1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
/* This is an example HY-PHY Batch File.
It reads in a '#' nucleotide dataset data/hiv.nuc and estimates
maximum ln-likelihood based on the tree contained in the data file,
using the General Reversible model with all 6 parameters
estimated independently for all branches.
Output is printed out as a Newick Style tree with branch lengths
representing the number of expected substitutions per branch (which
is the default setting for nucleotide models w/o rate variation).
Sergei L. Kosakovsky Pond and Spencer V. Muse
December 1999.
*/
/* 1. Read in the data and store the result in a DataSet variable.*/
DataSet nucleotideSequences = ReadDataFile ("data/hiv.nuc");
/* 2. Filter the data, specifying that all of the data is to be used
and that it is to be treated as nucleotides.*/
DataSetFilter filteredData = CreateFilter (nucleotideSequences,1);
/* 3. Collect observed nucleotide frequencies from the filtered data. observedFreqs will
store the vector of frequencies. */
HarvestFrequencies (observedFreqs, filteredData, 1, 1, 1);
/* 4. Define the KHY substitution matrix. '*' is defined to be -(sum of off-diag row elements) */
REVRateMatrix =
{{*,a,b,c}
{a,*,d,e}
{b,d,*,f}
{c,e,f,*}};
/*5. Define the REV model, by combining the substitution matrix with the vector of observed (equilibrium)
frequencies. */
Model REV = (REVRateMatrix, observedFreqs);
/*6. Now we can define the tree variable, using the tree string read from the data file,
and, by default, assigning the last defined model (REV) to all tree branches. */
Tree givenTree = DATAFILE_TREE;
/*7. Since all the likelihood function ingredients (data, tree, equilibrium frequencies)
have been defined we are ready to construct the likelihood function. */
LikelihoodFunction theLnLik = (filteredData, givenTree);
/*8. Maximize the likelihood function, storing parameter values in the matrix paramValues */
Optimize (paramValues, theLnLik);
/*9. Print the tree with optimal branch lengths to the console. */
fprintf (stdout, theLnLik);
|