1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Pattern lifetime analysis.
*/
#include "config.h"
#include "ng_find_matches.h"
#include "nfagraph/ng_holder.h"
#include "nfagraph/ng_util.h"
#include "parser/position.h"
#include "util/container.h"
#include "util/compare.h"
#include "util/report.h"
#include "util/report_manager.h"
#include "util/unordered.h"
#include <algorithm>
using namespace std;
using namespace ue2;
using MatchSet = set<pair<size_t, size_t>>;
using StateBitSet = boost::dynamic_bitset<>;
namespace {
/** \brief Max number of states (taking edit distance into account). */
static constexpr size_t STATE_COUNT_MAX = 15000;
// returns all successors up to a given depth in a vector of sets, indexed by
// zero-based depth from source vertex
static
vector<flat_set<NFAVertex>>
gatherSuccessorsByDepth(const NGHolder &g, const NFAVertex &src, u32 depth) {
assert(depth > 0);
vector<flat_set<NFAVertex>> result(depth);
// populate current set of successors
for (auto v : adjacent_vertices_range(src, g)) {
// ignore self-loops
if (src == v) {
continue;
}
DEBUG_PRINTF("Node %zu depth 1\n", g[v].index);
result[0].insert(v);
}
for (u32 d = 1; d < depth; d++) {
// collect all successors for all current level vertices
const auto &cur = result[d - 1];
auto &next = result[d];
for (auto u : cur) {
// don't go past special nodes
if (is_special(u, g)) {
continue;
}
for (auto v : adjacent_vertices_range(u, g)) {
// ignore self-loops
if (u == v) {
continue;
}
DEBUG_PRINTF("Node %zu depth %u\n", g[v].index, d + 1);
next.insert(v);
}
}
}
return result;
}
// returns all predecessors up to a given depth in a vector of sets, indexed by
// zero-based depth from source vertex
static
vector<flat_set<NFAVertex>>
gatherPredecessorsByDepth(const NGHolder &g, NFAVertex src, u32 depth) {
assert(depth > 0);
vector<flat_set<NFAVertex>> result(depth);
// populate current set of successors
for (auto v : inv_adjacent_vertices_range(src, g)) {
// ignore self-loops
if (src == v) {
continue;
}
DEBUG_PRINTF("Node %zu depth 1\n", g[v].index);
result[0].insert(v);
}
for (u32 d = 1; d < depth; d++) {
// collect all successors for all current level vertices
const auto &cur = result[d - 1];
auto &next = result[d];
for (auto v : cur) {
for (auto u : inv_adjacent_vertices_range(v, g)) {
// ignore self-loops
if (v == u) {
continue;
}
DEBUG_PRINTF("Node %zu depth %u\n", g[u].index, d + 1);
next.insert(u);
}
}
}
return result;
}
// this is a per-vertex, per-shadow level state transition table
struct GraphCache {
GraphCache(u32 dist_in, u32 hamm_in, const NGHolder &g)
: hamming(hamm_in > 0), size(num_vertices(g)),
edit_distance(hamming ? hamm_in : dist_in)
{
auto dist_max = edit_distance + 1;
allocateStateTransitionTable(dist_max);
populateTransitionCache(g, dist_max);
populateAcceptCache(g, dist_max);
}
void allocateStateTransitionTable(u32 dist_max) {
// resize level 1 - per vertex
shadow_transitions.resize(size);
helper_transitions.resize(size);
// resize level 2 - per shadow level
for (u32 i = 0; i < size; i++) {
shadow_transitions[i].resize(dist_max);
helper_transitions[i].resize(dist_max);
// resize level 3 - per vertex
for (u32 d = 0; d < dist_max; d++) {
shadow_transitions[i][d].resize(size);
helper_transitions[i][d].resize(size);
}
}
// accept states are indexed by edit distance
accept_states.resize(dist_max);
accept_eod_states.resize(dist_max);
// vertex report maps are indexed by edit distance
vertex_reports_by_level.resize(dist_max);
vertex_eod_reports_by_level.resize(dist_max);
}
/*
* certain transitions to helpers are disallowed:
* 1. transitions from accept/acceptEod
* 2. transitions to accept/acceptEod
* 3. from start to startDs
* 4. to a virtual/multiline start
*
* everything else is allowed.
