File: models.cpp

package info (click to toggle)
hyperrogue 12.1q-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 73,972 kB
  • sloc: cpp: 166,609; makefile: 145; sh: 10
file content (1129 lines) | stat: -rw-r--r-- 46,147 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
// Hyperbolic Rogue -- models of hyperbolic geometry
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details

/** \file models.cpp
 *  \brief models of hyperbolic geometry: their properties, projection menu
 *
 *  The actual models are implemented in hypgraph.cpp. Also shaders.cpp, 
 *  drawing.cpp, and basegraph.cpp are important.
 */

#include "hyper.h"
namespace hr {

EX namespace polygonal {

  #if ISMOBWEB
  typedef double precise;
  #else
  typedef long double precise;
  #endif

  #if HDR
  static const int MSI = 120;
  #endif

  typedef long double xld;

  typedef complex<xld> cxld;

  EX int SI = 4;
  EX ld  STAR = 0;
  
  EX int deg = ISMOBWEB ? 2 : 20;

  precise matrix[MSI][MSI];
  precise ans[MSI];
  
  cxld coef[MSI];
  EX ld coefr[MSI], coefi[MSI]; 
  EX int maxcoef, coefid;
  
  EX void solve() {
    if(pmodel == mdPolynomial) {
      for(int i=0; i<MSI; i++) coef[i] = cxld(coefr[i], coefi[i]);
      return;
      } 
    if(pmodel != mdPolygonal) return;
    if(SI < 3) SI = 3;
    for(int i=0; i<MSI; i++) ans[i] = cos(M_PI / SI);
    for(int i=0; i<MSI; i++)
      for(int j=0; j<MSI; j++) {
        precise i0 = (i+0.) / (MSI-1);
        // i0 *= i0;
        // i0 = 1 - i0;
        i0 *= M_PI;
        matrix[i][j] = 
          cos(i0 * (j + 1./SI)) * (STAR > 0 ? (1+STAR) : 1)
        - sin(i0 * (j + 1./SI)) * (STAR > 0 ? STAR : STAR/(1+STAR));
        }
    
    for(int i=0; i<MSI; i++) {
      precise dby = matrix[i][i];
      for(int k=0; k<MSI; k++) matrix[i][k] /= dby;
      ans[i] /= dby; 
      for(int j=i+1; j<MSI; j++) {
        precise sub = matrix[j][i];
        ans[j] -= ans[i] * sub;
        for(int k=0; k<MSI; k++)
           matrix[j][k] -= sub * matrix[i][k];
        }
      }
    for(int i=MSI-1; i>=0; i--) {
      for(int j=0; j<i; j++) {
        precise sub = matrix[j][i];
        ans[j] -= ans[i] * sub;
        for(int k=0; k<MSI; k++)
           matrix[j][k] -= sub * matrix[i][k];
        }
      }
    }
  
  EX pair<ld, ld> compute(ld x, ld y, int prec) {
    if(x*x+y*y > 1) {
      xld r  = hypot(x,y);
      x /= r;
      y /= r;
      }
    if(pmodel == mdPolynomial) {
      cxld z(x,y);
      cxld res (0,0);
      for(int i=maxcoef; i>=0; i--) { res += coef[i]; if(i) res *= z; }
      return make_pair(real(res), imag(res));    
      }
      
    cxld z(x, y);
    cxld res (0,0);
    cxld zp = 1; for(int i=0; i<SI; i++) zp *= z;

    for(int i=prec; i>0; i--) { 
      res += ans[i]; 
      res *= zp;
      }
    res += ans[0]; res *= z;
    return make_pair(real(res), imag(res));
    }

  EX pair<ld, ld> compute(ld x, ld y) { return compute(x,y,deg); }
  EX }

#if HDR
inline bool mdAzimuthalEqui() { return (mdinf[pmodel].flags & mf::azimuthal) && (mdinf[pmodel].flags & (mf::equidistant | mf::equiarea | mf::equivolume) && !(mdinf[pmodel].flags & mf::twopoint)); }
inline bool mdBandAny() { return mdinf[pmodel].flags & mf::pseudocylindrical; }
inline bool mdPseudocylindrical() { return mdBandAny() && !(mdinf[pmodel].flags & mf::cylindrical); }
#endif

EX namespace models {

  EX ld rotation = 0;
  EX ld rotation_xz = 90;
  EX ld rotation_xy2 = 90;
  EX int do_rotate = 1;
  EX ld ocos, osin, ocos_yz, osin_yz;
  EX ld cos_ball, sin_ball;
  EX bool model_straight, model_straight_yz;

  #if HDR
    // screen coordinates to logical coordinates: apply_orientation(x,y)
  // logical coordinates back to screen coordinates: apply_orientation(y,x)
  template<class A>
  void apply_orientation(A& x, A& y) { if(!model_straight) tie(x,y) = make_pair(x*ocos + y*osin, y*ocos - x*osin); }
  template<class A>
  void apply_orientation_yz(A& x, A& y) { if(!model_straight_yz) tie(x,y) = make_pair(x*ocos_yz + y*osin_yz, y*ocos_yz - x*osin_yz); }
  template<class A>
  void apply_ball(A& x, A& y) { tie(x,y) = make_pair(x*cos_ball + y*sin_ball, y*cos_ball - x*sin_ball); }
  #endif

  EX transmatrix rotmatrix() {
    if(GDIM == 2 || gproduct) return spin(rotation * degree);
    return spin(rotation_xy2 * degree) * cspin(0, 2, -rotation_xz * degree) * spin(rotation * degree);
    }
  
  int spiral_id = 7;
  
  EX cld spiral_multiplier;
  EX ld spiral_cone_rad;
  EX bool ring_not_spiral;
  
  /** the matrix to rotate the Euclidean view from the standard coordinates to the screen coordinates */
  EX transmatrix euclidean_spin;
  
