1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
// Hyperbolic Rogue
// Copyright (C) 2011-2012 Zeno Rogue, see 'hyper.cpp' for details
// hyperbolic points and matrices
// basic functions and types
//===========================
ld sinh(ld alpha) { return (exp(alpha) - exp(-alpha)) / 2; }
ld cosh(ld alpha) { return (exp(alpha) + exp(-alpha)) / 2; }
ld squar(ld x) { return x*x; }
int sig(int z) { return z<2?1:-1; }
// hyperbolic point:
//===================
// we represent the points on the hyperbolic plane
// by points in 3D space (Minkowski space) such that x^2+y^2-z^2 == -1, z > 0
// (this is analogous to representing a sphere with points such that x^2+y^2+z^2 == 1)
struct hyperpoint {
ld tab[3];
ld& operator [] (int i) { return tab[i]; }
const ld& operator [] (int i) const { return tab[i]; }
};
hyperpoint hpxyz(ld x, ld y, ld z) { hyperpoint r; r[0] = x; r[1] = y; r[2] = z; return r; }
// center of the pseudosphere
hyperpoint Hypc = { {0,0,0} };
// origin of the hyperbolic plane
hyperpoint C0 = { {0,0,1} };
// this function returns approximate square of distance between two points
// (in the spherical analogy, this would be the distance in the 3D space,
// through the interior, not on the surface)
// also used to verify whether a point h1 is on the hyperbolic plane by using Hypc for h2
ld intval(const hyperpoint &h1, const hyperpoint &h2) {
return squar(h1[0]-h2[0]) + squar(h1[1]-h2[1]) - squar(h1[2]-h2[2]);
}
// display a hyperbolic point
char *display(const hyperpoint& H) {
static char buf[100];
sprintf(buf, "%8.4Lf:%8.4Lf:%8.4Lf", H[0], H[1], H[2]);
return buf;
}
// get the center of the line segment from H1 to H2
hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {
hyperpoint H3;
H3[0] = H1[0] + H2[0];
H3[1] = H1[1] + H2[1];
H3[2] = H1[2] + H2[2];
ld Z = intval(H3, Hypc);
// printf("Z = %Lf\n", Z);
Z = sqrt(-Z);
for(int c=0; c<3; c++) H3[c] /= Z;
return H3;
}
// matrices
//==========
// matrices represent isometries of the hyperbolic plane
// (just like isometries of the sphere are represented by rotation matrices)
struct transmatrix {
ld tab[3][3];
ld * operator [] (int i) { return tab[i]; }
const ld * operator [] (int i) const { return tab[i]; }
};
// identity matrix
transmatrix Id = {{{1,0,0}, {0,1,0}, {0,0,1}}};
hyperpoint operator * (const transmatrix& T, const hyperpoint& H) {
hyperpoint z;
for(int i=0; i<3; i++) {
z[i] = 0;
for(int j=0; j<3; j++) z[i] += T[i][j] * H[j];
}
return z;
}
transmatrix operator * (const transmatrix& T, const transmatrix& U) {
transmatrix R;
for(int i=0; i<3; i++) for(int j=0; j<3; j++) R[i][j] = 0;
for(int i=0; i<3; i++) for(int j=0; j<3; j++) for(int k=0; k<3; k++)
R[i][j] += T[i][k] * U[k][j];
return R;
}
// rotate by alpha degrees
transmatrix spin(ld alpha) {
transmatrix T = Id;
T[0][0] = +cos(alpha); T[0][1] = +sin(alpha);