*/
bool canTransitionToHelper(NFAVertex u, NFAVertex v, const NGHolder &g) const {
if (is_any_accept(u, g)) {
return false;
}
if (is_any_accept(v, g)) {
return false;
}
if (u == g.start && v == g.startDs) {
return false;
}
if (is_virtual_start(v, g)) {
return false;
}
return true;
}
void populateTransitionCache(const NGHolder &g, u32 dist_max) {
// populate mapping of vertex index to vertex
vector<NFAVertex> idx_to_v(size);
for (auto v : vertices_range(g)) {
idx_to_v[g[v].index] = v;
}
for (u32 i = 0; i < size; i++) {
auto cur_v = idx_to_v[i];
// set up transition tables
auto succs = gatherSuccessorsByDepth(g, cur_v, dist_max);
assert(succs.size() == dist_max);
for (u32 d = 0; d < dist_max; d++) {
auto &v_shadows = shadow_transitions[i][d];
auto cur_v_bit = i;
// enable transition to next level helper (this handles insertion)
if (!hamming && d < edit_distance && !is_any_accept(cur_v, g)) {
auto &next_v_helpers = helper_transitions[i][d + 1];
next_v_helpers.set(cur_v_bit);
}
// if vertex has a self-loop, we can also transition to it,
// but only if we're at shadow level 0
if (edge(cur_v, cur_v, g).second && d == 0) {
v_shadows.set(cur_v_bit);
}
if (hamming && d > 0) {
continue;
}
// populate state transition tables
for (auto v : succs[d]) {
auto v_bit = g[v].index;
// we cannot transition to startDs on any level other than
// level 0
if (v != g.startDs || d == 0) {
// this handles direct transitions as well as removals
v_shadows.set(v_bit);
}
// we can also transition to next-level helper (handles
// replace), provided we meet the criteria
if (d < edit_distance && canTransitionToHelper(cur_v, v, g)) {
auto &next_v_helpers = helper_transitions[i][d + 1];
next_v_helpers.set(v_bit);
}
}
}
}
}
void populateAcceptCache(const NGHolder &g, u32 dist_max) {
// set up accept states masks
StateBitSet accept(size);
accept.set(g[g.accept].index);
StateBitSet accept_eod(size);
accept_eod.set(g[g.acceptEod].index);
// gather accept and acceptEod states
for (u32 base_dist = 0; base_dist < dist_max; base_dist++) {
auto &states = accept_states[base_dist];
auto &eod_states = accept_eod_states[base_dist];
states.resize(size);
eod_states.resize(size);
// inspect each vertex
for (u32 i = 0; i < size; i++) {
// inspect all shadow levels from base_dist to dist_max
for (u32 d = 0; d < dist_max - base_dist; d++) {
auto &shadows = shadow_transitions[i][d];
// if this state transitions to accept, set its bit
if ((shadows & accept).any()) {
states.set(i);
}
if ((shadows & accept_eod).any()) {
eod_states.set(i);
}
}
}
}
// populate accepts cache
for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
const auto &rs = g[v].reports;
for (u32 d = 0; d <= edit_distance; d++) {
// add self to report list at all levels
vertex_reports_by_level[d][v].insert(rs.begin(), rs.end());
}
if (edit_distance == 0 || hamming) {
// if edit distance is 0, no predecessors will have reports
continue;
}
auto preds_by_depth = gatherPredecessorsByDepth(g, v, edit_distance);
for (u32 pd = 0; pd < preds_by_depth.size(); pd++) {
const auto &preds = preds_by_depth[pd];
// for each predecessor, add reports up to maximum edit distance
// for current depth from source vertex
for (auto pred : preds) {
for (u32 d = 0; d < edit_distance - pd; d++) {
vertex_reports_by_level[d][pred].insert(rs.begin(), rs.end());
}
}
}
}
for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) {
const auto &rs = g[v].reports;
if (v == g.accept) {
continue;
}
for (u32 d = 0; d <= edit_distance; d++) {
// add self to report list at all levels
vertex_eod_reports_by_level[d][v].insert(rs.begin(), rs.end());
}
if (edit_distance == 0 || hamming) {
