1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
|
// Hyperbolic Rogue -- embeddings
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file embeddings.cpp
* \brief Embedding 2D geometries into 3D
*
* This file handles primarily embedding 2D geometries into 3D.
*
* The following coordinate systems are used for embedding of 2D geometries into 3D:
*
* - *base* coordinates are simply the coordinate in the underlying 2D geometry. They support only two dimensions.
* - *logical* coordinates: X and Y are in the Beltrami-Klein or gnomonic model, or in horocyclic coordinates for binary-like tilings. Z coordinate is the altitude above the plane.
* - *logical_scaled* coordinates: X and Y are scaled (and possibly rotated in the XY plane) in order to match the scale and orientation of the ambient 3D geometry. They are a linear transformation of logical.
* - *intermediate* coordinates: they use the same assignment of coordinates as actual, but they are a linear transformation of logical scaled.
* - *actual* coordinates: final coordinates in the ambient 3D geometry.
*
*/
#include "hyper.h"
namespace hr {
EX namespace geom3 {
#if HDR
enum eSpatialEmbedding {
seNone,
seDefault,
seLowerCurvature,
seMuchLowerCurvature,
seProduct,
seNil,
seSol,
seNIH,
seSolN,
seCliffordTorus,
seProductH,
seProductS,
seSL2,
seCylinderE,
seCylinderH,
seCylinderHE,
seCylinderNil,
seCylinderHoro,
seCylinderSL2
};
#endif
EX vector<pair<string, string>> spatial_embedding_options = {
{"2D engine", "Use HyperRogue's 2D engine to simulate same curvature. Works well in top-down and third-person perspective. The Hypersian Rug mode can be used to project this to a surface."},
{"same curvature", "Embed as an equidistant surface in the 3D version of the same geometry."},
{"lower curvature", "Embed as a surface in a space of lower curvature."},
{"much lower curvature", "Embed sphere as a sphere in hyperbolic space."},
{"product", "Add one extra dimension in the Euclidean way."},
{"Nil", "Embed Euclidean plane into Nil."},
{"Sol", "Embed Euclidean or hyperbolic plane into Sol."},
{"stretched hyperbolic", "Embed Euclidean or hyperbolic plane into stretched hyperbolic geometry."},
{"stretched Sol", "Embed Euclidean or hyperbolic plane into stretched Sol geometry."},
{"Clifford Torus", "Embed Euclidean rectangular torus into S3."},
{"hyperbolic product", "Embed Euclidean or hyperbolic plane in the H2xR product space."},
{"spherical product", "Embed Euclidean cylinder or spherical plane in the H2xR product space."},
{"SL(2,R)", "Embed Euclidean plane in twisted product geometry."},
{"cylinder", "Embed Euclidean cylinder in Euclidean space."},
{"hyperbolic cylinder", "Embed Euclidean cylinder in hyperbolic space."},
{"product cylinder", "Embed Euclidean cylinder in H2xR space."},
{"Nil cylinder", "Embed Euclidean cylinder in Nil."},
{"horocylinder", "Embed Euclidean as a horocylinder in H2xR space."},
{"SL2 cylinder", "Embed Euclidean as a cylinder in twisted product geometry."},
};
EX bool clifford_torus_valid() {
#if CAP_RUG
rug::clifford_torus ct;
ld h = ct.xh | ct.yh;
return !(sqhypot_d(2, ct.xh) < 1e-3 || sqhypot_d(2, ct.yh) < 1e-3 || abs(h) > 1e-3);
#else
return false;
#endif
}
EX string why_wrong(eSpatialEmbedding sp) {
string ans = "";
if(among(sp, seNil, seCliffordTorus, seProductH, seProductS, seSL2) || any_cylinder(sp)) {
if(!PURE)
ans += " pure";
if(!meuclid)
ans += " E";
if((sp == seProductS || any_cylinder(sp)) && !quotient)
ans += " cyl";
if(sp == seCliffordTorus && !clifford_torus_valid())
ans += " torus";
}
if(among(sp, seSol, seNIH, seSolN)) {
if((meuclid && !PURE) && !bt::in()) ans += " pure or bin";
}
return ans;
}
EX eSpatialEmbedding spatial_embedding = seDefault;
EX ld euclid_embed_scale = 1;
EX ld euclid_embed_scale_y = 1;
EX ld euclid_embed_rotate = 0;
EX bool auto_configure = true;
EX bool flat_embedding = false;
EX bool inverted_embedding = false;
EX bool apply_break_cylinder = true;
EX ld euclid_embed_scale_mean() { return euclid_embed_scale * sqrt(euclid_embed_scale_y); }
EX void set_euclid_embed_scale(ld x) { euclid_embed_scale = x; euclid_embed_scale_y = 1; euclid_embed_rotate = 0; }
EX bool supports_flat() { return among(spatial_embedding, seDefault, seProductH, seProductS); }
EX bool supports_invert() { return among(spatial_embedding, seDefault, seLowerCurvature, seMuchLowerCurvature, seNil, seSol, seNIH, seSolN, seProductH, seProductS) || any_cylinder(spatial_embedding); }
EX vector<geometryinfo> ginf_backup;
EX eGeometryClass mgclass() {
return (embedded_plane ? ginf_backup : ginf)[geometry].g.kind;
}
EX eGeometryClass ggclass() {
return (flipped ? ginf_backup : ginf)[geometry].g.kind;
}
EX bool any_cylinder(eSpatialEmbedding e) {
return among(e, seCylinderE, seCylinderH, seCylinderHE, seCylinderHoro, seCylinderNil, seCylinderSL2);
}
EX bool in_product() {
return ggclass() == gcProduct;
}
EX bool flipped;
EX geometry_information* unflipped;
EX void light_flip(bool f) {
if(f != flipped) {
if(!flipped) unflipped = cgip;
swap(ginf[geometry].g, geom3::ginf_backup[geometry].g);
swap(ginf[geometry].flags, geom3::ginf_backup[geometry].flags);
if(!flipped) cgip = unflipped;
flipped = f;
}
}
#if HDR
template<class T> auto in_flipped(const T& f) -> decltype(f()) {
light_flip(true);
finalizer ff([] { light_flip(false); });
return f();
}
template<class T> auto in_not_flipped(const T& f) -> decltype(f()) {