  EX void configure() {
    ld ball = -pconf.ballangle * degree;
    cos_ball = cos(ball), sin_ball = sin(ball);
    ocos = cos(pconf.model_orientation * degree);
    osin = sin(pconf.model_orientation * degree);
    ocos_yz = cos(pconf.model_orientation_yz * degree);
    osin_yz = sin(pconf.model_orientation_yz * degree);
    model_straight = (ocos > 1 - 1e-9);
    model_straight_yz = GDIM == 2 || (ocos_yz > 1-1e-9);
    if(history::on) history::apply();
    
    if(!euclid) {
      ld b = pconf.spiral_angle * degree;
      ld cos_spiral = cos(b);
      ld sin_spiral = sin(b);
      spiral_cone_rad = pconf.spiral_cone * degree;
      ring_not_spiral = abs(cos_spiral) < 1e-3;
      ld mul = 1;
      if(sphere) mul = .5 * pconf.sphere_spiral_multiplier;
      else if(ring_not_spiral) mul = pconf.right_spiral_multiplier;
      else mul = pconf.any_spiral_multiplier * cos_spiral;
      
      spiral_multiplier = cld(cos_spiral, sin_spiral) * cld(spiral_cone_rad * mul / 2., 0);
      }
    if(euclid) {
      euclidean_spin = pispin * iso_inverse(cview().T * currentmap->master_relative(centerover, true));
      euclidean_spin = gpushxto0(euclidean_spin * C0) * euclidean_spin;
      hyperpoint h = inverse(euclidean_spin) * (C0 + (euc::eumove(gp::loc{1,0})*C0 - C0) * vpconf.spiral_x + (euc::eumove(gp::loc{0,1})*C0 - C0) * vpconf.spiral_y);
      spiral_multiplier = cld(0, TAU) / cld(h[0], h[1]);
      }
    
    if(centerover && !history::on)
    if(isize(history::path_for_lineanimation) == 0 || ((quotient || arb::in()) && history::path_for_lineanimation.back() != centerover)) {
      history::path_for_lineanimation.push_back(centerover);
      }
    }
  
  /** mdRelPerspective and mdRelOrthogonal in hyperbolic space only make sense if it is actually a de Sitter visualization */
  EX bool desitter_projections;

  EX vector<bool_reaction_t> avail_checkers;

  EX bool model_available(eModel pm) {
    if(pm < isize(avail_checkers) && avail_checkers[pm]) return avail_checkers[pm]();
    if(mdinf[pm].flags & mf::technical) return false;
    if(gproduct) {
      if(pm == mdPerspective) return true;
      if(among(pm, mdBall, mdHemisphere)) return false;
      return PIU(model_available(pm));
      }
    if(hyperbolic && desitter_projections && among(pm, mdRelPerspective, mdRelOrthogonal)) return true;
    if(sl2) return among(pm, mdGeodesic, mdEquidistant, mdRelPerspective, mdRelOrthogonal, mdHorocyclic, mdPerspective);
    if(among(pm, mdRelOrthogonal, mdRelPerspective)) return false;
    if(nonisotropic) return among(pm, mdDisk, mdPerspective, mdHorocyclic, mdGeodesic, mdEquidistant, mdFisheye, mdLiePerspective, mdLieOrthogonal);
    if(sphere && pm == mdBall) return false;
    if(sphere && (mdinf[pm].flags & mf::horocyclic)) return false;
    if(GDIM == 2 && is_perspective(pm)) return false;
    if(pm == mdGeodesic && !nonisotropic) return false;
    if(pm == mdLiePerspective && sphere) return false;
    if(pm == mdLieOrthogonal && sphere) return false;
    if(GDIM == 2 && pm == mdEquivolume) return false;
    if(pm == mdThreePoint && !(GDIM == 3 && !nonisotropic && !gproduct)) return false;
    if(GDIM == 3 && among(pm, mdBall, mdHyperboloid, mdFormula, mdPolygonal, mdRotatedHyperboles, mdSpiral, mdHemisphere)) return false;
    if(pm == mdCentralInversion && !euclid) return false;
    if(pm == mdPoorMan) return hyperbolic;
    if(pm == mdRetroHammer) return hyperbolic;
    return true;
    }    
  
  EX bool has_orientation(eModel m) {
    if(is_perspective(m) && panini_alpha) return true;
    if(nonisotropic) return false;    
    return (mdinf[m].flags & mf::orientation);
    }

  /** @brief returns the broken coordinate, or zero */
  EX int get_broken_coord(eModel m) {
    if(mdinf[m].flags & mf::werner) return 1;
    if(sphere) return (mdinf[m].flags & mf::broken) ? 2 : 0;
    return 0;
    }

  EX bool is_hyperboloid(eModel m) {
    return m == (sphere ? mdHemisphere : mdHyperboloid);
    }
  
  EX bool is_perspective(eModel m) {
    return mdinf[m].flags & mf::perspective;
    }

  EX bool is_3d(const projection_configuration& p) {
    if(GDIM == 3) return true;
    return among(p.model, mdBall, mdHyperboloid, mdHemisphere) || (p.model == mdSpiral && p.spiral_cone != 360);
    }
  
  EX bool has_transition(eModel m) {
    return (mdinf[m].flags & mf::transition) && GDIM == 2;
    }
  
  EX bool product_model(eModel m) {
    if(!gproduct) return false;
    if(mdinf[m].flags & mf::product_special) return false;
    return true;
    }
  
  int editpos = 0;
  
  EX string get_model_name(eModel m) {
    if(m == mdDisk && GDIM == 3 && (hyperbolic || nonisotropic)) return XLAT("ball model/Gans");
    if(m == mdPerspective && gproduct) return XLAT("native perspective");
    if(gproduct) return PIU(get_model_name(m));
    if(nonisotropic) {
      if(m == mdHorocyclic && !sol) return XLAT("simple model: projection");
      if(m == mdPerspective) return XLAT("simple model: perspective");
      if(m == mdGeodesic) return XLAT("native perspective");
      if(among(m, mdEquidistant, mdFisheye, mdHorocyclic, mdLiePerspective, mdLieOrthogonal, mdRelPerspective, mdRelOrthogonal)) return XLAT(mdinf[m].name_hyperbolic);
      }
    if(m == mdDisk && GDIM == 3) return XLAT("perspective in 4D");
    if(m == mdHalfplane && GDIM == 3 && hyperbolic) return XLAT("half-space");
    if(sphere) 
      return XLAT(mdinf[m].name_spherical);
    if(euclid) 
      return XLAT(mdinf[m].name_euclidean);
    if(hyperbolic)
      return XLAT(mdinf[m].name_hyperbolic);
    return "?";
    }

  vector<gp::loc> torus_zeros;