// if edit distance is 0, no predecessors will have reports
continue;
}
auto preds_by_depth = gatherPredecessorsByDepth(g, v, edit_distance);
for (u32 pd = 0; pd < preds_by_depth.size(); pd++) {
const auto &preds = preds_by_depth[pd];
// for each predecessor, add reports up to maximum edit distance
// for current depth from source vertex
for (auto pred : preds) {
for (u32 d = 0; d < edit_distance - pd; d++) {
vertex_eod_reports_by_level[d][pred].insert(rs.begin(), rs.end());
}
}
}
}
}
#ifdef DEBUG
void dumpStateTransitionTable(const NGHolder &g) {
StateBitSet accept(size);
accept.set(g[g.accept].index);
StateBitSet accept_eod(size);
accept_eod.set(g[g.acceptEod].index);
DEBUG_PRINTF("Dumping state transition tables\n");
DEBUG_PRINTF("Shadows:\n");
for (u32 i = 0; i < num_vertices(g); i++) {
DEBUG_PRINTF("%-7s %3u:", "Vertex", i);
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", j);
}
printf("\n");
for (u32 d = 0; d <= edit_distance; d++) {
DEBUG_PRINTF("%-7s %3u:", "Level", d);
const auto &s = getShadowTransitions(i, d);
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", s.test(j));
}
printf("\n");
}
DEBUG_PRINTF("\n");
}
DEBUG_PRINTF("Helpers:\n");
for (u32 i = 0; i < num_vertices(g); i++) {
DEBUG_PRINTF("%-7s %3u:", "Vertex", i);
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", j);
}
printf("\n");
for (u32 d = 0; d <= edit_distance; d++) {
DEBUG_PRINTF("%-7s %3u:", "Level", d);
const auto &s = getHelperTransitions(i, d);
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", s.test(j));
}
printf("\n");
}
DEBUG_PRINTF("\n");
}
DEBUG_PRINTF("Accept transitions:\n");
DEBUG_PRINTF("%-12s", "Vertex idx:");
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", j);
}
printf("\n");
for (u32 d = 0; d <= edit_distance; d++) {
DEBUG_PRINTF("%-7s %3u:", "Level", d);
const auto &s = getAcceptTransitions(d);
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", s.test(j));
}
printf("\n");
}
DEBUG_PRINTF("\n");
DEBUG_PRINTF("Accept EOD transitions:\n");
DEBUG_PRINTF("%-12s", "Vertex idx:");
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", j);
}
printf("\n");
for (u32 d = 0; d <= edit_distance; d++) {
DEBUG_PRINTF("%-7s %3u:", "Level", d);
const auto &s = getAcceptEodTransitions(d);
for (u32 j = 0; j < num_vertices(g); j++) {
printf("%3i", s.test(j));
}
printf("\n");
}
DEBUG_PRINTF("\n");
DEBUG_PRINTF("%-12s ", "Accepts:");
for (u32 i = 0; i < num_vertices(g); i++) {
printf("%3i", accept.test(i));
}
printf("\n");
DEBUG_PRINTF("%-12s ", "EOD Accepts:");
for (u32 i = 0; i < num_vertices(g); i++) {
printf("%3i", accept_eod.test(i));
}
printf("\n");
DEBUG_PRINTF("Reports\n");
for (auto v : vertices_range(g)) {
for (u32 d = 0; d <= edit_distance; d++) {
const auto &r = vertex_reports_by_level[d][v];
const auto &e = vertex_eod_reports_by_level[d][v];
DEBUG_PRINTF("%-7s %3zu %-8s %3zu %-8s %3zu\n",
"Vertex", g[v].index, "rs:", r.size(), "eod:", e.size());
}
}
printf("\n");
}
#endif
const StateBitSet& getShadowTransitions(u32 idx, u32 level) const {
assert(idx < size);
assert(level <= edit_distance);
return shadow_transitions[idx][level];
}
const StateBitSet& getHelperTransitions(u32 idx, u32 level) const {
assert(idx < size);
assert(level <= edit_distance);
return helper_transitions[idx][level];
}
const StateBitSet& getAcceptTransitions(u32 level) const {
assert(level <= edit_distance);
return accept_states[level];
}
const StateBitSet& getAcceptEodTransitions(u32 level) const {
assert(level <= edit_distance);
return accept_eod_states[level];
}
/*
* the bitsets are indexed by vertex and shadow level. the bitset's length is
* equal to the total number of vertices in the graph.