light_flip(false);
finalizer ff([] { light_flip(true); });
return f();
}
#define IPF(x) geom3::in_flipped([&] { return (x); })
#endif
EX void apply_always3() {
if(!vid.always3 && !ginf_backup.empty()) {
ginf = ginf_backup;
ginf_backup.clear();
}
if(vid.always3 && ginf_backup.empty()) {
ginf_backup = ginf;
for(geometryinfo& gi: ginf) {
auto &g = gi.g;
if(vid.always3 && g.gameplay_dimension == 2 && g.graphical_dimension == 2) {
/* same-in-same by default */
auto og = g;
g.graphical_dimension++;
g.homogeneous_dimension++;
g.sig[3] = g.sig[2];
g.sig[2] = g.sig[1];
bool ieuclid = g.kind == gcEuclid;
bool isphere = g.kind == gcSphere;
bool ieuc_or_binary = ieuclid || (gi.flags & qBINARY);
if(spatial_embedding == seProduct && !ieuclid) g = giProduct, g.sig[2] = og.sig[2];
if(spatial_embedding == seProductH && ieuclid) g = giProductH;
if(spatial_embedding == seProductS && ieuclid) g = giProductS;
if(spatial_embedding == seLowerCurvature) g = (isphere ? giEuclid3 : giHyperb3);
if(spatial_embedding == seMuchLowerCurvature) g = giHyperb3;
if(spatial_embedding == seNil && ieuclid) g = giNil;
if(spatial_embedding == seCliffordTorus && ieuclid) g = giSphere3;
if(spatial_embedding == seSol && ieuc_or_binary) g = giSol;
if(spatial_embedding == seNIH && ieuc_or_binary) g = giNIH;
if(spatial_embedding == seSolN && ieuc_or_binary) g = giSolN;
if(spatial_embedding == seSL2 && ieuclid) g = giSL2;
if(spatial_embedding == seCylinderH && ieuclid) g = giHyperb3;
if(spatial_embedding == seCylinderHE && ieuclid) g = giProductH;
if(spatial_embedding == seCylinderHoro && ieuclid) g = giProductH;
if(spatial_embedding == seCylinderNil && ieuclid) g = giNil;
if(spatial_embedding == seCylinderSL2 && ieuclid) g = giSL2;
g.gameplay_dimension = 2;
}
}
}
}
EX void configure_clifford_torus() {
#if CAP_RUG
dynamicval<ld> dtessf(cgi.tessf, 1);
rug::clifford_torus ct;
if(hypot_d(2, ct.xh) < 1e-6 || hypot_d(2, ct.yh) < 1e-6) {
euclid_embed_scale = TAU / 20.;
euclid_embed_scale_y = 1;
euclid_embed_rotate = 0;
vid.depth = 45._deg - 1;
vid.wall_height = 0.2;
vid.eye = vid.wall_height / 2 - vid.depth;
return;
}
euclid_embed_scale = TAU / hypot_d(2, ct.xh);
euclid_embed_scale_y = TAU / hypot_d(2, ct.yh) / euclid_embed_scale;
euclid_embed_rotate = atan2(ct.xh[1], ct.xh[0]) / degree;
ld alpha = atan2(ct.xfactor, ct.yfactor);
vid.depth = alpha - 1;
vid.wall_height = min(1 / euclid_embed_scale_mean(), (90._deg - alpha) * 0.9);
vid.eye = vid.wall_height / 2 - vid.depth;
#endif
}
EX void configure_cylinder() {
#if CAP_RUG
dynamicval<ld> dtessf(cgi.tessf, 1);
rug::clifford_torus ct;
hyperpoint vec;
if(sqhypot_d(2, ct.yh) > 1e-6) vec = ct.yh;
else if(sqhypot_d(2, ct.xh) > 1e-6) vec = ct.xh;
else vec = hyperpoint(10, 0, 0, 0);
euclid_embed_scale = TAU / hypot_d(2, vec);
euclid_embed_scale_y = 1;
euclid_embed_rotate = atan2(vec[1], vec[0]) / degree;
#endif
}
EX }
#if HDR
struct embedding_method {
virtual ld center_z() { return 0; }
virtual hyperpoint tile_center();
virtual transmatrix intermediate_to_actual_translation(hyperpoint i) = 0;
virtual hyperpoint intermediate_to_actual(hyperpoint i) { return intermediate_to_actual_translation(i) * tile_center(); }
virtual hyperpoint actual_to_intermediate(hyperpoint a) = 0;
virtual hyperpoint orthogonal_move(const hyperpoint& a, ld z);
virtual transmatrix map_relative_push(hyperpoint h);
virtual ld get_logical_z(hyperpoint a) { return (intermediate_to_logical_scaled * actual_to_intermediate(a))[2]; }
virtual hyperpoint logical_to_actual(hyperpoint l) { return intermediate_to_actual(logical_to_intermediate * l); }
virtual hyperpoint actual_to_logical(hyperpoint a) { return intermediate_to_logical * actual_to_intermediate(a); }
virtual hyperpoint base_to_actual(hyperpoint h) = 0;
virtual transmatrix base_to_actual(const transmatrix &T) = 0;
virtual hyperpoint actual_to_base(hyperpoint h) = 0;
virtual transmatrix actual_to_base(const transmatrix &T) = 0;
virtual hyperpoint normalize_flat(hyperpoint a) { return flatten(normalize(a)); }
virtual hyperpoint flatten(hyperpoint a);
virtual void set_radar_transform();
virtual transmatrix get_lsti() { return Id; }
virtual transmatrix get_lti() { return logical_scaled_to_intermediate; }
virtual hyperpoint base_to_logical(hyperpoint h) = 0;
virtual hyperpoint logical_to_base(hyperpoint h) = 0;
virtual ld anim_center_z() { return center_z(); }
virtual hyperpoint anim_tile_center();
virtual void logical_fix(transmatrix&) = 0;
virtual ld height_limit(ld sign);
virtual bool is_euc_in_product() { return false; }
virtual bool is_product_embedding() { return false; }
virtual bool is_euc_in_sl2() { return false; }
virtual bool is_same_in_same() { return false; }
virtual bool is_sph_in_low() { return false; }
virtual bool is_hyp_in_solnih() { return false; }
virtual bool is_euc_scalable() { return false; }
virtual bool is_euc_in_hyp() { return false; }
virtual bool is_euc_in_sph() { return false; }
virtual bool is_euc_in_nil() { return false; }
virtual bool is_euc_in_noniso() { return false; }
virtual bool is_in_noniso() { return false; }
virtual bool is_cylinder() { return false; }
virtual bool no_spin() { return false; }
/* convert the tangent space in logical coordinates to actual coordinates */
transmatrix logical_to_intermediate;
/* convert the tangent space in actual coordinates to logical coordinates */
