1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
// Hyperbolic Rogue -- Locations
// Copyright (C) 2011-2018 Zeno Rogue, see 'hyper.cpp' for details
/** \file locations.cpp
* \brief definition of connection tables, walkers, cell and heptagon structures
*
* The standard geometry uses 'heptagons' for the underlying heptagonal tessellation,
* and 'cells' for the tessellation that the game is actually played on.
* Other geometries also use the class 'heptagon' even if they are not heptagon-based;
* there may be one 'heptagon' per each cell. Heptagons are not used in masterless
* geometries, though. This file implements the basic types and functions for navigating both graphs.
*/
#include "hyper.h"
namespace hr {
#if HDR
extern int cellcount, heptacount;
#define NODIR 126
#define NOBARRIERS 127
/** \brief Cell information for the game. struct cell builds on this */
struct gcell {
#if CAP_BITFIELD
/** \brief which land does this cell belong to */
eLand land : 8;
/** \brief wall type (waNone for no walls) */
eWall wall : 8;
/** \brief monster on this cell -- note that player characters are handled separately */
eMonster monst : 8;
/** \brief item on this cell */
eItem item : 8;
/** \brief if this is a barrier, what lands on are on the sides? */
eLand barleft : 8, barright : 8;
/** \brief is it currently sparkling with lightning? */
unsigned ligon : 1;
signed
mpdist : 7, ///< minimum player distance, the smaller value, the more generated it is */
pathdist : 8, ///< distance from the target -- actual meaning may change
cpdist : 8; ///< current distance to the player
unsigned
mondir : 8, ///< which direction the monster is facing (if relevant), also used for boats
bardir : 8, ///< may equal NODIR (no barrier here), NOBARRIERS (barriers not allowed here), or the barrier direction
stuntime : 8, ///< for stunned monsters, stun time left; also used for Mutant Ivy timing
hitpoints : 7, ///< hitpoints left, for Palace monsters, Dragons, Krakens etc. Also reused as cpid for mirrors
monmirror : 1; ///< monster mirroring state for nonorientable geometries
unsigned landflags : 8; ///< some lands need additional flags
#else
eLand land;
eWall wall;
eMonster monst;
eItem item;
eLand barleft, barright;
bool ligon, monmirror;
signed char pathdist, cpdist, mpdist;
unsigned char mondir, bardir, stuntime, hitpoints;
unsigned char landflags;
#endif
/** 'landparam' is used for:
* heat in Icy/Cocytus;
* heat in Dry (0..10);
* CR2 structure;
* hive Weird Rock color / pheromones;
* Ocean/coast depth;
* Bomberbird Egg hatch time / mine marking;
* number of Ancient Jewelry;
* improved tracking in Trollheim
*/
union {
int32_t landpar;
unsigned int landpar_color;
float heat;
char bytes[4];
struct fieldinfo {
uint16_t fieldval;
unsigned rval : 4;
unsigned flowerdist : 4;
unsigned walldist : 4;
unsigned walldist2 : 4;
} fi;
} LHU;
/** \brief wall parameter, used e.g. for remaining power of Bonfires and Thumpers */
char wparam;
#ifdef CELLID
int cellid;
#endif
gcell() {
#ifdef CELLID
cellid = cellcount;
#endif
}
};
#define landparam LHU.landpar
#define landparam_color LHU.landpar_color
#define fval LHU.fi.fieldval
#define FULL_EDGE 120
template<class T> struct walker;
/** Connection tables are used by heptagon and cell structures. They basically
* describe the structure of the graph on the given manifold. We assume that
* the class T has a field c of type connection_table<T>,
* as its last field. Edges are listed in the clockwise order (for 2D tilings,
* for 3D tilings the order is more arbitrary). For each edge we remember which other T
* we are connected to, as well as the index of this edge in the other T, and whether it is
* mirrored (for graphs on non-orientable manifolds).
* To conserve memory, these classes need to be allocated with tailored_alloc
* and freed with tailored_free.