*
* for convenience, helper functions are provided.
*/
vector<vector<StateBitSet>> shadow_transitions;
vector<vector<StateBitSet>> helper_transitions;
// accept states masks, indexed by shadow level
vector<StateBitSet> accept_states;
vector<StateBitSet> accept_eod_states;
// map of all reports associated with any vertex, indexed by shadow level
vector<map<NFAVertex, flat_set<ReportID>>> vertex_reports_by_level;
vector<map<NFAVertex, flat_set<ReportID>>> vertex_eod_reports_by_level;
bool hamming;
u32 size;
u32 edit_distance;
};
/*
* SOM workflow is expected to be the following:
* - Caller calls getActiveStates, which reports SOM for each active states
* - Caller calls getSuccessorStates on each of the active states, which *doesn't*
* report SOM
* - Caller decides if the successor state should be activated, and calls
* activateState with SOM set to that of previous active state (not successor!)
* - activateState then resolves any conflicts between SOMs that may arise from
* multiple active states progressing to the same successor
*/
struct StateSet {
struct State {
enum node_type {
NODE_SHADOW = 0,
NODE_HELPER
};
State(size_t idx_in, u32 level_in, size_t som_in, node_type type_in) :
idx(idx_in), level(level_in), som(som_in), type(type_in) {}
size_t idx;
u32 level;
size_t som;
node_type type;
};
// Temporary working data used for step() which we want to keep around
// (rather than reallocating vectors all the time).
struct WorkingData {
vector<State> active;
vector<State> succ_list;
};
StateSet(size_t sz, u32 dist_in) :
shadows(dist_in + 1), helpers(dist_in + 1),
shadows_som(dist_in + 1), helpers_som(dist_in + 1),
edit_distance(dist_in) {
for (u32 dist = 0; dist <= dist_in; dist++) {
shadows[dist].resize(sz, false);
helpers[dist].resize(sz, false);
shadows_som[dist].resize(sz, 0);
helpers_som[dist].resize(sz, 0);
}
}
void reset() {
for (u32 dist = 0; dist <= edit_distance; dist++) {
shadows[dist].reset();
helpers[dist].reset();
fill(shadows_som[dist].begin(), shadows_som[dist].end(), 0);
fill(helpers_som[dist].begin(), helpers_som[dist].end(), 0);
}
}
bool empty() const {
for (u32 dist = 0; dist <= edit_distance; dist++) {
if (shadows[dist].any()) {
return false;
}
if (helpers[dist].any()) {
return false;
}
}
return true;
}
size_t count() const {
size_t result = 0;
for (u32 dist = 0; dist <= edit_distance; dist++) {
result += shadows[dist].count();
result += helpers[dist].count();
}
return result;
}
bool setActive(const State &s) {
switch (s.type) {
case State::NODE_HELPER:
return helpers[s.level].test_set(s.idx);
case State::NODE_SHADOW:
return shadows[s.level].test_set(s.idx);
}
assert(0);
return false;
}
size_t getCachedSom(const State &s) const {
switch (s.type) {
case State::NODE_HELPER:
return helpers_som[s.level][s.idx];
case State::NODE_SHADOW:
return shadows_som[s.level][s.idx];
}
assert(0);
return 0;
}
void setCachedSom(const State &s, const size_t som_val) {
switch (s.type) {
case State::NODE_HELPER:
helpers_som[s.level][s.idx] = som_val;
break;
case State::NODE_SHADOW:
shadows_som[s.level][s.idx] = som_val;
break;
default:
assert(0);
}
}
#ifdef DEBUG
void dumpActiveStates() const {
vector<State> states;
getActiveStates(states);
DEBUG_PRINTF("Dumping active states\n");
