File: patbench.cc

package info (click to toggle)
hyperscan 5.4.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,304 kB
  • sloc: cpp: 143,324; ansic: 41,041; python: 621; sh: 32; makefile: 12
file content (905 lines) | stat: -rw-r--r-- 30,638 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/*
 * Copyright (c) 2015-2021, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Hyperscan pattern benchmarker.
 *
 * This program allows users to detect which signatures may be the most
 * expensive in a set of patterns. It is designed for use with small to medium
 * pattern set sizes (e.g. 5-500). If used with very large pattern sets it may
 * take a very long time - the number of recompiles done is g * O(lg2(n)) where
 * g is the number of generations and n is the number of patterns (assuming
 * that n >> g).
 *
 * This utility will return a cumulative series of removed patterns. The first
 * generation will find and remove a single pattern. The second generation will
 * begin with the first pattern removed and find another pattern to remove,
 * etc. So if we have 100 patterns and 15 generations, the final generation's
 * score will be a run over 85 patterns.
 *
 * This utility is probabilistic. It is possible that the pattern removed in a
 * generation is not a particularly expensive pattern. To reduce noise in the
 * results use 'taskset' and set the number of repeats to a level that still
 * completes in reasonable time (this will reduce the effect of random
 * measurement noise).
 *
 * The criterion for performance can be altered by use of the -C<x> flag where
 * <x> can be t,r,s,c,b, selecting pattern matching throughput, scratch size,
 * stream state size (only available in streaming mode), compile time and
 * bytecode size respectively.
 *
 * This utility will also not produce good results if all the patterns are
 * roughly equally expensive.
 *
 * Factor Group Size:
 *
 * If there are multiple expensive patterns that are very similar on the
 * left-hand-side or identical, this utility will typically not find these
 * groups unless the -F flag is used to search for a group size that is equal
 * to or larger than the size of the group of similar patterns.
 *
 * Otherwise, removing a portion of the similar patterns will have no or almost
 * no effect, and the search procedure used relies on the ability to remove all
 * of the similar patterns in at least one search case, something which will
 * only happen if the factor_group_size is large enough.
 *
 * This alters the operation of our tool so that instead of trying to find the
 * single pattern whose removal has the most effect by binary search (the
 * default with factor_group_size == 1), we attempt to find the N patterns
 * whose removal has the most effect by searching over N+1 evenly sized groups,
 * removing only 1/(N+1) of the search signatures per iteration.
 *
 * Note that the number of recompiles done greatly increases with increased
 * factor group size.  For example, with factor_group_size = 1, we do g * 2 *
 * lg2(n) recompiles, while with factor_group_size = 4, we do g * 4 *
 * log(5/4)(n). Informally the number of generations we require goes up as we
 * eliminate a smaller number of signatures and the we have to do more work per
 * generation.
 *
 *
 * Build instructions:
 *
 *     g++ -o patbench patbench.cc $(pkg-config --cflags --libs libhs) -lpcap
 *
 * Usage:
 *
 *     ./patbench [ -n repeats] [ -G generations] [ -C criterion ]
 *             [ -F factor_group_size ] [ -N | -S ] <pattern file> <pcap file>
 *
 *     -n repeats sets the number of times the PCAP is repeatedly scanned
 *        with the pattern
 *     -G generations sets the number of generations that the algorithm is
 *        run for
 *     -N sets non-streaming mode, -S sets streaming mode (default)
 *     -F sets the factor group size (must be >0); this allows the detection
 *        of multiple interacting factors
 *
 *     -C sets the "criterion", which can be either:
 *          t  throughput (the default) - this requires a pcap file
 *          r  scratch size
 *          s  stream state size
 *          c  compile time
 *          b  bytecode size
 *
 * We recommend the use of a utility like 'taskset' on multiprocessor hosts to
 * lock execution to a single processor: this will remove processor migration
 * by the scheduler as a source of noise in the results.
 *
 */

#include <algorithm>
#include <cstring>
#include <chrono>
#include <climits>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <set>
#include <string>
#include <vector>
#include <unordered_map>