  void match_torus_period() {
    torus_zeros.clear();
    for(int y=0; y<=200; y++)
    for(int x=-200; x<=200; x++) {
      if(y == 0 && x <= 0) continue;
      transmatrix dummy = Id;
      euc::coord v(x, y, 0);
      bool mirr = false;
      auto t = euc::eutester;
      euc::eu.canonicalize(v, t, dummy, mirr);
      if(v == euc::euzero && t == euc::eutester)
        torus_zeros.emplace_back(x, y);      
      }
    sort(torus_zeros.begin(), torus_zeros.end(), [] (const gp::loc p1, const gp::loc p2) {
      ld d1 = hdist0(tC0(euc::eumove(p1)));
      ld d2 = hdist0(tC0(euc::eumove(p2)));
      if(d1 < d2 - 1e-6) return true;
      if(d1 > d2 + 1e-6) return false;
      return p1 < p2;
      });
    if(spiral_id > isize(torus_zeros)) spiral_id = 0;
    dialog::editNumber(spiral_id, 0, isize(torus_zeros)-1, 1, 10, XLAT("match the period of the torus"), "");
    dialog::reaction = [] () {
      auto& co = torus_zeros[spiral_id];
      vpconf.spiral_x = co.first;
      vpconf.spiral_y = co.second;
      };
    dialog::bound_low(0);
    dialog::bound_up(isize(torus_zeros)-1);
    }
  
  EX void edit_formula() {
    if(vpconf.model != mdFormula) vpconf.basic_model = vpconf.model;
    dialog::edit_string(vpconf.formula, "formula", 
      XLAT(
      "This lets you specify the projection as a formula f. "
      "The formula has access to the value 'z', which is a complex number corresponding to the (x,y) coordinates in the currently selected model; "
      "the point z is mapped to f(z). You can also use the underlying coordinates ux, uy, uz."
      )
      );
    #if CAP_QUEUE && CAP_CURVE
    dialog::extra_options = [] () {
      dialog::parser_help();
      initquickqueue();
      queuereset(mdPixel, PPR::LINE);              
      for(int a=-1; a<=1; a++) {
        curvepoint(point2(-90._deg * current_display->radius, a*current_display->radius));
        curvepoint(point2(+90._deg * current_display->radius, a*current_display->radius));
        queuecurve(shiftless(Id), forecolor, 0, PPR::LINE);
        curvepoint(point2(a*current_display->radius, -90._deg * current_display->radius));
        curvepoint(point2(a*current_display->radius, +90._deg * current_display->radius));
        queuecurve(shiftless(Id), forecolor, 0, PPR::LINE);
        }
      queuereset(vpconf.model, PPR::LINE);
      quickqueue();
      };
    #endif
    dialog::reaction_final = [] () {
      vpconf.model = mdFormula;
      };
    }
  
  EX void edit_rotation(ld& which) {
    dialog::editNumber(which, 0, 360, 90, 0, XLAT("rotation"), 
      "This controls the automatic rotation of the world. "
      "It affects the line animation in the history mode, and "
      "lands which have a special direction. Note that if finding this special direction is a part of the puzzle, "
      "it works only in the cheat mode.");
    dialog::dialogflags |= sm::CENTER;
    dialog::extra_options = [] () {
      dialog::addBreak(100);
      dialog::addBoolItem_choice("line animation only", models::do_rotate, 0, 'N');
      dialog::addBoolItem_choice("gravity lands", models::do_rotate, 1, 'G');
      dialog::addBoolItem_choice("all directional lands", models::do_rotate, 2, 'D');
      if(GDIM == 3) {
        dialog::addBreak(100);
        dialog::addSelItem(XLAT("XY plane"), fts(models::rotation) + "°", 'A');
        dialog::add_action([] { popScreen(); edit_rotation(models::rotation); });
        dialog::addSelItem(XLAT("XZ plane"), fts(models::rotation_xz) + "°", 'B');
        dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xz); });
        dialog::addSelItem(XLAT("XY plane #2"), fts(models::rotation_xy2) + "°", 'C');
        dialog::add_action([] { popScreen(); edit_rotation(models::rotation_xy2); });
        }
      };
    }

  EX void model_list() {
    cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
    gamescreen();
    dialog::init(XLAT("models & projections"));
    #if CAP_RUG
    USING_NATIVE_GEOMETRY_IN_RUG;
    #endif

    dialog::start_list(2000, 2000, 'a');
    for(int i=0; i<isize(mdinf); i++) {
      eModel m = eModel(i);
      if(m == mdFormula && ISMOBILE) continue;
      if(model_available(m)) {
        dialog::addBoolItem(get_model_name(m), vpconf.model == m, dialog::list_fake_key++);
        dialog::add_action([m] () {
          if(m == mdFormula) {
            edit_formula();
            return;
            }
          vpconf.model = m;
          polygonal::solve();
          vpconf.alpha = 1; vpconf.scale = 1;
          if(pmodel == mdBand && sphere)
            vpconf.scale = .3;
          if(pmodel == mdDisk && sphere)
            vpconf.scale = .4;
          popScreen();
          });
        }
      }
    
    dialog::end_list();
    dialog::addBreak(100);
    dialog::addBack();
    dialog::display();
    }
      
  void stretch_extra() {
    dialog::addBreak(100);
    if(sphere && pmodel == mdBandEquiarea) {
      dialog::addBoolItem("Gall-Peters", vpconf.stretch == 2, 'O');
      dialog::add_action([] { vpconf.stretch = 2; dialog::ne.s = "2"; });
      }
    if(pmodel == mdBandEquiarea) {
      // y = K * sin(phi)
      // cos(phi) * cos(phi) = 1/K
      if(sphere && vpconf.stretch >= 1) {
        ld phi = acos(sqrt(1/vpconf.stretch));
        dialog::addInfo(XLAT("The current value makes the map conformal at the latitude of %1 (%2°).", fts(phi), fts(phi / degree)));
        }
      else if(hyperbolic && abs(vpconf.stretch) <= 1 && abs(vpconf.stretch) >= 1e-9) {
        ld phi = acosh(abs(sqrt(1/vpconf.stretch)));
        dialog::addInfo(XLAT("The current value makes the map conformal %1 units from the main line.", fts(phi)));
        }
      else dialog::addInfo("");
      }
    }
  
  bool set_vr_settings = true;