transmatrix intermediate_to_logical;
/* convert the tangent space in logical coordinates to actual coordinates */
transmatrix logical_scaled_to_intermediate;
/* convert the tangent space in actual coordinates to logical coordinates */
transmatrix intermediate_to_logical_scaled;
void prepare_lta();
void auto_configure();
virtual ~embedding_method() {}
/* should we break cylinder between M1 and M2 */
virtual bool break_cylinder(const shiftmatrix& M1, const shiftmatrix& M2) { return false; }
};
#endif
EX geometry_information *swapper;
ld embedding_method::height_limit(ld sign) {
if(sign > 0) {
if(sol || nih) return 2.5;
if(hyperbolic || sl2 || in_h2xe()) return 5;
if(sphere || nil || in_s2xe()) return M_PI/2;
return 100;
}
if(sign < 0) {
if(center_z()) return -center_z();
if(sol || nih) return -2.5;
if(hyperbolic || sl2 || in_h2xe()) return -5;
if(sphere || nil || in_s2xe()) return -M_PI/2;
return -100;
}
return 0;
}
hyperpoint embedding_method::tile_center() {
ld z = center_z();
if(z == 0) return C0;
return lzpush(z) * C0;
}
hyperpoint embedding_method::anim_tile_center() {
ld z = anim_center_z();
if(z == 0) return C0;
return lzpush(z) * C0;
}
transmatrix embedding_method::map_relative_push(hyperpoint a) {
auto i = actual_to_intermediate(a);
return intermediate_to_actual_translation(i);
}
hyperpoint embedding_method::orthogonal_move(const hyperpoint& a, ld z) {
auto i = actual_to_intermediate(a);
auto l = intermediate_to_logical_scaled * i;
l[2] += z;
i = logical_scaled_to_intermediate * l;
return intermediate_to_actual(i);
}
hyperpoint embedding_method::flatten(hyperpoint a) {
auto i = actual_to_intermediate(a);
auto l = intermediate_to_logical * i;
l[2] = 0; i = logical_to_intermediate * l;
return intermediate_to_actual(i);
}
/** dummy 'embedding method' used when no embedding is used (2D engine or 3D map) */
struct emb_none : embedding_method {
hyperpoint actual_to_intermediate(hyperpoint a) override {
if(mhybrid) return base_to_logical(a);
return a;
}
hyperpoint intermediate_to_actual(hyperpoint i) override {
if(mhybrid) return logical_to_base(i);
return i;
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
if(gproduct) i = intermediate_to_actual(i);
return rgpushxto0(i);
}
hyperpoint flatten(hyperpoint a) override {
if(gproduct) return a / exp(zlevel(a));
return embedding_method::flatten(a);
}
transmatrix base_to_actual(const transmatrix& T) override { return T; }
hyperpoint base_to_actual(hyperpoint h) override { return h; }
transmatrix actual_to_base(const transmatrix& T) override { return T; }
hyperpoint actual_to_base(hyperpoint h) override { return h; }
hyperpoint orthogonal_move(const hyperpoint& h, ld z) override {
if(GDIM == 2) return scale_point(h, geom3::scale_at_lev(z));
if(gproduct) return scale_point(h, exp(z));
if(sl2) return slr::translate(h) * cpush0(2, z);
if(nil) return nisot::translate(h) * cpush0(2, z);
if(translatable) return hpxy3(h[0], h[1], h[2] + z);
/* copied from emb_same_in_same */
ld u = 1;
if(h[2]) z += asin_auto(h[2]), u /= cos_auto(asin_auto(h[2]));
u *= cos_auto(z);
return hpxy3(h[0] * u, h[1] * u, sinh(z));
}
hyperpoint base_to_logical(hyperpoint h) override {
if(sn::in() || !bt::in())
return h;
#if CAP_BT
if(bt::in() && !mproduct) return bt::minkowski_to_bt(h);
#endif
if(mproduct) {
ld z = zlevel(h);
h /= h[2];
h[2] = z;
}
if(sl2) {
ld z = atan2(h[2], h[3]);
h = slr::translate(h) * zpush0(-atan2(h[2], h[3]));
h[0] = h[0] / h[3]; h[1] = h[1] / h[3]; h[2] = z;
return h;
}
return h;
}
hyperpoint logical_to_base(hyperpoint h) override {
if(sn::in() || !bt::in())
return ultra_normalize(h);
#if CAP_BT
if(bt::in() && !mproduct)
return bt::bt_to_minkowski(h);
#endif
if(mproduct) {
ld z = h[2];
h[2] = 1;
flatten(h);
h *= exp(z);
}
if(sl2) {
ld z = h[2];
h[2] = 0; h[3] = 1; normalize(h);
h = slr::translate(h) * zpush0(z);
return h;
}
return h;
}
void logical_fix(transmatrix& T) override {
if(nonisotropic) {
hyperpoint h = tC0(T);
transmatrix rot = gpushxto0(h) * T;
fix_rotation(rot);
T = rgpushxto0(h) * rot;
}
else fixmatrix(T);
fixelliptic(T);
}
};
/** embeddings methods that are not emb_none */
struct emb_actual : embedding_method {
hyperpoint base_to_logical(hyperpoint h) override {
#if CAP_BT
if(bt::in()) {
auto h1 = bt::inverse_horopoint(h);
h1[2] = 0; h1[3] = 1;
return h1;
}
#endif
h /= h[2];
h[2] = 0; h[3] = 1;
return h;
}
hyperpoint logical_to_base(hyperpoint h) override {
#if CAP_BT
if(bt::in()) {
auto h1 = bt::get_horopoint(h);
h1[3] = 1;
return h1;
}
#endif
h[2] = 1; h = normalize(h);
h[3] = 1;
return h;
}
void logical_fix(transmatrix& T) override {
hyperpoint a = T * tile_center();
hyperpoint i0 = actual_to_intermediate(a);
auto l0 = intermediate_to_logical * i0;
auto l = l0; l[2] = 0;
auto i = logical_to_intermediate * l;
auto rot0= inverse(intermediate_to_actual_translation(i0)) * T ;
auto rot = intermediate_to_logical_scaled * rot0 * logical_scaled_to_intermediate;
ld alpha = atan2(rot[0][1], rot[0][0]);
T = intermediate_to_actual_translation(i) * spin(alpha);
fixelliptic(T);
}
};
/** embed in the 3D variant of the same geometry */
struct emb_same_in_same : emb_actual {
virtual bool is_same_in_same() override { return true; }
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return rgpushxto0(logical_to_actual(i)); }
hyperpoint actual_to_intermediate(hyperpoint a) override { return actual_to_logical(a); }
