File: hyperpoint.cpp

package info (click to toggle)
hyperrogue 4.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 44,976 kB
  • ctags: 1,089
  • sloc: cpp: 13,001; makefile: 12
file content (223 lines) | stat: -rw-r--r-- 5,941 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Hyperbolic Rogue
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details

// hyperbolic points and matrices

// basic functions and types
//===========================

ld sinh(ld alpha) { return (exp(alpha) - exp(-alpha)) / 2; }
ld cosh(ld alpha) { return (exp(alpha) + exp(-alpha)) / 2; }

ld squar(ld x) { return x*x; }

int sig(int z) { return z<2?1:-1; }

// hyperbolic point:
//===================

// we represent the points on the hyperbolic plane
// by points in 3D space (Minkowski space) such that x^2+y^2-z^2 == -1, z > 0
// (this is analogous to representing a sphere with points such that x^2+y^2+z^2 == 1)

struct hyperpoint {
  ld tab[3];
  ld& operator [] (int i) { return tab[i]; }
  const ld& operator [] (int i) const { return tab[i]; }
  };

hyperpoint hpxyz(ld x, ld y, ld z) { hyperpoint r; r[0] = x; r[1] = y; r[2] = z; return r; }

// center of the pseudosphere
hyperpoint Hypc = { {0,0,0} };

// origin of the hyperbolic plane
hyperpoint C0 = { {0,0,1} };

// this function returns approximate square of distance between two points
// (in the spherical analogy, this would be the distance in the 3D space,
// through the interior, not on the surface)
// also used to verify whether a point h1 is on the hyperbolic plane by using Hypc for h2

ld intval(const hyperpoint &h1, const hyperpoint &h2) {
  return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) - squar(h1[2]-h2[2]);
  }

// display a hyperbolic point
char *display(const hyperpoint& H) { 
  static char buf[100];
  sprintf(buf, "%8.4Lf:%8.4Lf:%8.4Lf", H[0], H[1], H[2]);
  return buf;
  }

// get the center of the line segment from H1 to H2
hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {

  hyperpoint H3;
  H3[0] = H1[0] + H2[0];
  H3[1] = H1[1] + H2[1];
  H3[2] = H1[2] + H2[2];
  
  ld Z = intval(H3, Hypc); 
  // printf("Z = %Lf\n", Z);

  Z = sqrt(-Z);
  
  for(int c=0; c<3; c++) H3[c] /= Z;
  
  return H3;
  }

// matrices
//==========

// matrices represent isometries of the hyperbolic plane
// (just like isometries of the sphere are represented by rotation matrices)

struct transmatrix {
  ld tab[3][3];
  ld * operator [] (int i) { return tab[i]; }
  const ld * operator [] (int i) const { return tab[i]; }
  };

// identity matrix
transmatrix Id = {{{1,0,0}, {0,1,0}, {0,0,1}}};

hyperpoint operator * (const transmatrix& T, const hyperpoint& H) {
  hyperpoint z;
  for(int i=0; i<3; i++) {
    z[i] = 0;
    for(int j=0; j<3; j++) z[i] += T[i][j] * H[j];
    }
  return z;
  }

transmatrix operator * (const transmatrix& T, const transmatrix& U) {
  transmatrix R;
  for(int i=0; i<3; i++) for(int j=0; j<3; j++) R[i][j] = 0;
  for(int i=0; i<3; i++) for(int j=0; j<3; j++) for(int k=0; k<3; k++)
    R[i][j] += T[i][k] * U[k][j];
  return R;
  }

// rotate by alpha degrees
transmatrix spin(ld alpha) {
  transmatrix T = Id;
  T[0][0] = +cos(alpha); T[0][1] = +sin(alpha);
  T[1][0] = -sin(alpha); T[1][1] = +cos(alpha);
  T[2][2] = 1;
  return T;
  }

