sm::SIDE | sm::MAYDARK;
gamescreen();
dialog::init(XLAT("tessellation sliders"));
dialog::addHelp(current.comment);
char ch = 'A';
for(auto& sl: current.sliders) {
dialog::addSelItem(sl.name, fts(sl.current), ch++);
dialog::add_action([&] {
dialog::editNumber(sl.current, sl.min, sl.max, 1, sl.zero, sl.name, sl.name);
dialog::reaction = [] { sliders_changed(false, false); };
});
}
if(isize(current.intsliders))
dialog::addInfo(XLAT("the following sliders will restart the game"));
for(auto& sl: current.intsliders) {
dialog::addSelItem(sl.name, its(sl.current), ch++);
dialog::add_action([&] {
dialog::editNumber(sl.current, sl.min, sl.max, 1, sl.zero, sl.name, sl.name);
dialog::reaction = [] { sliders_changed(true, true); };
});
}
dialog::addInfo(slider_error);
dialog::addBack();
dialog::display();
}
/** convert a tessellation (e.g. Archimedean, regular, etc.) to the arb::current internal representation */
EX namespace convert {
EX eGeometry base_geometry;
EX eVariation base_variation;
struct id_record {
int target; /* master of this id type */
int shift; /* sample direction 0 == our direction shift */
int modval; /* this master type is the same as itself rotated by modval */
cell *sample; /* sample of the master type */
};
inline void print(hstream& hs, const id_record& i) { print(hs, "[", i.target, " shift=", i.shift, " mod=", i.modval, "]"); }
map<int, id_record> identification;
id_record& get_identification(int s, cell *c) {
if(!identification.count(s)) {
auto &id = identification[s];
id.target = s;
id.shift = 0;
id.modval = c->type;
id.sample = c;
}
return identification[s];
}
id_record& get_identification(cell *c) {
auto id = currentmap->full_shvid(c);
return get_identification(id, c);
}
int changes;
void be_identified(cellwalker cw1, cellwalker cw2) {
auto& id1 = get_identification(cw1.at);
auto& id2 = get_identification(cw2.at);
indenter ind(2);
int t = cw2.at->type;
if(cw1.at->type != t) {
println(hlog, cw1.at->type, " vs ", t);
throw hr_exception("numbers disagree");
}
int d2 = gmod(-cw2.to_spin(id2.shift), id2.modval);
int d1 = gmod(-cw1.to_spin(id1.shift), id1.modval);
indenter ind1(2);
if(id2.target != id1.target) {
auto oid2 = id2;
id1.modval = gcd(id1.modval, id2.modval);
for(auto& p: identification) {
auto& idr = p.second;
if(idr.target == oid2.target) {
idr.target = id1.target;
idr.modval = id1.modval;
idr.shift = gmod(idr.shift + (d2-d1), idr.modval);
idr.sample = id1.sample;
}
}
changes++;
println(hlog, identification);
return;
}
if(d2 != d1) {
auto oid2 = id2;
id2.modval = gcd(id2.modval, abs(d2-d1));
for(auto& p: identification)
if(p.second.target == oid2.target) p.second.modval = id2.modval;
changes++;
println(hlog, identification);
return;
}
}
EX bool reverse_order;
EX bool minimize_on_convert;
EX void convert_max() {
identification.clear(); changes = 0;
manual_celllister cl;
cl.add(currentmap->gamestart());
int more_tests = 1000;
pointer_indices.clear();
int chg = -1;
while(changes > chg) {
changes = chg;
set<int> masters_analyzed;
for(int i=0; i<isize(cl.lst); i++) {
auto c = cl.lst[i];
auto& id = get_identification(c);
if(masters_analyzed.count(id.target)) {
more_tests--;
if(more_tests < 0) continue;
}
masters_analyzed.insert(id.target);
cellwalker cw0(c, id.shift);
cellwalker cws(id.sample, 0);
for(int i=0; i<c->type; i++) {
if(1) {
indenter ind(2);
be_identified(cw0 + i + wstep, cws + i + wstep);
be_identified(cw0 + i + wstep, cw0 + i + id.modval + wstep);
}
if(1) {
indenter ind(2);
auto cwx = cw0 + i + wstep;
auto idx = get_identification(cwx.at);