#include <unistd.h>

// We use the BSD primitives throughout as they exist on both BSD and Linux.
#define __FAVOR_BSD
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include <net/ethernet.h>
#include <arpa/inet.h>

#include <pcap.h>

#include <hs.h>

using std::cerr;
using std::cout;
using std::endl;
using std::ifstream;
using std::string;
using std::unordered_map;
using std::vector;
using std::set;
using std::min;
using std::max;
using std::copy;

enum Criterion {
    CRITERION_THROUGHPUT,
    CRITERION_BYTECODE_SIZE,
    CRITERION_COMPILE_TIME,
    CRITERION_STREAM_STATE,
    CRITERION_SCRATCH_SIZE
};

static bool higher_is_better(Criterion c) {
    return c == CRITERION_THROUGHPUT;
}

static void print_criterion(Criterion c, double val) {
    std::ios::fmtflags f(cout.flags());
    switch (c) {
    case CRITERION_THROUGHPUT:
        cout << std::fixed << std::setprecision(3) << val << " Megabits/s";
        break;
    case CRITERION_COMPILE_TIME:
        cout << std::fixed << std::setprecision(3) << val << " seconds";
        break;
    case CRITERION_BYTECODE_SIZE:
    case CRITERION_STREAM_STATE:
    case CRITERION_SCRATCH_SIZE:
    default:
        cout << static_cast<size_t>(val) << " bytes";
        break;
    }
    cout.flags(f);
}

// Key for identifying a stream in our pcap input data, using data from its IP
// headers.
struct FiveTuple {
    unsigned int protocol;
    unsigned int srcAddr;
    unsigned int srcPort;
    unsigned int dstAddr;
    unsigned int dstPort;

    // Construct a FiveTuple from a TCP or UDP packet.
    FiveTuple(const struct ip *iphdr) {
        // IP fields
        protocol = iphdr->ip_p;
        srcAddr = iphdr->ip_src.s_addr;
        dstAddr = iphdr->ip_dst.s_addr;

        // UDP/TCP ports
        const struct udphdr *uh = (const struct udphdr *)
                (((const char *)iphdr) + (iphdr->ip_hl * 4));
        srcPort = uh->uh_sport;
        dstPort = uh->uh_dport;
    }

    bool operator==(const FiveTuple &a) const {
        return protocol == a.protocol && srcAddr == a.srcAddr &&
               srcPort == a.srcPort && dstAddr == a.dstAddr &&
               dstPort == a.dstPort;
    }
};

// A *very* simple hash function, used when we create an unordered_map of
// FiveTuple objects.
struct FiveTupleHash {
    size_t operator()(const FiveTuple &x) const {
        return x.srcAddr ^ x.dstAddr ^ x.protocol ^ x.srcPort ^ x.dstPort;
    }
};

// Helper function. See end of file.
static bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
                          unsigned int *length);

// Match event handler: called every time Hyperscan finds a match.
static
int onMatch(unsigned int id, unsigned long long from, unsigned long long to,
            unsigned int flags, void *ctx) {
    // Our context points to a size_t storing the match count
    size_t *matches = (size_t *)ctx;
    (*matches)++;
    return 0; // continue matching
}

// Simple timing class
class Clock {
public:
    void start() {
        time_start = std::chrono::system_clock::now();
    }

    void stop() {
        time_end = std::chrono::system_clock::now();
    }

    double seconds() const {
        std::chrono::duration<double> delta = time_end - time_start;
        return delta.count();
    }
private:
    std::chrono::time_point<std::chrono::system_clock> time_start, time_end;
};

// Class wrapping all state associated with the benchmark
class Benchmark {
private:
    // Packet data to be scanned
    vector<string> packets;

    // Stream ID for each packet
    vector<size_t> stream_ids;

    // Map used to construct stream_ids
    unordered_map<FiveTuple, size_t, FiveTupleHash> stream_map;

    // Hyperscan compiled database
    hs_database_t *db = nullptr;

    // Hyperscan temporary scratch space
    hs_scratch_t *scratch = nullptr;

    // Vector of Hyperscan stream state
    vector<hs_stream_t *> streams;