  EX void model_menu() {
    cmode = sm::SIDE | sm::MAYDARK | sm::CENTER;
    gamescreen();
    #if CAP_RUG
    USING_NATIVE_GEOMETRY_IN_RUG;
    #endif
    dialog::init(XLAT("models & projections"));
    
    auto vpmodel = vpconf.model;
    
    dialog::addSelItem(XLAT("projection type"), get_model_name(vpmodel), 'm');
    dialog::add_action_push(model_list);
    
    if(nonisotropic && !sl2)
      dialog::addBoolItem_action(XLAT("geodesic movement in Sol/Nil"), nisot::geodesic_movement, 'G');

    dialog::addBoolItem(XLAT("rotation"), do_rotate == 2, 'r');
    if(do_rotate == 0) dialog::lastItem().value = XLAT("NEVER");
    if(GDIM == 2)
      dialog::lastItem().value += " " + its(rotation) + "°";
    else
      dialog::lastItem().value += " " + its(rotation) + "°" + its(rotation_xz) + "°" + its(rotation_xy2) + "°";
    dialog::add_action([] { edit_rotation(rotation); });
    
    bool vr_settings = vrhr::active() && set_vr_settings;

    if(vrhr::active()) {
      dialog::addBoolItem_action(XLAT("edit VR or non-VR settings"), set_vr_settings, 'V');
      if(set_vr_settings) dialog::items.back().value = "VR";
      else dialog::items.back().value = "non-VR";
      }
    
    // if(vpmodel == mdBand && sphere)
    if(!in_perspective_v() && !vr_settings) {
      dialog::addSelItem(XLAT("scale factor"), fts(vpconf.scale), 'z');
      dialog::add_action(editScale);
      }
    
    if(abs(vpconf.alpha-1) > 1e-3 && vpmodel != mdBall && vpmodel != mdHyperboloid && vpmodel != mdHemisphere && vpmodel != mdDisk) {
      dialog::addBreak(50);
      dialog::addInfo("NOTE: this works 'correctly' only if the Poincaré model/stereographic projection is used.");
      dialog::addBreak(50);
      }
    
    if(among(vpmodel, mdDisk, mdBall, mdHyperboloid, mdRotatedHyperboles, mdPanini)) {
      dynamicval<eModel> v(vpconf.model, vpconf.model);
      if(vpmodel == mdHyperboloid) vpconf.model = mdDisk;
      add_edit(vpconf.alpha);
      }
                                  
    if(has_orientation(vpmodel)) {
      dialog::addSelItem(XLAT("model orientation"), fts(vpconf.model_orientation) + "°", 'l');
      dialog::add_action([] () {
        dialog::editNumber(vpconf.model_orientation, 0, 360, 90, 0, XLAT("model orientation"), "");
        });
      if(GDIM == 3) {
        dialog::addSelItem(XLAT("model orientation (y/z plane)"), fts(vpconf.model_orientation_yz) + "°", 'L');
        dialog::add_action([] () {
          dialog::editNumber(vpconf.model_orientation_yz, 0, 360, 90, 0, XLAT("model orientation (y/z plane)"), "");
          });
        }
      }
     
    if(among(vpmodel, mdPerspective, mdHorocyclic) && nil) {
      dialog::addSelItem(XLAT("model orientation"), fts(vpconf.model_orientation) + "°", 'l');
      dialog::add_action([] () {
        dialog::editNumber(vpconf.model_orientation, 0, 360, 90, 0, XLAT("model orientation"), "");
        });
      dialog::addSelItem(XLAT("rotational or Heisenberg"), fts(vpconf.rotational_nil), 'L');
      dialog::add_action([] () {
        dialog::editNumber(vpconf.rotational_nil, 0, 1, 1, 1, XLAT("1 = Heisenberg, 0 = rotational"), "");
        });
      }

  if(GDIM == 3 && vpmodel != mdPerspective && !vr_settings) {
    const string cliphelp = XLAT(
      "Your view of the 3D model is naturally bounded from four directions by your window. "
      "Here, you can also set up similar bounds in the Z direction. Radius of the ball/band "
      "models, and the distance from the center to the plane in the halfspace model, are 1.\n\n");
    dialog::addSelItem(XLAT("near clipping plane"), fts(vpconf.clip_max), 'c');
    dialog::add_action([cliphelp] () {
      dialog::editNumber(vpconf.clip_max, -10, 10, 0.2, 1, XLAT("near clipping plane"), 
        cliphelp + XLAT("Objects with Z coordinate "
          "bigger than this parameter are not shown. This is useful with the models which "
          "extend infinitely in the Z direction, or if you want things close to your character "
          "to be not obscured by things closer to the camera."));
      });
    dialog::addSelItem(XLAT("far clipping plane"), fts(vpconf.clip_min), 'C');
    dialog::add_action([cliphelp] () {
      dialog::editNumber(vpconf.clip_min, -10, 10, 0.2, -1, XLAT("far clipping plane"), 
        cliphelp + XLAT("Objects with Z coordinate "
          "smaller than this parameter are not shown; it also affects the fog effect"
          " (near clipping plane = 0% fog, far clipping plane = 100% fog)."));
      });
    }
    
    if(vpmodel == mdPolynomial) {
      dialog::addSelItem(XLAT("coefficient"), 
        fts(polygonal::coefr[polygonal::coefid]), 'x');
      dialog::add_action([] () {
        polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
        int ci = polygonal::coefid + 1;
        dialog::editNumber(polygonal::coefr[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient"), "");
        });
      dialog::addSelItem(XLAT("coefficient (imaginary)"), 
        fts(polygonal::coefi[polygonal::coefid]), 'y');
      dialog::add_action([] () {
        polygonal::maxcoef = max(polygonal::maxcoef, polygonal::coefid);
        int ci = polygonal::coefid + 1;
        dialog::editNumber(polygonal::coefi[polygonal::coefid], -10, 10, .01/ci/ci, 0, XLAT("coefficient (imaginary)"), "");
        });
      dialog::addSelItem(XLAT("which coefficient"), its(polygonal::coefid), 'n');
      dialog::add_action([] () {
        dialog::editNumber(polygonal::coefid, 0, polygonal::MSI-1, 1, 0, XLAT("which coefficient"), "");
        dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
        });
      }

    if(vpmodel == mdHalfplane) {
      dialog::addSelItem(XLAT("half-plane scale"), fts(vpconf.halfplane_scale), 'b');
      dialog::add_action([] () {
        dialog::editNumber(vpconf.halfplane_scale, 0, 2, 0.25, 1, XLAT("half-plane scale"), "");
        });
      }

    if(vpmodel == mdRotatedHyperboles) {
      dialog::addBoolItem_action(XLAT("use atan to make it finite"), vpconf.use_atan, 'x');
      }