cellwalker xsample(idx.sample, cwx.spin);
xsample -= idx.shift;
be_identified(cwx + wstep, xsample + wstep);
cl.add((cw0 + i).cpeek());
}
}
}
}
}
EX void convert_minimize(int N, vector<int>& old_shvids, map<int, int>& old_to_new) {
vector<pair<int, int>> address;
vector<int> next;
for(int i=0; i<N; i++) {
int q = identification[old_shvids[i]].modval;
int c = isize(address);
for(int j=0; j<q; j++) {
address.emplace_back(i, j);
next.emplace_back(j == q-1 ? c : c+j+1);
}
}
int K = isize(address);
vector<array<ld, 3> > dists(K);
for(int i=0; i<K; i++) {
auto pi = address[i];
auto si = identification[old_shvids[pi.first]];
pi.second += si.shift;
array<hyperpoint, 3> pcorner;
array<ld, 3> pdists;
for(int j=0; j<3; j++)
pcorner[j] = currentmap->get_corner(si.sample, gmod(pi.second+j, si.sample->type));
for(int j=0; j<3; j++)
pdists[j] = hdist(pcorner[j], pcorner[(j+1)%3]);
dists[i] = pdists;
}
// this is O(K^3) and also possibly could get confused on convex/concave,
// but should be good enough, hopefully
vector<vector<int>> equal(K);
for(int i=0; i<K; i++) equal[i].resize(K, 0);
for(int i=0; i<K; i++)
for(int j=0; j<K; j++) {
equal[i][j] = true;
for(int s=0; s<3; s++)
equal[i][j] = equal[i][j] && abs(dists[i][s] - dists[j][s]) < 1e-6;
}
int chg = 1;
while(chg) {
for(auto& eq: equal) println(hlog, eq);
chg = 0;
for(int i=0; i<K; i++)
for(int j=0; j<K; j++)
if(equal[i][j] && !equal[next[i]][next[j]]) {
equal[i][j] = false;
chg++;
}
}
for(int i=0; i<K; i++)
for(int j=0; j<K; j++) if(i!=j && equal[i][j]) {
auto pi = address[i];
auto si = identification[old_shvids[pi.first]];
cellwalker cwi(si.sample, si.shift + pi.second);
auto pj = address[j];
auto sj = identification[old_shvids[pj.first]];
cellwalker cwj(sj.sample, sj.shift + pj.second);
be_identified(cwi, cwj);
}
}
EX void convert() {
start_game();
convert_max();
bool minimize = minimize_on_convert;
reidentify:
vector<int> old_shvids;
map<int, int> old_to_new;
for(auto id: identification)
if(id.first == id.second.target) {
old_to_new[id.first] = isize(old_shvids);
old_shvids.push_back(id.first);
}
int N = isize(old_shvids);
println(hlog, "N = ", N);
if(minimize) {
convert_minimize(N, old_shvids, old_to_new);
minimize = false;
goto reidentify;
}
if(reverse_order) {
reverse(old_shvids.begin(), old_shvids.end());
for(int i=0; i<isize(old_shvids); i++)
old_to_new[old_shvids[i]] = i;
}
auto& ac = arb::current;
ac.order++;
ac.comment = ac.filename = "converted from: " + full_geometry_name();
ac.cscale = cgi.scalefactor;
ac.boundary_ratio = 1;
ac.floor_scale = cgi.hexvdist / cgi.scalefactor;
ac.range = cgi.base_distlimit;
ac.shapes.clear();
ac.shapes.resize(N);
ginf[gArbitrary].g = cginf.g;
ginf[gArbitrary].flags = cgflags & qCLOSED;
for(int i=0; i<N; i++) {
auto id = identification[old_shvids[i]];
cell *s = id.sample;
auto& sh = ac.shapes[i];
sh.id = i;
int t = s->type;
sh.vertices.clear();
sh.connections.clear();
sh.cycle_length = id.modval;
sh.repeat_value = t / id.modval;
sh.flags = hr::pseudohept(s) ? arcm::sfPH : 0;
#if CAP_ARCM
if(arcm::in() && arcm::linespattern(s)) { sh.flags |= arcm::sfLINE; ac.have_line = true; }
#endif
for(int j=0; j<t; j++) {
auto co = currentmap->get_corner(s, j);
sh.vertices.push_back(co);
cellwalker cw(s, j);
cw += wstep;
auto idx = get_identification(cw.at);
cellwalker xsample(idx.sample, cw.spin);
xsample -= idx.shift;
sh.connections.emplace_back(arb::connection_t{old_to_new.at(idx.target), xsample.spin, false});
}
sh.stretch_shear.resize(t, make_pair(1, 0));
sh.edges.clear();
for(int j=0; j<t-1; j++)