    // Count of matches found while scanning
    size_t matchCount = 0;
public:
    ~Benchmark() {
        hs_free_scratch(scratch);
        hs_free_database(db);
    }

    // Initialisation; after this call, Benchmark owns the database and will
    // ensure it is freed.
    void setDatabase(hs_database_t *hs_db) {
        hs_free_database(db); // Free previous database.
        db = hs_db;
        // (Re)allocate scratch to ensure that it is large enough to handle the
        // database.
        hs_error_t err = hs_alloc_scratch(db, &scratch);
        if (err != HS_SUCCESS) {
            cerr << "ERROR: could not allocate scratch space. Exiting." << endl;
            exit(-1);
        }
    }
    const hs_database_t *getDatabase() const {
        return db;
    }

    size_t getScratchSize() const {
        size_t scratch_size;
        hs_error_t err = hs_scratch_size(scratch, &scratch_size);
        if (err != HS_SUCCESS) {
            cerr << "ERROR: could not query scratch space size. Exiting."
                 << endl;
            exit(-1);
        }
        return scratch_size;
    }

    // Read a set of streams from a pcap file
    bool readStreams(const char *pcapFile) {
        // Open PCAP file for input
        char errbuf[PCAP_ERRBUF_SIZE];
        pcap_t *pcapHandle = pcap_open_offline(pcapFile, errbuf);
        if (pcapHandle == nullptr) {
            cerr << "ERROR: Unable to open pcap file \"" << pcapFile
                 << "\": " << errbuf << endl;
            return false;
        }

        struct pcap_pkthdr pktHeader;
        const unsigned char *pktData;
        while ((pktData = pcap_next(pcapHandle, &pktHeader)) != nullptr) {
            unsigned int offset = 0, length = 0;
            if (!payloadOffset(pktData, &offset, &length)) {
                continue;
            }

            // Valid TCP or UDP packet
            const struct ip *iphdr = (const struct ip *)(pktData
                    + sizeof(struct ether_header));
            const char *payload = (const char *)pktData + offset;

            size_t id = stream_map.insert(std::make_pair(FiveTuple(iphdr),
                                          stream_map.size())).first->second;

            packets.push_back(string(payload, length));
            stream_ids.push_back(id);
        }
        pcap_close(pcapHandle);

        return !packets.empty();
    }

    // Return the number of bytes scanned
    size_t bytes() const {
        size_t sum = 0;
        for (const auto &packet : packets) {
            sum += packet.size();
        }
        return sum;
    }

    // Return the number of matches found.
    size_t matches() const {
        return matchCount;
    }

    // Clear the number of matches found.
    void clearMatches() {
        matchCount = 0;
    }

    // Open a Hyperscan stream for each stream in stream_ids
    void openStreams() {
        streams.resize(stream_map.size());
        for (auto &stream : streams) {
            hs_error_t err = hs_open_stream(db, 0, &stream);
            if (err != HS_SUCCESS) {
                cerr << "ERROR: Unable to open stream. Exiting." << endl;
                exit(-1);
            }
        }
    }

    // Close all open Hyperscan streams (potentially generating any
    // end-anchored matches)
    void closeStreams() {
        for (auto &stream : streams) {
            hs_error_t err =
                hs_close_stream(stream, scratch, onMatch, &matchCount);
            if (err != HS_SUCCESS) {
                cerr << "ERROR: Unable to close stream. Exiting." << endl;
                exit(-1);
            }
        }
    }

    // Scan each packet (in the ordering given in the PCAP file) through
    // Hyperscan using the streaming interface.
    void scanStreams() {
        for (size_t i = 0; i != packets.size(); ++i) {
            const std::string &pkt = packets[i];
            hs_error_t err = hs_scan_stream(streams[stream_ids[i]],
                                            pkt.c_str(), pkt.length(), 0,
                                            scratch, onMatch, &matchCount);
            if (err != HS_SUCCESS) {
                cerr << "ERROR: Unable to scan packet. Exiting." << endl;
                exit(-1);
            }
        }
    }