    if(among(vpmodel, mdLieOrthogonal, mdLiePerspective)) {
      if(in_s2xe() || (sphere && GDIM == 2)) dialog::addInfo(XLAT("this is not a Lie group"), 0xC00000);
      else if(!hyperbolic && !sol && !nih && !nil && !euclid && !in_h2xe() && !in_e2xe())
        dialog::addInfo(XLAT("not implemented"));
      }

    if(vpmodel == mdBall && !vr_settings) {
      dialog::addSelItem(XLAT("projection in ball model"), fts(vpconf.ballproj), 'x');
      dialog::add_action([] () {
        dialog::editNumber(vpconf.ballproj, 0, 100, .1, 0, XLAT("projection in ball model"), 
          "This parameter affects the ball model the same way as the projection parameter affects the disk model.");
        });
      }

    if(vpmodel == mdPolygonal) {
      dialog::addSelItem(XLAT("polygon sides"), its(polygonal::SI), 'x');
      dialog::add_action([] () {
        dialog::editNumber(polygonal::SI, 3, 10, 1, 4, XLAT("polygon sides"), "");
        dialog::reaction = polygonal::solve;
        });
      dialog::addSelItem(XLAT("star factor"), fts(polygonal::STAR), 'y');
      dialog::add_action([]() {
        dialog::editNumber(polygonal::STAR, -1, 1, .1, 0, XLAT("star factor"), "");
        dialog::reaction = polygonal::solve;
        });
      dialog::addSelItem(XLAT("degree of the approximation"), its(polygonal::deg), 'n');
      dialog::add_action([](){
        dialog::editNumber(polygonal::deg, 2, polygonal::MSI-1, 1, 2, XLAT("degree of the approximation"), "");
        dialog::reaction = polygonal::solve;
        dialog::bound_low(0); dialog::bound_up(polygonal::MSI-1);
        });
      }
    
    if(is_3d(vpconf) && GDIM == 2 && !vr_settings) 
      add_edit(vpconf.ballangle);     
    
    if(vr_settings) {
      dialog::addSelItem(XLAT("VR: rotate the 3D model"), fts(vpconf.vr_angle) + "°", 'B');
      dialog::add_action([] { 
        dialog::editNumber(vpconf.vr_angle, 0, 90, 5, 0, XLAT("VR: rotate the 3D model"), 
          "How the VR model should be rotated."
          );
        });
      dialog::addSelItem(XLAT("VR: shift the 3D model"), fts(vpconf.vr_zshift), 'Z');
      dialog::add_action([] { 
        dialog::editNumber(vpconf.vr_zshift, 0, 5, 0.1, 1, XLAT("VR: shift the 3D model"), 
          "How the VR model should be shifted forward, in units. "
          "The Poincaré disk has the size of 1 unit. You probably do not want this in perspective projections, but "
          "it is useful to see e.g. the Poincaré ball not from the center."
          );
        });
      dialog::addSelItem(XLAT("VR: scale the 3D model"), fts(vpconf.vr_scale_factor) + "m", 'S');
      dialog::add_action([] { 
        dialog::editNumber(vpconf.vr_scale_factor, 0, 5, 0.1, 1, XLAT("VR: scale the 3D model"), 
          "How the VR model should be scaled. At scale 1, 1 unit = 1 meter. Does not affect perspective projections, "
          "where the 'absolute unit' setting is used instead."
          );
        });
      }
    
    if(is_hyperboloid(vpmodel))
      add_edit(vpconf.top_z);
    
    if(has_transition(vpmodel)) 
      add_edit(vpconf.model_transition);

    if(among(vpmodel, mdJoukowsky, mdJoukowskyInverted, mdSpiral) && GDIM == 2) 
      add_edit(vpconf.skiprope);

    if(vpmodel == mdJoukowskyInverted)
      add_edit(vpconf.dualfocus_autoscale);
    
    if(vpmodel == mdHemisphere && euclid)
      add_edit(vpconf.euclid_to_sphere);
      
    if(mdinf[vpmodel].flags & mf::twopoint)
      add_edit(vpconf.twopoint_param);
    
    if(mdinf[vpmodel].flags & mf::axial)
      add_edit(vpconf.axial_angle);

    if(vpmodel == mdFisheye) 
      add_edit(vpconf.fisheye_param);

    if(is_hyperboloid(vpmodel))
      add_edit(pconf.show_hyperboloid_flat);
    
    if(vpmodel == mdCollignon) 
      add_edit(vpconf.collignon_parameter);
    
    if(vpmodel == mdMiller) {
      dialog::addSelItem(XLAT("parameter"), fts(vpconf.miller_parameter), 'b');
      dialog::add_action([](){
        dialog::editNumber(vpconf.miller_parameter, -1, 1, .1, 4/5., XLAT("parameter"), 
          "The Miller projection is obtained by multiplying the latitude by 4/5, using Mercator projection, and then multiplying Y by 5/4. "
          "Here you can change this parameter."
          );
        });
      }
    
    if(among(vpmodel, mdLoximuthal, mdRetroHammer, mdRetroCraig)) 
      add_edit(vpconf.loximuthal_parameter);

    if(among(vpmodel, mdAitoff, mdHammer, mdWinkelTripel)) 
      add_edit(vpconf.aitoff_parameter);
    
    if(vpmodel == mdWinkelTripel) 
      add_edit(vpconf.winkel_parameter);
    
    if(vpmodel == mdSpiral && !euclid) {
      add_edit(vpconf.spiral_angle);

      add_edit(
        sphere ? vpconf.sphere_spiral_multiplier :
        ring_not_spiral ? vpconf.right_spiral_multiplier :
        vpconf.any_spiral_multiplier
        );

      add_edit(vpconf.spiral_cone);
      }

    if(vpmodel == mdSpiral && euclid) {
      add_edit(vpconf.spiral_x);
      add_edit(vpconf.spiral_y);
      if(euclid && quotient) {
        dialog::addSelItem(XLAT("match the period"), its(spiral_id), 'n');
        dialog::add_action(match_torus_period);
        }
      }

    add_edit(vpconf.stretch);
    
    if(product_model(vpmodel))
      add_edit(vpconf.product_z_scale);