hyperpoint orthogonal_move(const hyperpoint& h, ld z) override {
if(euclid) { hyperpoint h1 = h; h1[2] += z; return h1; }
ld u = 1;
if(h[2]) z += asin_auto(h[2]), u /= cos_auto(asin_auto(h[2]));
u *= cos_auto(z);
return hpxy3(h[0] * u, h[1] * u, sinh(z));
}
transmatrix base_to_actual(const transmatrix &T0) override {
auto T = T0;
for(int i=0; i<4; i++) T[i][3] = T[i][2], T[i][2] = 0;
for(int i=0; i<4; i++) T[3][i] = T[2][i], T[i][2] = 0;
for(int i=0; i<4; i++) T[i][2] = T[2][i] = 0;
T[2][2] = 1;
return T;
}
transmatrix actual_to_base(const transmatrix &T0) override {
auto T = T0;
for(int i=0; i<4; i++) T[i][2] = T[i][3], T[i][3] = 0;
for(int i=0; i<4; i++) T[2][i] = T[3][i], T[3][i] = 0;
T[3][3] = 1;
fixmatrix(T);
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++) if(isnan(T[i][j])) return Id;
return T;
}
hyperpoint base_to_actual(hyperpoint h) override {
h[3] = h[2]; h[2] = 0;
return h;
}
hyperpoint actual_to_base(hyperpoint h) override {
h[2] = h[3]; h[3] = 0;
return h;
}
transmatrix map_relative_push(hyperpoint h) override {
ld z = asin_auto(h[2]);
ld u = 1 / cos_auto(z);
auto h1 = hpxy3(h[0] * u, h[1] * u, 0);
return rgpushxto0(h1) * zpush(z);
}
hyperpoint actual_to_logical(hyperpoint h) override {
if(euclid) { h[3] = 1; return h; }
ld z = asin_auto(h[2]);
ld u = 1 / cos_auto(z);
auto h1 = hpxy3(h[0] * u, h[1] * u, 0);
h1[2] = h1[3];
geom3::light_flip(true);
h1 = base_to_logical(h1);
geom3::light_flip(false);
h1[2] = z;
return h1;
}
hyperpoint logical_to_actual(hyperpoint h) override {
if(euclid) { h[3] = 1; return h; }
geom3::light_flip(true);
auto b = logical_to_base(h);
geom3::light_flip(false);
b[3] = b[2]; b[2] = 0;
return orthogonal_move(b, h[2]);
}
hyperpoint flatten(hyperpoint h) override {
ld z = asin_auto(h[2]);
ld u = 1 / cos_auto(z);
return hpxy3(h[0] * u, h[1] * u, 0);
}
void logical_fix(transmatrix& T) override {
// optimization
for(int i=0; i<4; i++) T[i][2] = T[2][i] = i == 2;
fixmatrix(T);
fixelliptic(T);
}
};
/** embed in the product geometry */
struct emb_product_embedding : emb_actual {
virtual bool is_product_embedding() override { return true; }
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return rgpushxto0(logical_to_actual(i)); }
hyperpoint actual_to_intermediate(hyperpoint a) override { return actual_to_logical(a); }
hyperpoint flatten(hyperpoint h) override { h /= exp(zlevel(h)); return h; }
hyperpoint orthogonal_move(const hyperpoint& h, ld z) override { return h * exp(z); }
transmatrix base_to_actual(const transmatrix &T) override { return T; }
transmatrix actual_to_base(const transmatrix &T0) override {
auto T = T0; fixmatrix(T);
for(int i=0; i<MDIM; i++) for(int j=0; j<MDIM; j++) if(isnan(T[i][j])) return Id;
return T;
}
hyperpoint base_to_actual(hyperpoint h) override { return h; }
hyperpoint actual_to_base(hyperpoint h) override { return flatten(h); }
transmatrix map_relative_push(hyperpoint h) override { return rgpushxto0(h); }
hyperpoint actual_to_logical(hyperpoint h) override {
ld z = zlevel(h);
h /= exp(z);
h = base_to_logical(h);
h[2] = z;
return h;
}
hyperpoint logical_to_actual(hyperpoint h) override {
return logical_to_base(h) * exp(h[2]);
}
};
struct emb_euc_scalable : emb_actual {
bool is_euc_scalable() override { return true; }
transmatrix get_lti() override {
transmatrix lti = Id;
lti[0][0] *= geom3::euclid_embed_scale;
lti[1][1] *= geom3::euclid_embed_scale * geom3::euclid_embed_scale_y;
return logical_scaled_to_intermediate * cspin(0, 1, geom3::euclid_embed_rotate * degree) * lti;
}
};
/** embed Euclidean plane as horosphere */
struct emb_euc_in_hyp : emb_euc_scalable {
bool is_euc_in_hyp() override { return true; }
hyperpoint actual_to_intermediate(hyperpoint a) override { return deparabolic13(a); }
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return parabolic13_at(i); }
transmatrix base_to_actual(const transmatrix &T) override {
geom3::light_flip(true);
hyperpoint mov = T * C02;
transmatrix U = gpushxto0(mov) * T;
mov = logical_to_intermediate * mov;
geom3::light_flip(false);
for(int i=0; i<4; i++) U[i][3] = U[3][i] = i == 3;
return parabolic13(mov[0], mov[1]) * U;
}
hyperpoint base_to_actual(hyperpoint h) override {
h = logical_to_intermediate * h;
h[3] = h[2]; h[2] = 0; return parabolic13(h[0], h[1]) * C0;
}
hyperpoint actual_to_base(hyperpoint h) override {
hyperpoint h1 = deparabolic13(h); h1[2] = 1;
return intermediate_to_logical * h1;
}
transmatrix actual_to_base(const transmatrix& T) override { hyperpoint h = deparabolic13(T * C0); return eupush(h[0], h[1]); }
ld anim_center_z() override { return vid.depth; }
};
/** sphere into a isotropic space of higher curvature */
struct emb_sphere_in_low : emb_actual {
bool is_sph_in_low() override { return true; }
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return map_relative_push(logical_to_actual(i)) * zpush(-1);
}
hyperpoint actual_to_intermediate(hyperpoint a) override { return actual_to_logical(a); }
ld center_z() override { return 1; }
transmatrix map_relative_push(hyperpoint a) override {
ld z = hdist0(a);
geom3::light_flip(true);
auto h1 = normalize(a);
transmatrix T = rgpushxto0(h1);
geom3::light_flip(false);
return T * zpush(z);
}
transmatrix base_to_actual(const transmatrix &T0) override {
auto T = T0;
for(int i=0; i<4; i++) T[i][3] = T[3][i] = i == 3;
return T;
}
hyperpoint base_to_actual(hyperpoint h) override {