    // Scan each packet (in the ordering given in the PCAP file) through
    // Hyperscan using the block-mode interface.
    void scanBlock() {
        for (size_t i = 0; i != packets.size(); ++i) {
            const std::string &pkt = packets[i];
            hs_error_t err = hs_scan(db, pkt.c_str(), pkt.length(), 0,
                                     scratch, onMatch, &matchCount);
            if (err != HS_SUCCESS) {
                cerr << "ERROR: Unable to scan packet. Exiting." << endl;
                exit(-1);
            }
        }
    }
};

// helper function - see end of file
static void parseFile(const char *filename, vector<string> &patterns,
                      vector<unsigned> &flags, vector<unsigned> &ids,
                      vector<string> &originals);

class Sigdata {
    vector<unsigned> flags;
    vector<unsigned> ids;
    vector<string> patterns;
    vector<string> originals;

public:
    Sigdata() {}
    Sigdata(const char *filename) {
        parseFile(filename, patterns, flags, ids, originals);

    }

    const string &get_original(unsigned index) const {
        return originals[index];
    }

    hs_database_t *compileDatabase(unsigned mode, double *compileTime) const {
        hs_database_t *db = nullptr;
        hs_compile_error_t *compileErr;

        // Turn our vector of strings into a vector of char*'s to pass in to
        // hs_compile_multi. (This is just using the vector of strings as
        // dynamic storage.)
        vector<const char *> cstrPatterns;
        cstrPatterns.reserve(patterns.size());
        for (const auto &pattern : patterns) {
            cstrPatterns.push_back(pattern.c_str());
        }

        Clock clock;
        clock.start();
        hs_error_t err = hs_compile_multi(cstrPatterns.data(), flags.data(),
                                          ids.data(), cstrPatterns.size(), mode,
                                          nullptr, &db, &compileErr);
        clock.stop();
        if (err != HS_SUCCESS) {
            if (compileErr->expression < 0) {
                // The error does not refer to a particular expression.
                cerr << "ERROR: " << compileErr->message << endl;
            } else {
                cerr << "ERROR: Pattern '"
                     << patterns[compileErr->expression]
                     << "' failed with error '" << compileErr->message << "'"
                     << endl;
            }
            // As the compileErr pointer points to dynamically allocated memory,
            // if we get an error, we must be sure to release it. This is not
            // necessary when no error is detected.
            hs_free_compile_error(compileErr);
            exit(-1);
        }

        *compileTime = clock.seconds();
        return db;
    }

    unsigned size() const {
        return patterns.size();
    }

    Sigdata cloneExclude(const set<unsigned> &excludeIndexSet) const {
        Sigdata c;
        for (unsigned i = 0, e = size(); i != e; ++i) {
            if (excludeIndexSet.find(i) == excludeIndexSet.end()) {
                c.flags.push_back(flags[i]);
                c.ids.push_back(ids[i]);
                c.patterns.push_back(patterns[i]);
                c.originals.push_back(originals[i]);
            }
        }
        return c;
    }
};

static
void usage(const char *) {
    cerr << "Usage:" << endl << endl;
    cerr << "  patbench [-n repeats] [ -G generations] [ -C criterion ]" << endl
         << "           [ -F factor_group_size ] [ -N | -S ] "
         << "<pattern file> <pcap file>" << endl << endl
         << "    -n repeats sets the number of times the PCAP is repeatedly "
            "scanned" << endl << "       with the pattern." << endl
         << "    -G generations sets the number of generations that the "
            "algorithm is" << endl << "       run for." << endl
         << "    -N sets non-streaming mode, -S sets streaming mode (default)."
         << endl << "    -F sets the factor group size (must be >0); this "
                    "allows the detection" << endl
         << "       of multiple interacting factors." << endl << "" << endl
         << "    -C sets the 'criterion', which can be either:" << endl
         << "         t  throughput (the default) - this requires a pcap file"
         << endl << "         r  scratch size" << endl
         << "         s  stream state size" << endl
         << "         c  compile time" << endl << "         b  bytecode size"
         << endl << endl
         << "We recommend the use of a utility like 'taskset' on "
            "multiprocessor hosts to" << endl
         << "lock execution to a single processor: this will remove processor "
            "migration" << endl
         << "by the scheduler as a source of noise in the results." << endl;
}