    #if CAP_GL
    dialog::addBoolItem(XLAT("use GPU to compute projections"), vid.consider_shader_projection, 'G');
    bool shaderside_projection = get_shader_flags() & SF_DIRECT;
    if(vid.consider_shader_projection && !shaderside_projection)
      dialog::lastItem().value = XLAT("N/A");
    if(vid.consider_shader_projection && shaderside_projection && vpmodel)
      dialog::lastItem().value += XLAT(" (2D only)");
    dialog::add_action([] { vid.consider_shader_projection = !vid.consider_shader_projection; });
    #endif

    menuitem_sightrange('R');
      
    dialog::addBreak(100);
    dialog::addItem(XLAT("history mode"), 'a');
    dialog::add_action_push(history::history_menu);
#if CAP_RUG
    if(GDIM == 2 || rug::rugged) {
      dialog::addItem(XLAT("hypersian rug mode"), 'u');
      dialog::add_action_push(rug::show);
      }
#endif
    dialog::addBack();

    dialog::display();
    mouseovers = XLAT("see http://www.roguetemple.com/z/hyper/models.php");
    }
    
  EX void quick_model() {
    cmode = sm::CENTER | sm::SIDE | sm::MAYDARK;
    gamescreen();
    dialog::init("models & projections");
    
    if(GDIM == 2 && !euclid) {
      dialog::addItem(hyperbolic ? XLAT("Gans model") : XLAT("orthographic projection"), '1');
      dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 999; pconf.scale = 998; pconf.xposition = pconf.yposition = 0; popScreen(); });
      dialog::addItem(hyperbolic ? XLAT("Poincaré model") : XLAT("stereographic projection"), '2');
      dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 1; pconf.scale = 1; pconf.xposition = pconf.yposition = 0; popScreen(); });
      dialog::addItem(hyperbolic ? XLAT("Beltrami-Klein model") : XLAT("gnomonic projection"), '3');
      dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 0; pconf.scale = 1; pconf.xposition = pconf.yposition = 0; popScreen(); });
      if(sphere) {
        dialog::addItem(XLAT("stereographic projection") + " " + XLAT("(zoomed out)"), '4');
        dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 1; pconf.scale = 0.4; pconf.xposition = pconf.yposition = 0; popScreen(); });
        }
      if(hyperbolic) {
        dialog::addItem(XLAT("Gans model") + " " + XLAT("(zoomed out)"), '4');
        dialog::add_action([] { if(rug::rugged) rug::close(); pconf.alpha = 999; pconf.scale = 499; pconf.xposition = pconf.yposition = 0; popScreen(); });
        #if CAP_RUG
        dialog::addItem(XLAT("Hypersian Rug"), 'u');
        dialog::add_action([] {  
          if(rug::rugged) pushScreen(rug::show);
          else {
            pconf.alpha = 1, pconf.scale = 1; if(!rug::rugged) rug::init(); popScreen(); 
            }
          });
        #endif
        }
      }
    else if(GDIM == 2 && euclid) {
      auto zoom_to = [] (ld s) {
        pconf.xposition = pconf.yposition = 0;
        ld maxs = 0;
        auto& cd = current_display;
        for(auto& p: gmatrix) for(int i=0; i<p.first->type; i++) {
          shiftpoint h = tC0(p.second * currentmap->adj(p.first, i));
          hyperpoint onscreen;
          applymodel(h, onscreen);
          maxs = max(maxs, onscreen[0] / cd->xsize);
          maxs = max(maxs, onscreen[1] / cd->ysize);
          }
        pconf.alpha = 1;
        pconf.scale = s * pconf.scale / 2 / maxs / cd->radius;
        popScreen();
        };
      dialog::addItem(XLAT("zoom 2x"), '1');
      dialog::add_action([zoom_to] { zoom_to(2); });
      dialog::addItem(XLAT("zoom 1x"), '2');
      dialog::add_action([zoom_to] { zoom_to(1); });
      dialog::addItem(XLAT("zoom 0.5x"), '3');
      dialog::add_action([zoom_to] { zoom_to(.5); });
      #if CAP_RUG
      if(quotient) {
        dialog::addItem(XLAT("cylinder/donut view"), 'u');
        dialog::add_action([] {
          if(rug::rugged) pushScreen(rug::show);
          else {
            pconf.alpha = 1, pconf.scale = 1; if(!rug::rugged) rug::init(); popScreen(); 
            }
          });
        }
      #endif
      }
    else if(GDIM == 3) {
      auto& ysh = (WDIM == 2 ? vid.camera : vid.yshift);
      dialog::addItem(XLAT("first-person perspective"), '1');
      dialog::add_action([&ysh] { ysh = 0; vid.sspeed = 0; popScreen(); } );
      dialog::addItem(XLAT("fixed point of view"), '2');
      dialog::add_action([&ysh] { ysh = 0; vid.sspeed = -10; popScreen(); } );
      dialog::addItem(XLAT("third-person perspective"), '3');
      dialog::add_action([&ysh] { ysh = 1; vid.sspeed = 0; popScreen(); } );
      }
    if(WDIM == 2) {
      dialog::addItem(XLAT("toggle full 3D graphics"), 'f');
      dialog::add_action([] { geom3::switch_fpp(); popScreen(); });
      }
    dialog::addItem(XLAT("advanced projections"), 'a');
    dialog::add_action_push(model_menu);
    menuitem_sightrange('r');
    dialog::addBack();
    dialog::display();
    }

  #if CAP_COMMANDLINE
  
  EX eModel read_model(const string& ss) {
    for(int i=0; i<isize(mdinf); i++) {
      if(hyperbolic && appears(mdinf[i].name_hyperbolic, ss)) return eModel(i);
      if(euclid && appears(mdinf[i].name_euclidean, ss)) return eModel(i);
      if(sphere && appears(mdinf[i].name_spherical, ss)) return eModel(i);
      }
    for(int i=0; i<isize(mdinf); i++) {
      if(appears(mdinf[i].name_hyperbolic, ss)) return eModel(i);
      if(appears(mdinf[i].name_euclidean, ss)) return eModel(i);
      if(appears(mdinf[i].name_spherical, ss)) return eModel(i);
      }
    return eModel(atoi(ss.c_str()));
    }
    
  int readArgs() {
    using namespace arg;
             