if(euclid) h[3] = 1;
else h *= sinh(1), h[3] = cosh(1);
return h;
}
hyperpoint actual_to_base(hyperpoint h) override { return h; }
transmatrix actual_to_base(const transmatrix& T) override { return T; }
ld get_logical_z(hyperpoint a) override { return hdist0(a) - 1; }
hyperpoint flatten(hyperpoint a) override {
ld d = hdist0(a);
if(d == 0) return a;
a *= sin_auto(1) / sin_auto(d);
a[3] = cos_auto(1);
return a;
}
hyperpoint orthogonal_move(const hyperpoint& h, ld z) override {
ld z0 = hdist0(h);
ld f = sin_auto(z0 + z) / sin_auto(z0);
hyperpoint hf = h * f;
hf[3] = cos_auto(z0 + z);
return hf;
}
hyperpoint logical_to_actual(hyperpoint h) override {
auto z = h[2];
h[2] = 1;
geom3::light_flip(true);
h = normalize(h);
geom3::light_flip(false);
h *= sin_auto(1 + z);
h[3] = cos_auto(1 + z);
return h;
}
hyperpoint actual_to_logical(hyperpoint h) override {
ld z = get_logical_z(h);
geom3::light_flip(true);
h = kleinize(h);
geom3::light_flip(false);
h[2] = z; h[3] = 1;
return h;
}
void logical_fix(transmatrix& T) override {
fix4(T);
fixmatrix(T);
fixelliptic(T);
}
};
/** abstract class for embeddings of Euclidean plane; these embeddings are not isotropic */
struct emb_euclid_noniso : emb_euc_scalable {
bool is_euc_in_noniso() override { return true; }
bool is_in_noniso() override { return true; }
transmatrix base_to_actual(const transmatrix &T) override {
auto T0 = T;
hyperpoint h = get_column(T0, 2);
h[2] = 0; h[3] = 1;
return intermediate_to_actual_translation( logical_to_intermediate * h);
}
hyperpoint base_to_actual(hyperpoint h) override {
h[2] = 0; h[3] = 1;
return intermediate_to_actual_translation( logical_to_intermediate * h ) * tile_center();
}
hyperpoint actual_to_base(hyperpoint h) override {
hyperpoint h1 = intermediate_to_logical * actual_to_intermediate(h);
h1[2] = 1; h1[3] = 0;
return h1;
}
transmatrix actual_to_base(const transmatrix& T) override { hyperpoint h = actual_to_base(T * tile_center()); return eupush(h[0], h[1]); }
};
struct emb_euc_in_product : emb_euclid_noniso {
bool is_euc_in_product() override { return true; }
bool no_spin() override { return true; }
hyperpoint actual_to_intermediate(hyperpoint a) override {
ld bz = zlevel(a);
auto h1 = a / exp(bz);
ld by = asin_auto(h1[1]);
ld bx = atan2_auto(h1[0], h1[2]);
return hyperpoint(bx, by, bz, 1);
}
transmatrix get_lsti() override { return cspin90(2, 1); }
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return zpush(i[2]) * xpush(i[0]) * ypush(i[1]);
}
};
struct emb_euc_in_sl2 : emb_euclid_noniso {
transmatrix esl2_zpush(ld z) { return cspin(2, 3, z) * cspin(0, 1, z); }
hyperpoint intermediate_to_actual(hyperpoint i) override {
return esl2_zpush(i[2]) * xpush(i[0]) * ypush0(i[1]);
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return esl2_zpush(i[2]) * xpush(i[0]) * ypush(i[1]);
}
hyperpoint actual_to_intermediate(hyperpoint h) override {
ld a1 = (h[0] * h[3] - h[1] * h[2]) / (-h[2] * h[2] - h[1] * h[1] -h[0] * h[0] - h[3] * h[3]);
// a1 is S*sqrt(1+S*S) / (1+2*S*S), where S = sinh(-x) and C = cosh(-x); U is S*S
ld a = a1 * a1;
ld b = 4 * a - 1;
ld U = sqrt(.25 - a/b) - .5;
ld S = sqrt(U) * (a1 > 0 ? 1 : -1);
ld x = -asinh(S);
h = lorentz(0, 3, -x) * lorentz(1, 2, x) * h;
ld y = h[3]*h[3] > h[2]*h[2] ? atanh(h[1] / h[3]) : atanh(h[0] / h[2]);
h = lorentz(0, 2, -y) * lorentz(1, 3, -y) * h;
ld z = atan2(h[2], h[3]);
return hyperpoint(x, y, z, 0);
}
bool is_euc_in_sl2() override { return true; }
bool no_spin() override { return true; }
transmatrix get_lsti() override { return cspin90(2, 1); }
};
bool break_dims(const shiftmatrix& M1, const shiftmatrix& M2, int i, int j) {
transmatrix uM1 = current_display->radar_transform * unshift(M1);
transmatrix uM2 = current_display->radar_transform * unshift(M2);
return uM1[j][j] < 0 && uM2[j][j] < 0 && uM1[i][j] * uM2[i][j] < 0;
}
/* for both seCylinderH and seCylinderE. Possibly actually works for CliffordTorus too */
struct emb_euc_cylinder : emb_euclid_noniso {
bool is_cylinder() override { return true; }
ld center_z() override { return 1; }
transmatrix get_lsti() override { return cspin90(0, 1); }
hyperpoint actual_to_intermediate(hyperpoint a) override {
ld z0 = asin_auto(hypot(a[1], a[2]));
ld x0 = a[0];
if(z0 == 0) return hyperpoint(x0, 0, 0, 1);
x0 = asin_auto(x0 / cos_auto(z0));
ld y0 = z0 ? atan2(a[1], a[2]) : 0;
return point31(x0, y0, z0-1);
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return xpush(i[0]) * cspin(1, 2, i[1]) * zpush(i[2]);
}
bool break_cylinder(const shiftmatrix& M1, const shiftmatrix& M2) override { return break_dims(M1, M2, 1, 2); }
};
struct emb_euc_cylinder_he : emb_euc_cylinder {
bool no_spin() override { return true; }
transmatrix get_lsti() override { return cspin90(0, 2) * cspin90(0, 1); }
hyperpoint actual_to_intermediate(hyperpoint a) override {
ld z0 = zlevel(a);
a /= exp(z0);
ld y0 = atan2(a[1], a[0]);
ld x0 = asin_auto(hypot(a[0], a[1]));
return hyperpoint(x0-1, y0, z0, 1);
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return zpush(i[2]) * cspin(1, 0, i[1]) * xpush(i[0]);
}
bool break_cylinder(const shiftmatrix& M1, const shiftmatrix& M2) override { return break_dims(M1, M2, 1, 0); }
};
struct emb_euc_cylinder_twisted : emb_euc_cylinder {
transmatrix get_lsti() override { return cspin90(0, 2) * cspin90(0, 1); }
transmatrix get_lti() override {
ld depth = 0; // for now?