*/
int gmod(int i, int j);
template<class T> struct connection_table {
/** \brief Table of moves. This is the maximum size, but tailored_alloc allocates less. */
T* move_table[FULL_EDGE + (FULL_EDGE + sizeof(char*) - 1) / sizeof(char*)];
unsigned char *spintable() { return (unsigned char*) (&move_table[full()->degree()]); }
/** \brief get the full T from the pointer to this connection table */
T* full() { return (T*)((char*)this - offsetof(T, c)); }
/** \brief for the edge d, set the `spin` and `mirror` attributes */
void setspin(int d, int spin, bool mirror) {
unsigned char& c = spintable() [d];
c = spin;
if(mirror) c |= 128;
}
/** \brief we are spin(i)-th neighbor of move[i] */
int spin(int d) { return spintable() [d] & 127; }
/** \brief on non-orientable surfaces, the d-th edge may be mirrored */
bool mirror(int d) { return spintable() [d] & 128; }
/** \brief 'fix' the edge number d to get the actual index in [0, degree()) */
int fix(int d) { return gmod(d, full()->degree()); }
/** \brief T in the direction i */
T*& move(int i) { return move_table[i]; }
/** \brief T in the direction i, modulo degree() */
T*& modmove(int i) { return move(fix(i)); }
unsigned char modspin(int i) { return spin(fix(i)); }
/** \brief initialize the table */
void fullclear() {
for(int i=0; i<full()->degree(); i++) move_table[i] = NULL;
}
/** \brief connect this in direction d0 to c1 in direction d1, possibly mirrored */
void connect(int d0, T* c1, int d1, bool m) {
move(d0) = c1;
c1->move(d1) = full();
setspin(d0, d1, m);
c1->c.setspin(d1, d0, m);
}
/* like the other connect, but take the parameters of the other cell from a walker */
void connect(int d0, walker<T> hs) {
connect(d0, hs.at, hs.spin, hs.mirrored);
}
};
/** \brief Allocate a class T with a connection_table, but with only `degree` connections.
*
* Also set yet unknown connections to NULL.
*
* Generating the hyperbolic world consumes lots of
* RAM, so we really need to be careful on low memory devices.
*/
template<class T> T* tailored_alloc(int degree) {
T* result;
#ifndef NO_TAILORED_ALLOC
int b = offsetof(T, c) + offsetof(connection_table<T>, move_table) + sizeof(T*) * degree + degree;
result = (T*) new char[b];
new (result) T();
#else
result = new T;
#endif
result->type = degree;
for(int i=0; i<degree; i++) result->c.move_table[i] = NULL;
return result;
}
/** \brief Counterpart to hr::tailored_alloc(). */
template<class T> void tailored_delete(T* x) {
x->~T();
delete[] ((char*) (x));
}
static const struct wstep_t { wstep_t() {} } wstep;
static const struct wmirror_t { wmirror_t() {}} wmirror;
static const struct rev_t { rev_t() {} } rev;
static const struct revstep_t { revstep_t() {}} revstep;
extern int hrand(int);
/** \brief the walker structure is used for walking on surfaces defined via \ref connection_table. */
template<class T> struct walker {
/** \brief where we are at */
T *at;
/** \brief in which direction (edge) we are facing */
int spin;
/** \brief are we mirrored */
bool mirrored;
walker<T> (T *at = NULL, int s = 0, bool m = false) : at(at), spin(s), mirrored(m) { if(at) s = at->c.fix(s); }
/** \brief spin by i to the left (or right, when mirrored */
walker<T>& operator += (int i) {
spin = at->c.fix(spin+(mirrored?-i:i));
return (*this);
}
/** \brief spin by i to the right (or left, when mirrored */
walker<T>& operator -= (int i) {
spin = at->c.fix(spin-(mirrored?-i:i));
return (*this);
}
/** \brief add wmirror to mirror this walker */
walker<T>& operator += (wmirror_t) {
mirrored = !mirrored;
return (*this);
}
/** \brief add wstep to make a single step, after which we are facing the T we were originally on */
walker<T>& operator += (wstep_t) {
at->cmove(spin);
int nspin = at->c.spin(spin);
if(at->c.mirror(spin)) mirrored = !mirrored;
at = at->move(spin);
spin = nspin;
return (*this);
}
/** \brief add wrev to face the other direction, may be non-deterministic and use hrand */
walker<T>& operator += (rev_t) {
auto rd = reverse_directions(at, spin);
if(rd.size() == 1) spin = rd[0];
else spin = rd[hrand(rd.size())];
return (*this);
}
/** \brief adding revstep is equivalent to adding rev and step */
walker<T>& operator += (revstep_t) {
(*this) += rev; return (*this) += wstep;
}
bool operator != (const walker<T>& x) const {
return at != x.at || spin != x.spin || mirrored != x.mirrored;
}
bool operator == (const walker<T>& x) const {
return at == x.at && spin == x.spin && mirrored == x.mirrored;
}
bool operator < (const walker<T>& cw2) const {
return tie(at, spin, mirrored) < tie(cw2.at, cw2.spin, cw2.mirrored);
}
/** how much should we spin to face direction dir */
int to_spin(int dir) {
return gmod(dir - spin, at->type) * (mirrored ? -1 : 1);