T[1][0] = -sin(alpha); T[1][1] = +cos(alpha);
T[2][2] = 1;
return T;
}
// push alpha units to the right
transmatrix xpush(ld alpha) {
transmatrix T = Id;
T[0][0] = +cosh(alpha); T[0][2] = +sinh(alpha);
T[2][0] = +sinh(alpha); T[2][2] = +cosh(alpha);
return T;
}
// push alpha units vertically
transmatrix ypush(ld alpha) {
transmatrix T = Id;
T[1][1] = +cosh(alpha); T[1][2] = +sinh(alpha);
T[2][1] = +sinh(alpha); T[2][2] = +cosh(alpha);
return T;
}
// rotate the hyperplane around C0 such that H[1] == 0 and H[0] >= 0
transmatrix spintox(hyperpoint H) {
transmatrix T = Id;
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
if(R >= 1e-12) {
T[0][0] = +H[0]/R; T[0][1] = +H[1]/R;
T[1][0] = -H[1]/R; T[1][1] = +H[0]/R;
}
return T;
}
// reverse of spintox(H)
transmatrix rspintox(hyperpoint H) {
transmatrix T = Id;
ld R = sqrt(H[0] * H[0] + H[1] * H[1]);
if(R >= 1e-12) {
T[0][0] = +H[0]/R; T[0][1] = -H[1]/R;
T[1][0] = +H[1]/R; T[1][1] = +H[0]/R;
}
return T;
}
// for H such that H[1] == 0, this matrix pushes H to C0
transmatrix pushxto0(hyperpoint H) {
transmatrix T = Id;
T[0][0] = +H[2]; T[0][2] = -H[0];
T[2][0] = -H[0]; T[2][2] = +H[2];
return T;
}
// reverse of pushxto0(H)
transmatrix rpushxto0(hyperpoint H) {
transmatrix T = Id;
T[0][0] = +H[2]; T[0][2] = +H[0];
T[2][0] = +H[0]; T[2][2] = +H[2];
return T;
}
// generalization: H[1] can be non-zero
transmatrix gpushxto0(hyperpoint H) {
hyperpoint H2 = spintox(H) * H;
return rspintox(H) * pushxto0(H2) * spintox(H);
}
transmatrix rgpushxto0(hyperpoint H) {
hyperpoint H2 = spintox(H) * H;
return rspintox(H) * rpushxto0(H2) * spintox(H);
}
// fix the matrix T so that it is indeed an isometry
// (without using this, imprecision could accumulate)
void fixmatrix(transmatrix& T) {
for(int x=0; x<3; x++) for(int y=0; y<=x; y++) {
ld dp = 0;
for(int z=0; z<3; z++) dp += T[z][x] * T[z][y] * sig(z);
if(y == x) dp = 1 - sqrt(sig(x)/dp);
for(int z=0; z<3; z++) T[z][x] -= dp * T[z][y];
}
}
// show the matrix on screen
void display(const transmatrix& T) {
for(int y=0; y<3; y++) {
for(int x=0; x<3; x++) printf("%10.7Lf", T[y][x]);
printf(" -> %10.7Lf\n", squar(T[y][0]) + squar(T[y][1]) - squar(T[y][2]));
// printf("\n");
}
for(int x=0; x<3; x++) printf("%10.7Lf", squar(T[0][x]) + squar(T[1][x]) - squar(T[2][x])); printf("\n");
for(int x=0; x<3; x++) {
int y = (x+1) % 3;
printf("%10.7Lf", T[0][x]*T[0][y] + T[1][x]*T[1][y] - T[2][x]*T[2][y]);
}
printf("\n\n");
}
transmatrix inverse(transmatrix T) {
ld det = 0;
for(int i=0; i<3; i++)
det += T[0][i] * T[1][(i+1)%3] * T[2][(i+2)%3];
for(int i=0; i<3; i++)
det -= T[0][i] * T[1][(i+2)%3] * T[2][(i+1)%3];
transmatrix T2;
if(det == 0) return T2;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
T2[j][i] = (T[(i+1)%3][(j+1)%3] * T[(i+2)%3][(j+2)%3] - T[(i+1)%3][(j+2)%3] * T[(i+2)%3][(j+1)%3]) / det;
return T2;
}
|