    if(0) ;
    else if(argis("-els")) {
      shift_arg_formula(history::extra_line_steps);
      }
    else if(argis("-stretch")) {
      PHASEFROM(2); shift_arg_formula(vpconf.stretch);
      }
    else if(argis("-PM")) { 
      PHASEFROM(2); shift(); vpconf.model = read_model(args());
      if(vpconf.model == mdFormula) {
        shift(); vpconf.basic_model = eModel(argi());
        shift(); vpconf.formula = args();
        }
      }
    else if(argis("-ballangle")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.ballangle);
      }
    else if(argis("-topz")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.top_z);
      }
    else if(argis("-twopoint")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.twopoint_param);
      }
    else if(argis("-hp")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.halfplane_scale);
      }
    else if(argis("-mori")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.model_orientation);
      }
    else if(argis("-mets")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.euclid_to_sphere);
      }
    else if(argis("-mhyp")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.hyperboloid_scaling);
      }
    else if(argis("-mdepth")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.depth_scaling);
      }
    else if(argis("-mnil")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.rotational_nil);
      }
    else if(argis("-mori2")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.model_orientation);
      shift_arg_formula(vpconf.model_orientation_yz);
      }
    else if(argis("-crot")) { 
      PHASEFROM(2); 
      shift_arg_formula(models::rotation);
      if(GDIM == 3) shift_arg_formula(models::rotation_xz);
      if(GDIM == 3) shift_arg_formula(models::rotation_xy2);
      }
    else if(argis("-clip")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.clip_min);
      shift_arg_formula(vpconf.clip_max);
      }
    else if(argis("-mtrans")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.model_transition);
      }
    else if(argis("-mparam")) { 
      PHASEFROM(2); 
      if(pmodel == mdCollignon) shift_arg_formula(vpconf.collignon_parameter);
      else if(pmodel == mdMiller) shift_arg_formula(vpconf.miller_parameter);
      else if(among(pmodel, mdLoximuthal, mdRetroCraig, mdRetroHammer)) shift_arg_formula(vpconf.loximuthal_parameter);
      else if(among(pmodel, mdAitoff, mdHammer, mdWinkelTripel)) shift_arg_formula(vpconf.aitoff_parameter);
      if(pmodel == mdWinkelTripel) shift_arg_formula(vpconf.winkel_parameter);
      }
    else if(argis("-sang")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.spiral_angle);
      if(sphere)
        shift_arg_formula(vpconf.sphere_spiral_multiplier);
      else if(vpconf.spiral_angle == 90)
        shift_arg_formula(vpconf.right_spiral_multiplier);
      }
    else if(argis("-ssm")) { 
      PHASEFROM(2);
      shift_arg_formula(vpconf.any_spiral_multiplier);
      }
    else if(argis("-scone")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.spiral_cone);
      }
    else if(argis("-sxy")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.spiral_x);
      shift_arg_formula(vpconf.spiral_y);
      }
    else if(argis("-mob")) { 
      PHASEFROM(2); 
      shift_arg_formula(vpconf.skiprope);
      }
    else if(argis("-palpha")) { 
      PHASEFROM(2); 
      #if CAP_GL
      shift_arg_formula(panini_alpha, reset_all_shaders);
      #else
      shift_arg_formula(panini_alpha);
      #endif
      }
    else if(argis("-salpha")) { 
      PHASEFROM(2); 
      #if CAP_GL
      shift_arg_formula(stereo_alpha, reset_all_shaders);
      #else
      shift_arg_formula(stereo_alpha);
      #endif
      }
    else if(argis("-zoom")) { 
      PHASEFROM(2); shift_arg_formula(vpconf.scale);
      }
    else if(argis("-alpha")) { 
      PHASEFROM(2); shift_arg_formula(vpconf.alpha);
      }
    else if(argis("-d:model")) 
      launch_dialog(model_menu);
    else if(argis("-d:formula")) {
      launch_dialog();
      edit_formula();
      }
    else if(argis("-d:match")) {
      launch_dialog(match_torus_period);
      edit_formula();
      }
    else return 1;
    return 0;    
    }
  
  auto hookArg = addHook(hooks_args, 100, readArgs); 
  #endif  

  void add_model_config() {
    addsaver(polygonal::SI, "polygon sides");
    param_f(polygonal::STAR, "star", "polygon star factor");
    addsaver(polygonal::deg, "polygonal degree");

    addsaver(polygonal::maxcoef, "polynomial degree");
    for(int i=0; i<polygonal::MSI; i++) {
      addsaver(polygonal::coefr[i], "polynomial "+its(i)+".real");
      addsaver(polygonal::coefi[i], "polynomial "+its(i)+".imag");
      }

    param_f(models::rotation, "rotation", "conformal rotation");
    addsaver(models::rotation_xz, "conformal rotation_xz");
    addsaver(models::rotation_xy2, "conformal rotation_2");
    addsaver(models::do_rotate, "conformal rotation mode", 1);

    param_f(pconf.halfplane_scale, "hp", "halfplane scale", 1);
    
    auto add_all = [&] (projection_configuration& p, string pp, string sp) {

      bool rug = pp != "";
      dynamicval<function<bool()>> ds(auto_restrict);
      auto_restrict = [&p] { return &vpconf == &p; };

      addsaverenum(p.model, pp+"used model", mdDisk);
      param_custom(pmodel, "projection|Poincare|Klein|half-plane|perspective", menuitem_projection, '1');

      param_f(p.model_orientation, pp+"mori", sp+"model orientation", 0);
      param_f(p.model_orientation_yz, pp+"mori_yz", sp+"model orientation-yz", 0);

      param_f(p.top_z, sp+"topz", 5)
      -> editable(1, 20, .25, "maximum z coordinate to show", "maximum z coordinate to show", 'l');       

      param_f(p.model_transition, pp+"mtrans", sp+"model transition", 1)
      -> editable(0, 1, .1, "model transition", 
          "You can change this parameter for a transition from another model to this one.", 't');          
      
      param_f(p.rotational_nil, sp+"rotnil", 1);
  
      param_f(p.clip_min, pp+"clipmin", sp+"clip-min", rug ? -100 : -1);
      param_f(p.clip_max, pp+"clipmax", sp+"clip-max", rug ? +10 : +1);
  
      param_f(p.euclid_to_sphere, pp+"ets", sp+"euclid to sphere projection", 1.5)
      -> editable(1e-1, 10, .1, "ETS parameter", "Stereographic projection to a sphere. Choose the radius of the sphere.", 'l')
      -> set_sets(dialog::scaleLog);

      param_f(p.twopoint_param, pp+"twopoint", sp+"twopoint parameter", 1)
      -> editable(1e-3, 10, .1, "two-point parameter", "In two-point-based models, this parameter gives the distance from each of the two points to the center.", 'b')
      -> set_sets(dialog::scaleLog);