for (const auto &state : states) {
DEBUG_PRINTF("type: %s idx: %zu level: %u som: %zu\n",
state.type == State::NODE_HELPER ? "HELPER" : "SHADOW",
state.idx, state.level, state.som);
}
}
#endif
void getActiveStates(vector<State> &result) const {
result.clear();
for (u32 dist = 0; dist <= edit_distance; dist++) {
// get all shadow vertices (including original graph)
const auto &cur_shadow_vertices = shadows[dist];
for (size_t id = cur_shadow_vertices.find_first();
id != cur_shadow_vertices.npos;
id = cur_shadow_vertices.find_next(id)) {
result.emplace_back(id, dist, shadows_som[dist][id],
State::NODE_SHADOW);
}
// the rest is only valid for edited graphs
if (dist == 0) {
continue;
}
// get all helper vertices
const auto &cur_helper_vertices = helpers[dist];
for (size_t id = cur_helper_vertices.find_first();
id != cur_helper_vertices.npos;
id = cur_helper_vertices.find_next(id)) {
result.emplace_back(id, dist, helpers_som[dist][id],
State::NODE_HELPER);
}
}
sort_and_unique(result);
}
// does not return SOM
void getSuccessors(const State &state, const GraphCache &gc,
vector<State> &result) const {
result.clear();
// maximum shadow depth that we can go from current level
u32 max_depth = edit_distance - state.level + 1;
for (u32 d = 0; d < max_depth; d++) {
const auto &shadow_succ = gc.getShadowTransitions(state.idx, d);
for (size_t id = shadow_succ.find_first();
id != shadow_succ.npos;
id = shadow_succ.find_next(id)) {
auto new_level = state.level + d;
result.emplace_back(id, new_level, 0, State::NODE_SHADOW);
}
const auto &helper_succ = gc.getHelperTransitions(state.idx, d);
for (size_t id = helper_succ.find_first();
id != helper_succ.npos;
id = helper_succ.find_next(id)) {
auto new_level = state.level + d;
result.emplace_back(id, new_level, 0, State::NODE_HELPER);
}
}
sort_and_unique(result);
}
void getAcceptStates(const GraphCache &gc, vector<State> &result) const {
result.clear();
for (u32 dist = 0; dist <= edit_distance; dist++) {
// get all shadow vertices (including original graph)
auto cur_shadow_vertices = shadows[dist];
cur_shadow_vertices &= gc.getAcceptTransitions(dist);
for (size_t id = cur_shadow_vertices.find_first();
id != cur_shadow_vertices.npos;
id = cur_shadow_vertices.find_next(id)) {
result.emplace_back(id, dist, shadows_som[dist][id],
State::NODE_SHADOW);
}
auto cur_helper_vertices = helpers[dist];
cur_helper_vertices &= gc.getAcceptTransitions(dist);
for (size_t id = cur_helper_vertices.find_first();
id != cur_helper_vertices.npos;
id = cur_helper_vertices.find_next(id)) {
result.emplace_back(id, dist, helpers_som[dist][id],
State::NODE_HELPER);
}
}
sort_and_unique(result);
}
void getAcceptEodStates(const GraphCache &gc, vector<State> &result) const {
result.clear();
for (u32 dist = 0; dist <= edit_distance; dist++) {
// get all shadow vertices (including original graph)
auto cur_shadow_vertices = shadows[dist];
cur_shadow_vertices &= gc.getAcceptEodTransitions(dist);
for (size_t id = cur_shadow_vertices.find_first();
id != cur_shadow_vertices.npos;
id = cur_shadow_vertices.find_next(id)) {
result.emplace_back(id, dist, shadows_som[dist][id],
State::NODE_SHADOW);
}
auto cur_helper_vertices = helpers[dist];
cur_helper_vertices &= gc.getAcceptEodTransitions(dist);