static
double measure_stream_time(Benchmark &bench, unsigned int repeatCount) {
    Clock clock;
    bench.clearMatches();
    clock.start();
    for (unsigned int i = 0; i < repeatCount; i++) {
        bench.openStreams();
        bench.scanStreams();
        bench.closeStreams();
    }
    clock.stop();
    double secsScan = clock.seconds();
    return secsScan;
}

static
double measure_block_time(Benchmark &bench, unsigned int repeatCount) {
    Clock clock;
    bench.clearMatches();
    clock.start();
    for (unsigned int i = 0; i < repeatCount; i++) {
        bench.scanBlock();
    }
    clock.stop();
    double secsScan = clock.seconds();
    return secsScan;
}

static
double eval_set(Benchmark &bench, Sigdata &sigs, unsigned int mode,
                unsigned repeatCount, Criterion criterion,
                bool diagnose = true) {
    double compileTime = 0;
    bench.setDatabase(sigs.compileDatabase(mode, &compileTime));

    switch (criterion) {
    case CRITERION_BYTECODE_SIZE: {
        size_t dbSize;
        hs_error_t err = hs_database_size(bench.getDatabase(), &dbSize);
        if (err != HS_SUCCESS) {
            cerr << "ERROR: could not retrieve bytecode size" << endl;
            exit(1);
        }
        return dbSize;
    }
    case CRITERION_COMPILE_TIME:
        return compileTime;
    case CRITERION_STREAM_STATE: {
        size_t streamStateSize;
        hs_error_t err = hs_stream_size(bench.getDatabase(), &streamStateSize);
        if (err != HS_SUCCESS) {
            cerr << "ERROR: could not retrieve stream state size" << endl;
            exit(1);
        }
        return streamStateSize;
    }
    case CRITERION_SCRATCH_SIZE:
        return bench.getScratchSize();
    case CRITERION_THROUGHPUT:
    default:
        break; // do nothing - we are THROUGHPUT
    }
    double scan_time;
    if (mode == HS_MODE_NOSTREAM) {
        scan_time = measure_block_time(bench, repeatCount);
    } else {
        scan_time = measure_stream_time(bench, repeatCount);
    }
    size_t bytes = bench.bytes();
    size_t matches = bench.matches();
    if (diagnose) {
        std::ios::fmtflags f(cout.flags());
        cout << "Scan time " << std::fixed << std::setprecision(3) << scan_time
             << " sec, Scanned " << bytes * repeatCount << " bytes, Throughput "
             << std::fixed << std::setprecision(3)
             << (bytes * 8 * repeatCount) / (scan_time * 1000000)
             << " Mbps, Matches " << matches << endl;
        cout.flags(f);
    }
    return (bytes * 8 * repeatCount) / (scan_time * 1000000);
}

// Main entry point.
int main(int argc, char **argv) {
    unsigned int repeatCount = 1;
    unsigned int mode = HS_MODE_STREAM;
    Criterion criterion = CRITERION_THROUGHPUT;
    unsigned int gen_max = 10;
    unsigned int factor_max = 1;
    // Process command line arguments.
    int opt;
    while ((opt = getopt(argc, argv, "SNn:G:F:C:")) != -1) {
        switch (opt) {
        case 'F':
            factor_max = atoi(optarg);
            break;
        case 'G':
            gen_max = atoi(optarg);
            break;
        case 'S':
            mode = HS_MODE_STREAM;
            break;
        case 'N':
            mode = HS_MODE_NOSTREAM;
            break;
        case 'C':
            switch (optarg[0]) {
            case 't':
                criterion = CRITERION_THROUGHPUT;
                break;
            case 'b':
                criterion = CRITERION_BYTECODE_SIZE;
                break;
            case 'c':
                criterion = CRITERION_COMPILE_TIME;
                break;
            case 's':
                criterion = CRITERION_STREAM_STATE;
                break;
            case 'r':
                criterion = CRITERION_SCRATCH_SIZE;
                break;
            default:
                cerr << "Unrecognised criterion: " << optarg[0] << endl;
                usage(argv[0]);
                exit(-1);
            }
            break;
        case 'n':
            repeatCount = atoi(optarg);
            if (repeatCount <= 0 || repeatCount > UINT_MAX) {
                cerr << "Invalid repeatCount." << endl;
                exit(-1);
            }
            break;
        default:
            usage(argv[0]);
            exit(-1);
        }
    }