}
walker<T>& operator ++ (int) { return (*this) += 1; }
walker<T>& operator -- (int) { return (*this) -= 1; }
template<class U> walker operator + (U t) const { walker<T> w = *this; w += t; return w; }
template<class U> walker operator - (U t) const { walker<T> w = *this; w += (-t); return w; }
/** \brief what T are we facing, without creating it */
T*& peek() const { return at->move(spin); }
/** \brief what T are we facing, with creating it */
T* cpeek() { return at->cmove(spin); }
/** \brief would we create a new T if we stepped forwards? */
bool creates() { return !peek(); }
/** \brief mirror this walker with respect to the d-th edge */
walker<T> mirrorat(int d) { return walker<T> (at, at->c.fix(d+d - spin), !mirrored); }
};
struct cell;
// automaton state
enum hstate { hsOrigin, hsA, hsB, hsError, hsA0, hsA1, hsB0, hsB1, hsC };
struct cell *createMov(struct cell *c, int d);
struct heptagon *createStep(struct heptagon *c, int d);
struct cdata_or_heptagon { virtual ~cdata_or_heptagon() {} };
struct cdata : cdata_or_heptagon {
int val[4];
int bits;
};
/** \brief Limit on the 'distance' value in heptagon.
*
* This value is signed (negative distances are used
* in horocycle implementation. Distance is currently a short, and we need a bit of breathing room.
* It would not be a technical problem to use a larger type, but 32000 is close to what fits in
* the memory of a normal computer. Farlands appear close to this limit.
**/
constexpr int global_distance_limit = 32000;
/** This value is used in iterative algorithms to prevent infinite loops created by incorrect
data (e.g., circular dragon). It should be larger than global_distance_limit */
constexpr int iteration_limit = 10000000;
/** \brief underlying tiling
* in bitruncated/irregular/Goldberg geometries, heptagons form the
* underlying regular tiling (not necessarily heptagonal); in pure
* geometries, they correspond 1-1 to tiles; in 'masterless' geometries
* heptagons are unused
*/
struct heptagon : cdata_or_heptagon {
/** \brief Automata are used to generate the standard maps. s is the state of this automaton */
hstate s : 6;
/** \brief distance modulo 4, in heptagons */
unsigned int dm4: 2;
/** \brief distance from the origin; based on the final geometry of cells, not heptagons themselves */
short distance;
/** \brief Emerald/wineyard generator. May have different meaning in other geometries. */
short emeraldval;
/** \brief Palace pattern generator. May have different meaning in other geometries. */
short fiftyval;
/** \brief Zebra pattern generator. May have different meaning in other geometries. */
short zebraval;
/** \brief Field quotient pattern ID. May have different meaning in other geometries. */
int fieldval : 24;
/** \brief the number of adjacent heptagons */
unsigned char type : 8;
/** \brief data for fractal landscapes */
short rval0, rval1;
/** for the main map, it contains the fractal landscape data
*
* For alternate structures, cdata contains the pointer to the original.
*/
struct cdata *cdata;
/** \brief which central cell does this heptagon correspond too
*
* For alternate geometries, c7 is NULL
*/
cell *c7;
/** \brief associated generator of alternate structure, for Camelot and horocycles */
heptagon *alt;
/** \brief connection table */
connection_table<heptagon> c;
// DO NOT add any fields after connection_table! (see tailored_alloc)
heptagon*& move(int d) { return c.move(d); }
heptagon*& modmove(int d) { return c.modmove(d); }
// functions
heptagon () { heptacount++; }
~heptagon () { heptacount--; }
heptagon *cmove(int d) { return createStep(this, d); }
heptagon *cmodmove(int d) { return createStep(this, c.fix(d)); }
inline int degree() { return type; }
// prevent accidental copying
heptagon(const heptagon&) = delete;
heptagon& operator=(const heptagon&) = delete;
};
struct cell : gcell {
char type; ///< our degree
int degree() { return type; }
int listindex; ///< used by celllister
heptagon *master; ///< heptagon who owns us; for 'masterless' tilings it contains coordinates instead
connection_table<cell> c;
// DO NOT add any fields after connection_table! (see tailored_alloc)
cell*& move(int d) { return c.move(d); }
cell*& modmove(int d) { return c.modmove(d); }
cell* cmove(int d) { return createMov(this, d); }
cell* cmodmove(int d) { return createMov(this, c.fix(d)); }
cell() {}
// prevent accidental copying
cell(const cell&) = delete;
heptagon& operator=(const cell&) = delete;
};
/** abbreviations */
typedef walker<heptagon> heptspin;
typedef walker<cell> cellwalker;
/** \brief A structure useful when walking on the cell graph in arbitrary way, or listing cells in general.