// push alpha units to the right
transmatrix xpush(ld alpha) {
  transmatrix T = Id;
  T[0][0] = +cosh(alpha); T[0][2] = +sinh(alpha);
  T[2][0] = +sinh(alpha); T[2][2] = +cosh(alpha);
  return T;
  }

// push alpha units vertically
transmatrix ypush(ld alpha) {
  transmatrix T = Id;
  T[1][1] = +cosh(alpha); T[1][2] = +sinh(alpha);
  T[2][1] = +sinh(alpha); T[2][2] = +cosh(alpha);
  return T;
  }

// rotate the hyperplane around C0 such that H[1] == 0 and H[0] >= 0
transmatrix spintox(hyperpoint H) {
  transmatrix T = Id;
  ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
  if(R >= 1e-12) {
    T[0][0] = +H[0]/R; T[0][1] = +H[1]/R;
    T[1][0] = -H[1]/R; T[1][1] = +H[0]/R;
    }
  return T;
  }

// reverse of spintox(H)
transmatrix rspintox(hyperpoint H) {
  transmatrix T = Id;
  ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
  if(R >= 1e-12) {
    T[0][0] = +H[0]/R; T[0][1] = -H[1]/R;
    T[1][0] = +H[1]/R; T[1][1] = +H[0]/R;
    }
  return T;
  }

// for H such that H[1] == 0, this matrix pushes H to C0
transmatrix pushxto0(hyperpoint H) {
  transmatrix T = Id;
  T[0][0] = +H[2]; T[0][2] = -H[0];
  T[2][0] = -H[0]; T[2][2] = +H[2];
  return T;
  }

// reverse of pushxto0(H)
transmatrix rpushxto0(hyperpoint H) {
  transmatrix T = Id;
  T[0][0] = +H[2]; T[0][2] = +H[0];
  T[2][0] = +H[0]; T[2][2] = +H[2];
  return T;
  }

// generalization: H[1] can be non-zero
transmatrix gpushxto0(hyperpoint H) {
  hyperpoint H2 = spintox(H) * H;
  return rspintox(H) * pushxto0(H2) * spintox(H);
  }

transmatrix rgpushxto0(hyperpoint H) {
  hyperpoint H2 = spintox(H) * H;
  return rspintox(H) * rpushxto0(H2) * spintox(H);
  }


// fix the matrix T so that it is indeed an isometry
// (without using this, imprecision could accumulate)

void fixmatrix(transmatrix& T) {
  for(int x=0; x<3; x++) for(int y=0; y<=x; y++) {
    ld dp = 0;
    for(int z=0; z<3; z++) dp += T[z][x] * T[z][y] * sig(z);
    
    if(y == x) dp = 1 - sqrt(sig(x)/dp);
    
    for(int z=0; z<3; z++) T[z][x] -= dp * T[z][y];
    }
  }

// show the matrix on screen

void display(const transmatrix& T) {
  for(int y=0; y<3; y++) {
    for(int x=0; x<3; x++) printf("%10.7Lf", T[y][x]);
    printf(" -> %10.7Lf\n", squar(T[y][0]) + squar(T[y][1]) - squar(T[y][2]));
    // printf("\n");
    }
  for(int x=0; x<3; x++) printf("%10.7Lf", squar(T[0][x]) + squar(T[1][x]) - squar(T[2][x])); printf("\n");
  for(int x=0; x<3; x++) {
    int y = (x+1) % 3;
    printf("%10.7Lf", T[0][x]*T[0][y] + T[1][x]*T[1][y] - T[2][x]*T[2][y]);
    }
  printf("\n\n");
  }

transmatrix inverse(transmatrix T) {
  ld det = 0;
  for(int i=0; i<3; i++) 
    det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
  for(int i=0; i<3; i++) 
    det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
  
  transmatrix T2;
  if(det == 0) return T2;
  
  for(int i=0; i<3; i++) 
  for(int j=0; j<3; j++) 
    T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]) / det;

  return T2;
  }