ld alpha = nil ? (1 + depth) / 2. : sinh(1 + depth) / 2.;
ld c = pow(1 + alpha * alpha, -0.5);
transmatrix U = Id;
U[1][1] = (alpha*alpha+1) * c;
U[0][1] = alpha * c;
return logical_scaled_to_intermediate * U * intermediate_to_logical_scaled * emb_euc_cylinder::get_lti();
}
};
struct emb_euc_cylinder_nil : emb_euc_cylinder_twisted {
hyperpoint actual_to_intermediate(hyperpoint a) override {
ld y0 = atan2(a[1], a[0]);
ld x0 = hypot(a[0], a[1]);
return hyperpoint(x0-1, y0, a[2], 1);
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return zpush(i[2]) * cspin(1, 0, i[1]) * xpush(i[0]);
}
bool break_cylinder(const shiftmatrix& M1, const shiftmatrix& M2) override { return break_dims(M1, M2, 1, 0); }
};
struct emb_euc_cylinder_horo : emb_euc_cylinder {
ld center_z() override { return 0; }
bool no_spin() override { return true; }
hyperpoint actual_to_intermediate(hyperpoint a) override {
ld z0 = zlevel(a);
a /= exp(z0);
auto hy = deparabolic13(a);
hy[2] = z0;
return hy;
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return zpush(i[2]) * parabolic1(i[1]) * xpush(i[0]);
}
transmatrix get_lsti() override {
return cspin90(0, 2);
}
bool break_cylinder(const shiftmatrix& M1, const shiftmatrix& M2) override { return false; }
};
struct emb_euc_cylinder_sl2 : emb_euc_cylinder_twisted {
bool no_spin() override { return true; }
hyperpoint actual_to_intermediate(hyperpoint a) override {
hyperpoint i = point31(0, 0, 0);
i[2] = atan2(a[2], a[3]);
a = cspin(1, 0, i[2]) * cspin(3, 2, i[2]) * a;
i[1] = (a[0] || a[1]) ? -atan2(a[1], a[0]) : 0;
a = cspin(1, 0, i[1]) * a;
i[0] = asinh(a[0])-1;
return i;
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return cspin(2, 3, i[2]) * cspin(0, 1, i[2] + i[1]) * xpush(i[0]);
}
bool break_cylinder(const shiftmatrix& M1, const shiftmatrix& M2) override { return break_dims(M1, M2, 0, 1); }
};
/** Clifford torus */
struct emb_euc_in_sph : emb_euclid_noniso {
bool is_euc_in_sph() override { return true; }
ld center_z() override { return 1; }
// virtual ld height_limit(ld sign) override { return sign < 0 ? 0 : 90._deg; }
hyperpoint actual_to_intermediate(hyperpoint a) override {
ld tx = hypot(a[0], a[2]);
ld ty = hypot(a[1], a[3]);
ld x0 = atan2(a[0], a[2]);
ld y0 = atan2(a[1], a[3]);
ld z0 = atan2(tx, ty);
return hyperpoint(x0, y0, z0-1, 1);
}
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
return cspin(0, 2, i[0]) * cspin(1, 3, i[1]) * cspin(2, 3, i[2]);
}
bool break_cylinder(const shiftmatrix& M1, const shiftmatrix& M2) override { return break_dims(M1, M2, 0, 2) || break_dims(M1, M2, 1, 3); }
};
/* todo model change */
struct emb_euc_in_nil : emb_euclid_noniso {
bool is_euc_in_nil() override { return true; }
hyperpoint actual_to_intermediate(hyperpoint a) override { a[2] -= a[0] * a[1] / 2; return a; }
transmatrix intermediate_to_actual_translation(hyperpoint i) override { i[2] += i[0] * i[1] / 2; return rgpushxto0(i); }
transmatrix get_lsti() override { return cspin90(2, 1); }
};
struct emb_euc_in_solnih : emb_euclid_noniso {
hyperpoint actual_to_intermediate(hyperpoint a) override { return a; }
transmatrix intermediate_to_actual_translation(hyperpoint i) override { return rgpushxto0(i); }
};
struct emb_hyp_in_solnih : emb_actual {
bool is_hyp_in_solnih() override { return true; }
bool is_in_noniso() override { return true; }
transmatrix intermediate_to_actual_translation(hyperpoint i) override {
if(cgclass == gcSol) i[0] *= exp(-i[2]);
if(cgclass == gcSolN) i[0] *= pow(2, -i[2]);
if(cgclass == gcNIH) i[0] *= pow(2, i[2]);
return rgpushxto0(i);
}
hyperpoint actual_to_intermediate(hyperpoint a) override {
if(cgclass == gcSol) a[0] *= exp(a[2]);
if(cgclass == gcSolN) a[0] *= pow(2, a[2]);
if(cgclass == gcNIH) a[0] *= pow(2, -a[2]);
return a;
}
transmatrix base_to_actual(const transmatrix &T) override {
auto T1 = T;
auto h = get_column(T1, 2);
return rgpushxto0(base_to_actual(h));
}
hyperpoint base_to_actual(hyperpoint h) override {
// copied from deparabolic13
h /= (1 + h[2]);
h[0] -= 1;
h /= sqhypot_d(2, h);
h[0] += .5;
ld hx = log(2) + log(-h[0]);
if(cgclass == gcNIH) hx /= log(3);
if(cgclass == gcSolN) hx /= log(3);
ld hy = h[1] * 2;
return point31(0, -hy, hx);
}
transmatrix actual_to_base(const transmatrix& T) override {
hyperpoint h = T * C0;
auto f = geom3::flipped;
geom3::light_flip(true);
transmatrix b = parabolic1(h[1]) * xpush(h[2]);
geom3::light_flip(f);
return b;
}
hyperpoint actual_to_base(hyperpoint h) override {
auto f = geom3::flipped;
geom3::light_flip(true);
hyperpoint b = parabolic1(h[1]) * xpush0(h[2]);
geom3::light_flip(f);
return b;
}
transmatrix get_lsti() override { return cspin90(0, 1) * cspin90(1, 2) * cspin90(0, 1); }
hyperpoint orthogonal_move(const hyperpoint& a, ld z) override { return nisot::translate(a) * cpush0(0, z); }
};
/* the remaining methods */
/*=======================*/
void embedding_method::prepare_lta() {
bool b = geom3::flipped;
if(b) geom3::light_flip(false);
logical_scaled_to_intermediate = get_lsti();
intermediate_to_logical_scaled = inverse(logical_scaled_to_intermediate);
logical_to_intermediate = get_lti();
intermediate_to_logical = inverse(logical_to_intermediate);
if(MDIM == 3 && MAXMDIM == 4) {
// just in case
for(int i=0; i<4; i++)
intermediate_to_logical_scaled[i][3] = intermediate_to_logical_scaled[3][i] = intermediate_to_logical[3][i] = intermediate_to_logical[i][3] = i == 3;
}
if(b) geom3::light_flip(true);
}
/** pick the embedding_method for the current setting */
EX unique_ptr<embedding_method> make_embed() {
embedding_method *emb1;
using namespace geom3;
if(!embedded_plane)
emb1 = new emb_none;
else if(any_cylinder(spatial_embedding) && mgclass() == gcEuclid)
emb1 = spatial_embedding == seCylinderHE ? new emb_euc_cylinder_he :
spatial_embedding == seCylinderHoro ? new emb_euc_cylinder_horo :
