File: control

package info (click to toggle)
hyperspy 1.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,740 kB
  • sloc: python: 73,735; makefile: 111; ansic: 4; xml: 2
file content (65 lines) | stat: -rw-r--r-- 1,834 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
Source: hyperspy
Section: python
Priority: optional
Maintainer: Debian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
Uploaders: Sebastien Delafond <seb@debian.org>
Build-Depends: 
 debhelper (>= 12),
 dh-python,
# cython3,
 python3-all,
 python3-dev,
 python3-dask,
 python3-dateutil,
 python3-dill,
 python3-h5py,
 python3-imageio,
 python3-ipython,
 python3-matplotlib,
 python3-mock,
 python3-natsort,
 python3-nose,
 python3-numba,
 python3-numexpr,
 python3-numpy,
 python3-pint,
 python3-ptable,
 python3-pytest,
 python3-pytest-instafail,
 python3-pytest-mpl,
 python3-pytest-rerunfailures,
 python3-pytest-runner,
 python3-pytest-xdist,
 python3-yaml,
 python3-requests,
 python3-scipy,
 python3-setuptools,
 python3-skimage,
 python3-sklearn,
 python3-sparse,
 python3-statsmodels,
 python3-sympy,
 python3-tqdm,
 python3-traits,
 python3-traitsui,
Standards-Version: 4.5.0
Homepage: https://github.com/hyperspy/hyperspy
Vcs-Browser: https://salsa.debian.org/science-team/hyperspy
Vcs-Git: https://salsa.debian.org/science-team/hyperspy.git

Package: python3-hyperspy
Architecture: any
Depends: ${misc:Depends}, ${shlibs:Depends}, ${python3:Depends}
Description: interactive analysis of multidimensional datasets
 HyperSpy is an open source Python library for the interactive analysis
 of multidimensional datasets that can be described as multidimensional
 arrays of a given signal (for example, a 2D array of spectra, also known
 as a spectrum image).
 .
 HyperSpy makes it straightforward to apply analytical procedures that
 operate on an individual signal to multidimensional arrays, as well as
 providing easy access to analytical tools that exploit the
 multidimensionality of the dataset.
 .
 Its modular structure makes it easy to add features to analyze many
 different types of signals.