for (size_t id = cur_helper_vertices.find_first();
id != cur_helper_vertices.npos;
id = cur_helper_vertices.find_next(id)) {
result.emplace_back(id, dist, helpers_som[dist][id],
State::NODE_HELPER);
}
}
sort_and_unique(result);
}
// the caller must specify SOM at current offset, and must not attempt to
// resolve SOM inheritance conflicts
void activateState(const State &state) {
size_t cur_som = state.som;
if (setActive(state)) {
size_t cached_som = getCachedSom(state);
cur_som = min(cur_som, cached_som);
}
setCachedSom(state, cur_som);
}
vector<StateBitSet> shadows;
vector<StateBitSet> helpers;
vector<vector<size_t>> shadows_som;
vector<vector<size_t>> helpers_som;
u32 edit_distance;
};
// for flat_set
bool operator<(const StateSet::State &a, const StateSet::State &b) {
ORDER_CHECK(idx);
ORDER_CHECK(level);
ORDER_CHECK(type);
ORDER_CHECK(som);
return false;
}
bool operator==(const StateSet::State &a, const StateSet::State &b) {
return a.idx == b.idx && a.level == b.level && a.type == b.type &&
a.som == b.som;
}
/** \brief Cache to speed up edge lookups, rather than hitting the graph. */
struct EdgeCache {
explicit EdgeCache(const NGHolder &g) {
cache.reserve(num_vertices(g));
for (auto e : edges_range(g)) {
cache.emplace(make_pair(source(e, g), target(e, g)), e);
}
}
NFAEdge get(NFAVertex u, NFAVertex v) const {
auto it = cache.find(make_pair(u, v));
if (it != cache.end()) {
return it->second;
}
return NFAEdge();
}
private:
ue2_unordered_map<pair<NFAVertex, NFAVertex>, NFAEdge> cache;
};
struct fmstate {
const size_t num_states; // number of vertices in graph
StateSet states; // currently active states
StateSet next; // states on after this iteration
GraphCache &gc;
vector<NFAVertex> vertices; // mapping from index to vertex
EdgeCache edge_cache;
size_t offset = 0;
unsigned char cur = 0;
unsigned char prev = 0;
const bool utf8;
const bool allowStartDs;
const ReportManager &rm;
fmstate(const NGHolder &g, GraphCache &gc_in, bool utf8_in, bool aSD_in,
const u32 edit_distance, const ReportManager &rm_in)
: num_states(num_vertices(g)),
states(num_states, edit_distance),
next(num_states, edit_distance),
gc(gc_in), vertices(num_vertices(g), NGHolder::null_vertex()),
edge_cache(g), utf8(utf8_in), allowStartDs(aSD_in), rm(rm_in) {
// init states
states.activateState(
StateSet::State {g[g.start].index, 0, 0,
StateSet::State::NODE_SHADOW});
if (allowStartDs) {
states.activateState(
StateSet::State {g[g.startDs].index, 0, 0,
StateSet::State::NODE_SHADOW});
}
// fill vertex mapping
for (auto v : vertices_range(g)) {
vertices[g[v].index] = v;
}
}
};
} // namespace
static
bool isWordChar(const unsigned char c) {
// check if it's an alpha character
if (ourisalpha(c)) {
return true;
}
// check if it's a digit
if (c >= '0' && c <= '9') {
return true;
}
// check if it's an underscore
if (c == '_') {
return true;
}
return false;
}
static
bool isUtf8CodePoint(const char c) {
// check if this is a start of 4-byte character
if ((c & 0xF8) == 0xF0) {
return true;
}
// check if this is a start of 3-byte character
if ((c & 0xF0) == 0xE0) {
return true;
}
// check if this is a start of 2-byte character
if ((c & 0xE0) == 0xC0) {
return true;
}
// check if this is a single-byte character
if ((c & 0x80) == 0) {