spatial_embedding == seCylinderNil ? new emb_euc_cylinder_nil :
spatial_embedding == seCylinderSL2 ? new emb_euc_cylinder_sl2 :
new emb_euc_cylinder;
else if(mgclass() == ggclass())
emb1 = new emb_same_in_same;
else if(mgclass() == gcSphere && among(ggclass(), gcHyperbolic, gcEuclid))
emb1 = new emb_sphere_in_low;
else if(mgclass() == gcEuclid && ggclass() == gcSphere)
emb1 = new emb_euc_in_sph;
else if(mgclass() == gcEuclid && ggclass() == gcSL2)
emb1 = new emb_euc_in_sl2;
else if(mgclass() == gcHyperbolic && among(ggclass(), gcSol, gcNIH, gcSolN))
emb1 = new emb_hyp_in_solnih;
else if(mgclass() == gcEuclid && ggclass() == gcProduct)
emb1 = new emb_euc_in_product;
else if(ggclass() == gcProduct)
emb1 = new emb_product_embedding;
else if(mgclass() == gcEuclid && ggclass() == gcNil)
emb1 = new emb_euc_in_nil;
else if(mgclass() == gcEuclid && ggclass() == gcHyperbolic)
emb1 = new emb_euc_in_hyp;
else if(mgclass() == gcEuclid && among(ggclass(), gcSol, gcNIH, gcSolN))
emb1 = new emb_euc_in_solnih;
else
throw hr_exception("unknown embedding");
unique_ptr<embedding_method> emb(emb1);
emb->prepare_lta();
return emb;
}
EX hyperpoint orthogonal_move(hyperpoint h, ld z ) { return cgi.emb->orthogonal_move(h, z); }
EX transmatrix unswap_spin(transmatrix T) {
return cgi.emb->intermediate_to_logical_scaled * T * cgi.emb->logical_scaled_to_intermediate;
}
/** rotate by alpha degrees in the XY plane */
EX transmatrix spin(ld alpha) {
#if MAXMDIM == 3
return cspin(0, 1, alpha);
#else
if(cgi.emb->no_spin()) return Id;
return cgi.emb->logical_scaled_to_intermediate * cspin(0, 1, alpha) * cgi.emb->intermediate_to_logical_scaled;
#endif
}
/** rotate by 90 degrees in the XY plane */
EX transmatrix spin90() {
#if MAXMDIM == 3
return cspin90(0, 1);
#else
if(cgi.emb->no_spin()) return Id;
return cgi.emb->logical_scaled_to_intermediate * cspin90(0, 1) * cgi.emb->intermediate_to_logical_scaled;
#endif
}
/** rotate by 180 degrees in the XY plane */
EX transmatrix spin180() {
#if MAXMDIM == 3
return cspin180(0, 1);
#else
if(cgi.emb->no_spin()) return Id;
return cgi.emb->logical_scaled_to_intermediate * cspin180(0, 1) * cgi.emb->intermediate_to_logical_scaled;
#endif
}
/** rotate by 270 degrees in the XY plane */
EX transmatrix spin270() {
#if MAXMDIM == 3
return cspin90(1, 0);
#else
if(cgi.emb->no_spin()) return Id;
return cgi.emb->logical_scaled_to_intermediate * cspin90(1, 0) * cgi.emb->intermediate_to_logical_scaled;
#endif
}
EX transmatrix lzpush(ld z) {
#if MAXMDIM >= 4
auto <i = cgi.emb->logical_scaled_to_intermediate;
if(lti[0][2]) return cpush(0, lti[0][2] * z);
if(lti[1][2]) return cpush(1, lti[1][2] * z);
#endif
return cpush(2, z);
}
EX transmatrix lxpush(ld alpha) {
#if MAXMDIM >= 4
if(embedded_plane) {
geom3::light_flip(true);
auto t = cpush(0, alpha);
geom3::light_flip(false);
return cgi.emb->base_to_actual(t);
}
#endif
return cpush(0, alpha);
}
EX hyperpoint lxpush0(ld x) { return lxpush(x) * tile_center(); }
EX transmatrix lspintox(const hyperpoint& H) {
if(cgi.emb->no_spin()) return Id;
if(embedded_plane) {
hyperpoint H1 = cgi.emb->intermediate_to_logical_scaled * H;
return cgi.emb->logical_scaled_to_intermediate * spintoc(H1, 0, 1) * cgi.emb->intermediate_to_logical_scaled;
}
if(WDIM == 2 || gproduct) return spintoc(H, 0, 1);
transmatrix T1 = spintoc(H, 0, 1);
return spintoc(T1*H, 0, 2) * T1;
}
EX transmatrix lrspintox(const hyperpoint& H) {
if(cgi.emb->no_spin()) return Id;
if(embedded_plane) {
hyperpoint H1 = cgi.emb->intermediate_to_logical_scaled * H;
return cgi.emb->logical_scaled_to_intermediate * rspintoc(H1, 0, 1) * cgi.emb->intermediate_to_logical_scaled;
}
if(WDIM == 2 || gproduct) return rspintoc(H, 0, 1);
transmatrix T1 = spintoc(H, 0, 1);
return rspintoc(H, 0, 1) * rspintoc(T1*H, 0, 2);
}
/** tangent vector in logical direction Z */
EX hyperpoint lztangent(ld z) {
return cgi.emb->logical_to_intermediate * ctangent(2, z);
}
EX hyperpoint tile_center() { return cgi.emb->tile_center(); }
EX hyperpoint lspinpush0(ld alpha, ld x) {
bool f = embedded_plane;
if(f) geom3::light_flip(true);
if(embedded_plane) throw hr_exception("still embedded plane");
hyperpoint h = xspinpush0(alpha, x);
if(f) geom3::light_flip(false);
if(f) return cgi.emb->base_to_actual(h);
return h;
}
EX hyperpoint xspinpush0(ld alpha, ld x) {
if(embedded_plane) return lspinpush0(alpha, x);
if(sl2) return slr::polar(x, -alpha, 0);
hyperpoint h = Hypc;
h[LDIM] = cos_auto(x);
h[0] = sin_auto(x) * cos(alpha);
h[1] = sin_auto(x) * -sin(alpha);
return h;
}
EX transmatrix xspinpush(ld dir, ld dist) {
if(embedded_plane) {
geom3::light_flip(true);
transmatrix T = cspin(0, 1, dir) * xpush(dist) * cspin(0, 1, -dir);
geom3::light_flip(false);
return cgi.emb->base_to_actual(T);
}
else if(euclid)
return eupush(cos(dir) * dist, -sin(dir) * dist);
else
return spin(dir) * xpush(dist) * spin(-dir);
}
EX const transmatrix& lmirror() {
if(cgi.emb->is_euc_in_product()) return Id;
if(cgi.emb->is_cylinder() && nil) return Id;
if(cgi.emb->logical_to_intermediate[2][1]) return MirrorZ;
if(cgi.emb->is_hyp_in_solnih()) return MirrorY;
return Mirror;
}
void embedding_method::set_radar_transform() {
auto& rt = current_display->radar_transform;
auto& rtp = current_display->radar_transform_post;
if(!embedded_plane) { rt = rtp = Id; return; }
transmatrix U = actual_view_transform * View;
auto a = inverse(U) * C0;
auto l = actual_to_intermediate(a);
l = intermediate_to_logical * l;
auto l0 = l;
l[2] = 0;
l = logical_to_intermediate * l;
rt = inverse(intermediate_to_actual_translation(l)) * inverse(U);
transmatrix T = View * intermediate_to_actual_translation(logical_to_intermediate * l0);
if(gproduct) T = NLP * T;
T = intermediate_to_logical_scaled * T * logical_scaled_to_intermediate;
