File: K2Pshared.bf

package info (click to toggle)
hyphy 2.5.69%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 26,728 kB
  • sloc: cpp: 81,964; xml: 467; lisp: 341; python: 166; javascript: 117; sh: 106; makefile: 87; ansic: 86
file content (124 lines) | stat: -rw-r--r-- 2,115 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/* This is an example HY-PHY Batch File.



   It reads in a '#' nucleotide dataset data/hiv.nuc and estimates

   maximum ln-likelihood based on the tree contained in the data file,

   using Kimura 2 parameter model with shared transition/transversion ratio

   accross all branches.

   

   Output is printed out as a Newick Style tree with branch lengths

   representing the number of expected substitutions per branch (which

   is the default setting for nucleotide models w/o rate variation).

   

   

   Sergei L. Kosakovsky Pond and Spencer V. Muse 

   December 1999. 

*/



/* 1. Read in the data and store the result in a DataSet variable.*/



DataSet 		nucleotideSequences = ReadDataFile ("data/hiv.nuc");

   

/* 2. Filter the data, specifying that all of the data is to be used

	  and that it is to be treated as nucleotides.*/

	  

DataSetFilter	filteredData = CreateFilter (nucleotideSequences,1);



/* 3. Define the K2P substitution matrix. '*' is defined to be -(sum of off-diag row elements)

	  The variable R is the global transition/transversion ratio.  */



global	R;



K2PRateMatrix = 

		{{*,mu,R*mu,mu}

		 {mu,*,mu,R*mu}

		 {R*mu,mu,*,mu}

		 {mu,R*mu,mu,*}};

		 

/*4.  Define the K2P model, by combining the substitution matrix with the vector of equal equilibrium

	  frequencies. */

	  

equalFreqs = {{.25}{.25}{.25}{.25}}; 



Model K2P	 = (K2PRateMatrix, equalFreqs);



/*5.  Now we can define the tree variable, using the tree string read from the data file,

	  and, by default, assigning the last defined model (K2P) to all tree branches. */

	  

Tree	givenTree = DATAFILE_TREE;



/*6.  Since all the likelihood function ingredients (data, tree, equilibrium frequencies)

	  have been defined we are ready to construct the likelihood function. */

	  

LikelihoodFunction  theLnLik = (filteredData, givenTree);



/*7.  Maximize the likelihood function, storing parameter values in the matrix paramValues */



Optimize (paramValues, theLnLik);



/*8.  Print the tree with optimal branch lengths to the console. */



fprintf  (stdout, theLnLik);