return true;
}
return false;
}
static
bool canReach(const NGHolder &g, const NFAEdge &e, struct fmstate &state) {
auto flags = g[e].assert_flags;
if (!flags) {
return true;
}
if (flags & POS_FLAG_ASSERT_WORD_TO_NONWORD) {
if (isWordChar(state.prev) && !isWordChar(state.cur)) {
return true;
}
}
if (flags & POS_FLAG_ASSERT_NONWORD_TO_WORD) {
if (!isWordChar(state.prev) && isWordChar(state.cur)) {
return true;
}
}
if (flags & POS_FLAG_ASSERT_WORD_TO_WORD) {
if (isWordChar(state.prev) && isWordChar(state.cur)) {
return true;
}
}
if (flags & POS_FLAG_ASSERT_NONWORD_TO_NONWORD) {
if (!isWordChar(state.prev) && !isWordChar(state.cur)) {
return true;
}
}
return false;
}
static
void getAcceptMatches(const NGHolder &g, MatchSet &matches,
struct fmstate &state, NFAVertex accept_vertex,
vector<StateSet::State> &active_states) {
assert(accept_vertex == g.accept || accept_vertex == g.acceptEod);
const bool eod = accept_vertex == g.acceptEod;
if (eod) {
state.states.getAcceptEodStates(state.gc, active_states);
} else {
state.states.getAcceptStates(state.gc, active_states);
}
DEBUG_PRINTF("Number of active states: %zu\n", active_states.size());
for (const auto &cur : active_states) {
auto u = state.vertices[cur.idx];
// we can't accept anything from startDs in between UTF-8 codepoints
if (state.utf8 && u == g.startDs && !isUtf8CodePoint(state.cur)) {
continue;
}
const auto &reports =
eod ? state.gc.vertex_eod_reports_by_level[cur.level][u]
: state.gc.vertex_reports_by_level[cur.level][u];
NFAEdge e = state.edge_cache.get(u, accept_vertex);
// we assume edge assertions only exist at level 0
if (e && !canReach(g, e, state)) {
continue;
}
DEBUG_PRINTF("%smatch found at %zu\n", eod ? "eod " : "", state.offset);
assert(!reports.empty());
for (const auto &report_id : reports) {
const Report &ri = state.rm.getReport(report_id);
DEBUG_PRINTF("report %u has offset adjustment %d\n", report_id,
ri.offsetAdjust);
DEBUG_PRINTF("match from (i:%zu,l:%u,t:%u): (%zu,%zu)\n", cur.idx,
cur.level, cur.type, cur.som,
state.offset + ri.offsetAdjust);
matches.emplace(cur.som, state.offset + ri.offsetAdjust);
}
}
}
static
void getMatches(const NGHolder &g, MatchSet &matches, struct fmstate &state,
StateSet::WorkingData &wd, bool allowEodMatches) {
getAcceptMatches(g, matches, state, g.accept, wd.active);
if (allowEodMatches) {
getAcceptMatches(g, matches, state, g.acceptEod, wd.active);
}
}
static
void step(const NGHolder &g, fmstate &state, StateSet::WorkingData &wd) {
state.next.reset();
state.states.getActiveStates(wd.active);
for (const auto &cur : wd.active) {
auto u = state.vertices[cur.idx];
state.states.getSuccessors(cur, state.gc, wd.succ_list);
for (auto succ : wd.succ_list) {
auto v = state.vertices[succ.idx];
if (is_any_accept(v, g)) {
continue;
}
if (!state.allowStartDs && v == g.startDs) {
continue;
}
// GraphCache doesn't differentiate between successors for shadows
// and helpers, and StateSet does not know anything about the graph,
// so the only place we can do it is here. we can't self-loop on a
// startDs if we're startDs's helper, so disallow it.
if (u == g.startDs && v == g.startDs &&
succ.level != 0 && succ.level == cur.level) {
continue;
}
// for the reasons outlined above, also putting this here.