if(cgi.emb->is_euc_in_noniso()) T = cspin(1, 0, geom3::euclid_embed_rotate * degree) * T;
if(cgi.emb->is_hyp_in_solnih()) T = T * MirrorY;
rtp = cspin(0, 1, atan2(T[0][1], T[0][0]));
if(cgi.emb->is_hyp_in_solnih()) rtp = MirrorX * cspin90(0, 1) * rtp;
}
EX void swapmatrix(transmatrix& T) {
if(geom3::swap_direction == +1) T = cgi.emb->base_to_actual(T);
if(geom3::swap_direction == -1) T = cgi.emb->actual_to_base(T);
}
EX void swappoint(hyperpoint& h) {
if(geom3::swap_direction == +1) h = cgi.emb->base_to_actual(h);
if(geom3::swap_direction == -1) h = cgi.emb->actual_to_base(h);
}
struct embedded_matrix_data {
transmatrix saved;
hyperpoint logical_coordinates;
transmatrix rotation;
ld old_height;
};
map<transmatrix*, embedded_matrix_data> mdata;
EX void swapmatrix_iview(transmatrix& ori, transmatrix& V) {
indenter id(2);
if(geom3::swap_direction == -1) {
auto& data = mdata[&V];
data.logical_coordinates = cgi.emb->intermediate_to_logical * cgi.emb->actual_to_intermediate(V*C0);
auto tl = cgi.emb->intermediate_to_actual_translation(cgi.emb->logical_to_intermediate * data.logical_coordinates);
auto itl = inverse(tl * lzpush(cgi.emb->center_z()));
data.rotation = itl * V;
auto& lc = data.logical_coordinates;
data.logical_coordinates[2] = ilerp(cgi.FLOOR, cgi.WALL, lc[2]);
if(nisot::local_perspective_used) data.rotation = data.rotation * ori;
swapmatrix(V);
data.rotation = cgi.emb->intermediate_to_logical_scaled * data.rotation;
data.saved = V;
data.old_height = vid.wall_height;
}
if(geom3::swap_direction == 1) {
if(!mdata.count(&V)) { swapmatrix(V); ori = Id; return; }
auto& data = mdata[&V];
if(!eqmatrix(data.saved, V)) { swapmatrix(V); ori = Id; return; }
auto lc = data.logical_coordinates;
lc[2] = lerp(cgi.FLOOR, cgi.WALL, lc[2]) + cgi.emb->center_z();
V = cgi.emb->intermediate_to_actual_translation( cgi.emb->logical_to_intermediate * lc );
ori = Id;
auto rot = data.rotation;
rot = cgi.emb->logical_scaled_to_intermediate * rot;
if(nisot::local_perspective_used) ori = ori * rot;
else V = V * rot;
if(vid.wall_height * data.old_height < 0) V = MirrorY * V;
}
}
EX void swapmatrix_view(transmatrix& lp, transmatrix& V) {
if(!geom3::swap_direction) return;
if(geom3::swap_direction == +1) fix4(V);
V = inverse(V);
lp = inverse(lp);
swapmatrix_iview(lp, V);
if(geom3::swap_direction == -1) fix4(V);
V = inverse(V);
lp = inverse(lp);
}
void embedding_method::auto_configure() {
using namespace geom3;
ld ms = min<ld>(cgi.scalefactor, 1);
vid.depth = ms;
vid.wall_height = 1.5 * ms;
if(sphere && msphere) {
vid.depth = 30 * degree;
vid.wall_height = 60 * degree;
}
vid.human_wall_ratio = 0.8;
if(mgclass() == gcEuclid && allowIncreasedSight() && vid.use_smart_range == 0) {
genrange_bonus = gamerange_bonus = sightrange_bonus = cgi.base_distlimit * 3/2;
}
vid.camera = 0;
vid.eye = 0;
if(is_sph_in_low() || is_cylinder()) {
vid.depth = 0;
vid.wall_height = -1;
vid.eye = -0.5;
if(inverted_embedding) {
vid.wall_height = is_cylinder() ? 0.6 : 1.4;
vid.eye = is_cylinder() ? 0.5 : 0.2;
vid.depth = is_cylinder() ? 0 : 0.5;
}
}
if(supports_flat() && flat_embedding) {
vid.eye += vid.depth / 2;
vid.depth = 0;
}
if(spatial_embedding == seDefault && !flat_embedding && inverted_embedding) {
vid.eye += vid.depth * 1.5;
vid.depth *= -1;
}
if((is_euc_in_hyp() || is_euc_in_noniso()) && inverted_embedding && !is_cylinder()) {
vid.wall_height *= -1;
vid.eye = -2 * vid.depth;
}
if(is_euc_in_nil() || is_euc_in_sl2()) {
vid.depth = 0;
vid.eye = vid.wall_height / 2;
}
if(is_euc_in_hyp() && spatial_embedding == seMuchLowerCurvature) {
vid.eye = inverted_embedding ? -vid.depth : vid.depth;
vid.depth = 0;
}
if(msphere && spatial_embedding == seProduct) {
vid.depth = 0;
vid.wall_height = 2;
vid.eye = 2;
}
if(pmodel == mdDisk) pmodel = nonisotropic ? mdGeodesic : mdPerspective;
if(cgflags & qIDEAL && vid.texture_step < 32)
vid.texture_step = 32;
#if CAP_RACING
racing::player_relative = true;
#endif
if(hyperbolic && is_same_in_same() && spatial_embedding == seLowerCurvature) {
vid.eye += vid.depth;
vid.depth *= 2;
if(inverted_embedding) {
vid.eye = 1;
vid.depth *= -1;
vid.wall_height *= -1;
}
}
if(hyperbolic && is_same_in_same() && spatial_embedding == seMuchLowerCurvature) {
vid.eye += vid.depth;
vid.depth *= 3;
if(inverted_embedding) {
vid.eye = 2;
vid.depth *= -1;
vid.wall_height *= -1;
}
}
if(spatial_embedding == seCliffordTorus) configure_clifford_torus();
if(spatial_embedding == seProductS) configure_cylinder();
if(spatial_embedding == seCylinderE) configure_cylinder();
if(spatial_embedding == seCylinderH) configure_cylinder();
if(spatial_embedding == seCylinderHE) configure_cylinder();
if(spatial_embedding == seCylinderSL2) configure_cylinder();
if(spatial_embedding == seCylinderNil) configure_cylinder();
}
EX void invoke_embed(geom3::eSpatialEmbedding se) {
#if MAXMDIM >= 4
if(GDIM == 3) { if(geom3::auto_configure) geom3::switch_fpp(); else geom3::switch_always3(); }
if(in_tpp()) geom3::switch_tpp();
if(se != geom3::seNone) {
geom3::spatial_embedding = se;
if(geom3::auto_configure) geom3::switch_fpp(); else geom3::switch_always3();
delete_sky();
if(vid.usingGL) resetGL();
}
#endif
}
geom3::eSpatialEmbedding embed_by_name(string ss) {
using namespace geom3;
auto& seo = spatial_embedding_options;
for(int i=0; i<isize(seo); i++) if(seo[i].first == ss) return eSpatialEmbedding(i);
bool numeric = true;
for(char c: ss) if(c < '0' || c > '9') numeric = false;
if(numeric) return eSpatialEmbedding(atoi(ss.c_str()));
for(int i=0; i<isize(seo); i++) if(appears(seo[i].first, ss)) return eSpatialEmbedding(i);
for(int i=0; i<isize(seo); i++) if(appears(seo[i].second, ss)) return eSpatialEmbedding(i);
return seNone;
}
auto ah_embed = arg::add2("-seo", [] { arg::shift(); invoke_embed(embed_by_name(arg::args())); })
+ arg::add2("-never-invert", [] { never_invert = true; });
}
|