sh.edges.push_back(hdist(sh.vertices[j], sh.vertices[j+1]));
sh.edges.push_back(hdist(sh.vertices[t-1], sh.vertices[0]));
sh.angles.clear();
for(int j=0; j<t; j++) {
hyperpoint v0 = sh.vertices[j];
hyperpoint v1 = sh.vertices[(j+1) % t];
hyperpoint v2 = sh.vertices[(j+2) % t];
transmatrix T = gpushxto0(v1);
v0 = T * v0;
v2 = T * v2;
ld alpha = atan2(v0) - atan2(v2);
cyclefix(alpha, 0);
sh.angles.push_back(alpha);
}
if(debugflags & DF_GEOM) {
println(hlog, "shape ", i, ":");
indenter indp(2);
println(hlog, "vertices=", sh.vertices);
println(hlog, "connections=", sh.connections);
println(hlog, "edges=", sh.edges);
println(hlog, "angles=", sh.angles);
}
}
arb::compute_vertex_valence(ac);
ac.have_ph = geosupport_football() ? 1 : 0;
arb::check_football_colorability(ac);
}
EX bool in() {
return arb::in() && base_geometry != gArbitrary;
}
/** activate the converted tessellation */
EX void activate() {
if(geometry != gArbitrary) {
base_geometry = geometry;
base_variation = variation;
stop_game();
geometry = gArbitrary;
variation = eVariation::pure;
}
}
EX }
#if CAP_COMMANDLINE
int readArgs() {
using namespace arg;
if(0) ;
else if(argis("-tes") || argis("-arbi")) {
PHASEFROM(2);
shift();
run(args());
}
else if(argis("-tes-opt")) {
arg::run_arguments(current.options);
}
else if(argis("-arb-convert")) {
try {
convert::convert();
set_geometry(gArbitrary);
}
catch(hr_exception& e) {
println(hlog, "failed to convert: ", e.what());
}
}
else if(argis("-arb-unmirror")) {
shift(); do_unmirror = argi();
}
else if(argis("-arb-football")) {
shift(); extended_football = argi();
}
else if(argis("-arb-slider")) {
PHASEFROM(2);
shift();
string slider = args();
bool found = true;
for(auto& sl: current.sliders)
if(sl.name == slider) {
shift_arg_formula(sl.current, [] { sliders_changed(false, false); });
found = true;
}
for(auto& sl: current.intsliders)
if(sl.name == slider) {
shift(); sl.current = argi();
stop_game();
sliders_changed(true, false);
found = true;
}
if(!found) {
println(hlog, "warning: no slider named ", slider, " found");
shift();
}
}
else return 1;
return 0;
}
auto hook = addHook(hooks_args, 100, readArgs);
#endif
EX bool in() { return geometry == gArbitrary; }
EX string tes = find_file("tessellations/sample/marjorie-rice.tes");
EX bool linespattern(cell *c) {
return current.shapes[id_of(c->master)].flags & arcm::sfLINE;
}
EX bool pseudohept(cell *c) {
if(!current.have_ph) return true;
return current.shapes[id_of(c->master)].flags & arcm::sfPH;
}
EX void choose() {
dialog::openFileDialog(tes, XLAT("open a tiling"), ".tes",
[] () {
run(tes);
#if CAP_COMMANDLINE
if(!current.options.empty())
dialog::push_confirm_dialog([] { arg::run_arguments(current.options); start_game(); }, "load the settings defined in this file?");
#endif
return true;
});
}
EX pair<ld, ld> rep_ideal(ld e, ld u IS(1)) {
ld alpha = TAU / e;
hyperpoint h1 = point3(cos(alpha)*u, -sin(alpha)*u, 1);
hyperpoint h2 = point3(u, 0, 1);
hyperpoint h3 = point3(cos(alpha)*u, sin(alpha)*u, 1);
hyperpoint h12 = mid(h1, h2);
hyperpoint h23 = mid(h2, h3);
ld len = hdist(h12, h23);
transmatrix T = gpushxto0(h12);
auto T0 = T * C0;
auto Th23 = T * h23;
ld beta = atan2(T0);
ld gamma = atan2(Th23);
return {len, 90._deg - (gamma - beta)};
}
EX void swap_vertices() {
for(auto& p: {¤t, &slided})
for(auto& s: p->shapes)
for(auto& v: s.vertices)
swappoint(v);
}
#if MAXMDIM >= 4
auto hooksw = addHook(hooks_swapdim, 100, [] {
swap_vertices();
for(auto& p: altmap) for(auto& pp: p.second) swapmatrix(pp.second);
for(auto& p: arbi_matrix) swapmatrix(p.second.second);
});
#endif
EX }
}
|