    if (argc - optind != ((criterion == CRITERION_THROUGHPUT) ? 2 : 1)) {
        usage(argv[0]);
        exit(-1);
    }

    const char *patternFile = argv[optind];
    const char *pcapFile = argv[optind + 1];

    // Read our input PCAP file in
    Benchmark bench;
    if (criterion == CRITERION_THROUGHPUT) {
        if (!bench.readStreams(pcapFile)) {
            cerr << "Unable to read packets from PCAP file. Exiting." << endl;
            exit(-1);
        }
    }

    if ((criterion == CRITERION_STREAM_STATE) && (mode != HS_MODE_STREAM)) {
        cerr << "Cannot evaluate stream state for block mode compile. Exiting."
             << endl;
        exit(-1);
    }

    cout << "Base signatures: " << patternFile;
    if (pcapFile) {
        cout << "\tPCAP input file: " << pcapFile
             << "\tRepeat count: " << repeatCount;
    }
    if (mode == HS_MODE_STREAM) {
        cout << "\tMode: streaming";
    } else {
        cout << "\tMode: block";
    }
    cout << endl;

    Sigdata sigs(patternFile);

    // calculate and show a baseline
    eval_set(bench, sigs, mode, repeatCount, criterion);

    set<unsigned> work_sigs, exclude;

    for (unsigned i = 0; i < sigs.size(); ++i) {
        work_sigs.insert(i);
    }

    double score_base =
        eval_set(bench, sigs, mode, repeatCount, criterion, false);
    bool maximize = higher_is_better(criterion);
    cout << "Number of signatures: " << sigs.size() << endl;
    cout << "Base performance: ";
    print_criterion(criterion, score_base);
    cout << endl;

    unsigned generations = min(gen_max, (sigs.size() - 1) / factor_max);

    cout << "Cutting signatures cumulatively for " << generations
         << " generations" << endl;
    for (unsigned gen = 0; gen < generations; ++gen) {
        cout << "Generation " << gen << " ";
        set<unsigned> s(work_sigs.begin(), work_sigs.end());
        double best = maximize ? 0 : 1000000000000.0;
        unsigned count = 0;
        while (s.size() > factor_max) {
            count++;
            cout << "." << std::flush;
            vector<unsigned> sv(s.begin(), s.end());
            random_shuffle(sv.begin(), sv.end());
            unsigned groups = factor_max + 1;
            for (unsigned current_group = 0; current_group < groups;
                 current_group++) {
                unsigned sz = sv.size();
                unsigned lo = (current_group * sz) / groups;
                unsigned hi = ((current_group + 1) * sz) / groups;

                set<unsigned> s_part1(sv.begin(), sv.begin() + lo);
                set<unsigned> s_part2(sv.begin() + hi, sv.end());
                set<unsigned> s_tmp = s_part1;
                s_tmp.insert(s_part2.begin(), s_part2.end());
                set<unsigned> tmp = s_tmp;
                tmp.insert(exclude.begin(), exclude.end());
                Sigdata sigs_tmp = sigs.cloneExclude(tmp);
                double score = eval_set(bench, sigs_tmp, mode, repeatCount,
                                        criterion, false);

                if ((current_group == 0) ||
                    (!maximize ? (score < best) : (score > best))) {
                    s = s_tmp;
                    best = score;
                }
            }
        }
        for (unsigned i = count; i < 16; i++) {
            cout << " ";
        }
        std::ios::fmtflags out_f(cout.flags());
        cout << "Performance: ";
        print_criterion(criterion, best);
        cout << " (" << std::fixed << std::setprecision(3) << (best / score_base)
             << "x) after cutting:" << endl;
        cout.flags(out_f);