      param_f(p.axial_angle, pp+"axial", sp+"axial angle", 90)
      -> editable(1e-3, 10, .1, "angle between the axes", "In two-axe-based models, this parameter gives the angle between the two axes.", 'x')
      -> set_sets(dialog::scaleLog);

      param_f(p.fisheye_param, pp+"fisheye", sp+"fisheye parameter", 1)
      -> editable(1e-3, 10, .1, "fisheye parameter", "Size of the fish eye.", 'b')
      -> set_sets(dialog::scaleLog);

      param_f(p.stretch, pp+"stretch", 1)
      -> editable(0, 10, .1, "vertical stretch", "Vertical stretch factor.", 's')
      -> set_extra(stretch_extra);
      
      param_f(p.product_z_scale, pp+"zstretch")
      -> editable(0.1, 10, 0.1, "product Z stretch", "", 'Z');
  
      param_f(p.collignon_parameter, pp+"collignon", sp+"collignon-parameter", 1)
      -> editable(-1, 1, .1, "Collignon parameter", "", 'b')
      -> modif([] (float_setting* f) {
        f->unit = vpconf.collignon_reflected ? " (r)" : "";
        })
      -> set_extra([&p] { 
        add_edit(p.collignon_reflected);
        });
      param_b(p.collignon_reflected, sp+"collignon-reflect", false)
      -> editable("Collignon reflect", 'R');
  
      param_f(p.aitoff_parameter, sp+"aitoff")
      -> editable(-1, 1, .1, "Aitoff parameter", 
          "The Aitoff projection is obtained by multiplying the longitude by 1/2, using azimuthal equidistant projection, and then dividing X by 1/2. "
          "Hammer projection is similar but equi-area projection is used instead. "
          "Here you can change this parameter.", 'b');
      param_f(p.miller_parameter, sp+"miller");
      param_f(p.loximuthal_parameter, sp+"loximuthal")
      -> editable(-90._deg, 90._deg, .1, "loximuthal parameter",
          "Loximuthal is similar to azimuthal equidistant, but based on loxodromes (lines of constant geographic direction) rather than geodesics. "
          "The loximuthal projection maps (the shortest) loxodromes to straight lines of the same length, going through the starting point. "
          "This setting changes the latitude of the starting point.\n\n"
          "In retroazimuthal projections, a point is drawn at such a point that the azimuth *from* that point to the chosen central point is correct. "
          "For example, if you should move east, the point is drawn to the right. This parameter is the latitude of the central point."
          "\n\n(In hyperbolic geometry directions are assigned according to the Lobachevsky coordinates.)", 'b'
          );
      param_f(p.winkel_parameter, sp+"winkel")
      -> editable(-1, 1, .1, "Winkel Tripel mixing", 
        "The Winkel Tripel projection is the average of Aitoff projection and equirectangular projection. Here you can change the proportion.", 'B');
  
      param_b(p.show_hyperboloid_flat, sp+"hyperboloid-flat", true)
      -> editable("show flat", 'b');
  
      param_f(p.skiprope, sp+"mobius", 0)
      -> editable(0, 360, 15, "Möbius transformations", "", 'S')->unit = "°";

      param_b(p.dualfocus_autoscale, sp+"dualfocus_autoscale", 0)
      -> editable("autoscale dual focus", 'A');
      
      addsaver(p.formula, sp+"formula");
      addsaverenum(p.basic_model, sp+"basic model");
      addsaver(p.use_atan, sp+"use_atan");  
  
      param_f(p.spiral_angle, sp+"sang")
      -> editable(0, 360, 15, "spiral angle", "set to 90° for the ring projection", 'x')
      -> unit = "°";
      param_f(p.spiral_x, sp+"spiralx")
      -> editable(-20, 20, 1, "spiral period: x", "", 'x');
      param_f(p.spiral_y, sp+"spiraly")
      -> editable(-20, 20, 1, "spiral period: y", "", 'y');
  
      param_f(p.scale, sp+"scale", 1);
      param_f(p.xposition, sp+"xposition", 0);
      param_f(p.yposition, sp+"yposition", 0);

      param_i(p.back_and_front, sp+"backandfront", 0);

      addsaver(p.alpha, sp+"projection", 1);
      param_custom(p.alpha, sp+"projection", menuitem_projection_distance, 'p')
      ->help_text = "projection distance|Gans Klein Poincare orthographic stereographic";

      param_f(p.camera_angle, pp+"cameraangle", sp+"camera angle", 0);
      addsaver(p.ballproj, sp+"ballproj", 1);      

      param_f(p.ballangle, pp+"ballangle", sp+"ball angle", 20)
      -> editable(0, 90, 5, "camera rotation in 3D models", 
        "Rotate the camera in 3D models (ball model, hyperboloid, and hemisphere). "
        "Note that hyperboloid and hemisphere models are also available in the "
        "Hypersian Rug surfaces menu, but they are rendered differently there -- "
        "by making a flat picture first, then mapping it to a surface. "
        "This makes the output better in some ways, but 3D effects are lost. "
        "Hypersian Rug model also allows more camera freedom.",
        'b')
      -> unit = "°";

      string help =
        "This parameter has a bit different scale depending on the settings:\n"
        "(1) in spherical geometry (with spiral angle=90°, 1 produces a stereographic projection)\n"
        "(2) in hyperbolic geometry, with spiral angle being +90° or -90°\n"
        "(3) in hyperbolic geometry, with other spiral angles (1 makes the bands fit exactly)";
      
      param_f(p.sphere_spiral_multiplier, "sphere_spiral_multiplier")
      -> editable(0, 10, .1, "sphere spiral multiplier", help, 'M')->unit = "°";

      param_f(p.right_spiral_multiplier, "right_spiral_multiplier")
      -> editable(0, 10, .1, "right spiral multiplier", help, 'M')->unit = "°";

      param_f(p.any_spiral_multiplier, "any_spiral_multiplier")
      -> editable(0, 10, .1, "any spiral multiplier", help, 'M')->unit = "°";

      param_f(p.spiral_cone, "spiral_cone")
      -> editable(0, 360, -45, "spiral cone", "", 'C')->unit = "°";
      };
    
    add_all(pconf, "", "");
    add_all(vid.rug_config, "rug_", "rug-");
    }

  auto hookSet = addHook(hooks_configfile, 100, add_model_config);
  }

}