*
* Only one celllister may be active at a time, using the stack semantics.
* Only the most recently created one works; the previous one will resume
* working when this one is destroyed.
*/
struct manual_celllister {
/** \brief list of cells in this list */
vector<cell*> lst;
vector<int> tmps;
/** \brief is the given cell on the list? */
bool listed(cell *c) {
return c->listindex >= 0 && c->listindex < isize(lst) && lst[c->listindex] == c;
}
/** \brief add a cell to the list */
bool add(cell *c) {
if(listed(c)) return false;
tmps.push_back(c->listindex);
c->listindex = isize(lst);
lst.push_back(c);
return true;
}
~manual_celllister() {
for(int i=0; i<isize(lst); i++) lst[i]->listindex = tmps[i];
}
};
/** \brief automatically generate a list of nearby cells */
struct celllister : manual_celllister {
vector<int> dists;
void add_at(cell *c, int d) {
if(add(c)) dists.push_back(d);
}
/** \brief automatically generate a list of nearby cells
@param orig where to start
@param maxdist maximum distance to cover
@param maxcount maximum number of cells to cover
@param breakon we are actually looking for this cell, so stop when reaching it
*/
celllister(cell *orig, int maxdist, int maxcount, cell *breakon) {
add_at(orig, 0);
cell *last = orig;
for(int i=0; i<isize(lst); i++) {
cell *c = lst[i];
if(maxdist) forCellCM(c2, c) {
add_at(c2, dists[i]+1);
if(c2 == breakon) return;
}
if(c == last) {
if(isize(lst) >= maxcount || dists[i]+1 == maxdist) break;
last = lst[isize(lst)-1];
}
}
}
/** \brief for a given cell c on the list, return its distance from orig */
int getdist(cell *c) { return dists[c->listindex]; }
};
/** \brief translate heptspins to cellwalkers and vice versa */
static const struct cth_t { cth_t() {}} cth;
inline heptspin operator+ (cellwalker cw, cth_t) { return heptspin(cw.at->master, cw.spin * DUALMUL, cw.mirrored); }
inline cellwalker operator+ (heptspin hs, cth_t) { return cellwalker(hs.at->c7, hs.spin / DUALMUL, hs.mirrored); }
#endif
EX bool proper(cell *c, int d) { return d >= 0 && d < c->type; }
#if HDR
constexpr int STRONGWIND = 199;
constexpr int FALL = 198;
constexpr int NO_SPACE = 197;
constexpr int TELEPORT = 196;
constexpr int JUMP = 195;
constexpr int STAY = 194;
namespace whirlwind { cell *jumpDestination(cell*); }
/** \brief a structure for representing movements
*
* mostly for 'proper' moves where s->move(d) == t,
* but also sometimes for other moves
*/
struct movei {
cell *s;
cell *t;
int d;
bool op() { return s != t; }
bool proper() const { return d >= 0 && d < s->type && s->move(d) == t; }
movei(cell *_s, int _d) : s(_s), d(_d) {
if(d == STRONGWIND) t = whirlwind::jumpDestination(s);
else if(d < 0 || d >= s->type) t = s;
else t = s->cmove(d);
}
movei(cell *_s, cell *_t, int _d) : s(_s), t(_t), d(_d) {}
movei(cellwalker cw) : s(cw.at), t(cw.cpeek()), d(cw.spin) {}
movei rev() const { return movei(t, s, rev_dir_or(d)); }
int dir_or(int x) const { return proper() ? d : x; }
int rev_dir_or(int x) const { return proper() ? s->c.spin(d) : x; }
int rev_dir_mirror() const { return proper() ? s->c.spin(d) : d; }
int rev_dir_force() const { hassert(proper()); return s->c.spin(d); }
int dir_force() const { hassert(proper()); return d; }
bool mirror() { return s->c.mirror(d); }
};
#endif
EX movei moveimon(cell *c) { return movei(c, c->mondir); }
EX movei match(cell *f, cell *t) {
for(int i=0; i<f->type; i++) if(f->move(i) == t) return movei(f, t, i);
return movei(f, t, -1);
}
}
|