        // s now has factor_max signatures
        for (const auto &found : s) {
            exclude.insert(found);
            work_sigs.erase(found);
            cout << sigs.get_original(found) << endl;
        }

        cout << endl;
    }
    return 0;
}

/**
 * Helper function to locate the offset of the first byte of the payload in the
 * given ethernet frame. Offset into the packet, and the length of the payload
 * are returned in the arguments @a offset and @a length.
 */
static
bool payloadOffset(const unsigned char *pkt_data, unsigned int *offset,
                   unsigned int *length) {
    const ip *iph = (const ip *)(pkt_data + sizeof(ether_header));
    const tcphdr *th = nullptr;

    // Ignore packets that aren't IPv4
    if (iph->ip_v != 4) {
        return false;
    }

    // Ignore fragmented packets.
    if (iph->ip_off & htons(IP_MF | IP_OFFMASK)) {
        return false;
    }

    // IP header length, and transport header length.
    unsigned int ihlen = iph->ip_hl * 4;
    unsigned int thlen = 0;

    switch (iph->ip_p) {
    case IPPROTO_TCP:
        th = (const tcphdr *)((const char *)iph + ihlen);
        thlen = th->th_off * 4;
        break;
    case IPPROTO_UDP:
        thlen = sizeof(udphdr);
        break;
    default:
        return false;
    }

    *offset = sizeof(ether_header) + ihlen + thlen;
    *length = sizeof(ether_header) + ntohs(iph->ip_len) - *offset;

    return *length != 0;
}

static unsigned parseFlags(const string &flagsStr) {
    unsigned flags = 0;
    for (const auto &c : flagsStr) {
        switch (c) {
        case 'i':
            flags |= HS_FLAG_CASELESS; break;
        case 'm':
            flags |= HS_FLAG_MULTILINE; break;
        case 's':
            flags |= HS_FLAG_DOTALL; break;
        case 'H':
            flags |= HS_FLAG_SINGLEMATCH; break;
        case 'V':
            flags |= HS_FLAG_ALLOWEMPTY; break;
        case '8':
            flags |= HS_FLAG_UTF8; break;
        case 'W':
            flags |= HS_FLAG_UCP; break;
        case '\r': // stray carriage-return
            break;
        default:
            cerr << "Unsupported flag \'" << c << "\'" << endl;
            exit(-1);
        }
    }
    return flags;
}

static void parseFile(const char *filename, vector<string> &patterns,
                      vector<unsigned> &flags, vector<unsigned> &ids,
                      vector<string> &originals) {
    ifstream inFile(filename);
    if (!inFile.good()) {
        cerr << "ERROR: Can't open pattern file \"" << filename << "\"" << endl;
        exit(-1);
    }

    for (unsigned i = 1; !inFile.eof(); ++i) {
        string line;
        getline(inFile, line);

        // if line is empty, or a comment, we can skip it
        if (line.empty() || line[0] == '#') {
            continue;
        }

        // otherwise, it should be ID:PCRE, e.g.
        //  10001:/foobar/is

        size_t colonIdx = line.find_first_of(':');
        if (colonIdx == string::npos) {
            cerr << "ERROR: Could not parse line " << i << endl;
            exit(-1);
        }

        // we should have an unsigned int as an ID, before the colon
        unsigned id = std::stoi(line.substr(0, colonIdx).c_str());

        // rest of the expression is the PCRE
        const string expr(line.substr(colonIdx + 1));

        size_t flagsStart = expr.find_last_of('/');
        if (flagsStart == string::npos) {
            cerr << "ERROR: no trailing '/' char" << endl;
            exit(-1);
        }

        string pcre(expr.substr(1, flagsStart - 1));
        string flagsStr(expr.substr(flagsStart + 1, expr.size() - flagsStart));
        unsigned flag = parseFlags(flagsStr);

        originals.push_back(line);
        patterns.push_back(pcre);
        flags.push_back(flag);
        ids.push_back(id);
    }
}