// disallow transitions from start to startDs on levels other than zero
if (u == g.start && v == g.startDs &&
cur.level != 0 && succ.level != 0) {
continue;
}
bool can_reach = false;
if (succ.type == StateSet::State::NODE_HELPER) {
can_reach = true;
} else {
// we assume edge assertions only exist on level 0
const CharReach &cr = g[v].char_reach;
NFAEdge e = state.edge_cache.get(u, v);
if (cr.test(state.cur) &&
(!e || canReach(g, e, state))) {
can_reach = true;
}
}
// check edge assertions if we are allowed to reach accept
DEBUG_PRINTF("reaching %zu->%zu ('%c'->'%c'): %s\n",
g[u].index, g[v].index,
ourisprint(state.prev) ? state.prev : '?',
ourisprint(state.cur) ? state.cur : '?',
can_reach ? "yes" : "no");
if (can_reach) {
// we should use current offset as SOM if:
// - we're at level 0 and we're a start vertex
// - we're a fake start shadow
size_t next_som;
bool reset = is_any_start(u, g) && cur.level == 0;
reset |= is_virtual_start(u, g) &&
cur.type == StateSet::State::NODE_SHADOW;
if (reset) {
next_som = state.offset;
} else {
// else, inherit SOM from predecessor
next_som = cur.som;
}
succ.som = next_som;
DEBUG_PRINTF("src: idx %zu level: %u som: %zu type: %s\n",
cur.idx, cur.level, cur.som,
cur.type == StateSet::State::NODE_HELPER ? "H" : "S");
DEBUG_PRINTF("dst: idx %zu level: %u som: %zu type: %s\n",
succ.idx, succ.level, succ.som,
succ.type == StateSet::State::NODE_HELPER ? "H" : "S");
// activate successor (SOM will be handled by activateState)
state.next.activateState(succ);
}
}
}
}
// filter extraneous matches
static
void filterMatches(MatchSet &matches) {
set<size_t> eom;
// first, collect all end-offset matches
for (const auto &match : matches) {
eom.insert(match.second);
}
// now, go through all the end-offsets and filter extra matches
for (const auto &elem : eom) {
// find minimum SOM for this EOM
size_t min_som = -1U;
for (const auto &match : matches) {
// skip entries with wrong EOM
if (match.second != elem) {
continue;
}
min_som = min(min_som, match.first);
}
auto msit = matches.begin();
while (msit != matches.end()) {
// skip everything that doesn't match
if (msit->second != elem || msit->first <= min_som) {
++msit;
continue;
}
DEBUG_PRINTF("erasing match %zu, %zu\n", msit->first, msit->second);
matches.erase(msit++);
}
}
}
/** \brief Find all matches for a given graph when executed against \a input.
*
* Fills \a matches with offsets into the data stream where a match is found.
*/
bool findMatches(const NGHolder &g, const ReportManager &rm,
const string &input, MatchSet &matches,
const u32 edit_distance, const u32 hamm_distance,
const bool notEod, const bool utf8) {
assert(hasCorrectlyNumberedVertices(g));
// cannot match fuzzy utf8 patterns, this should've been filtered out at
// compile time, so make it an assert
assert(!edit_distance || !utf8);
// cannot be both edit and Hamming distance at once
assert(!edit_distance || !hamm_distance);
bool hamming = hamm_distance > 0;
auto dist = hamming ? hamm_distance : edit_distance;
const size_t total_states = num_vertices(g) * (3 * dist + 1);
DEBUG_PRINTF("Finding matches (%zu total states)\n", total_states);
if (total_states > STATE_COUNT_MAX) {
DEBUG_PRINTF("too big\n");
return false;
}
GraphCache gc(edit_distance, hamm_distance, g);
#ifdef DEBUG
gc.dumpStateTransitionTable(g);
#endif
const bool allowStartDs = (proper_out_degree(g.startDs, g) > 0);
struct fmstate state(g, gc, utf8, allowStartDs, dist, rm);
StateSet::WorkingData wd;
for (auto it = input.begin(), ite = input.end(); it != ite; ++it) {
#ifdef DEBUG
state.states.dumpActiveStates();
#endif
state.offset = std::distance(input.begin(), it);
state.cur = *it;
step(g, state, wd);
getMatches(g, matches, state, wd, false);
DEBUG_PRINTF("offset %zu, %zu states on\n", state.offset,
state.next.count());
if (state.next.empty()) {
filterMatches(matches);
return true;
}
state.states = state.next;
state.prev = state.cur;
}
#ifdef DEBUG
state.states.dumpActiveStates();
#endif
state.offset = input.size();
state.cur = 0;
// do additional step to get matches after stream end, this time count eod
// matches also (or not, if we're in notEod mode)
DEBUG_PRINTF("Looking for EOD matches\n");
getMatches(g, matches, state, wd, !notEod);
filterMatches(matches);
return true;
}
|