File: RelativeRatePBS.bf

package info (click to toggle)
hyphy 2.5.69%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 26,728 kB
  • sloc: cpp: 81,964; xml: 467; lisp: 341; python: 166; javascript: 117; sh: 106; makefile: 87; ansic: 86
file content (247 lines) | stat: -rw-r--r-- 5,053 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
VERBOSITY_LEVEL = -1;
/* This is an example HY-PHY Batch File.



   It reads a 3 taxa dataset "data/3.seq", performs

   an HKY85 relative rate analysis on the data.

   Having finished that, the code simulates 100 replicates of the data

   using MLE of the parameters under the null hypothesis of equal  

   rates, conducts an HKY relative rate analysis on each of the 

   replicates and then tabulates the distribution of resulting

   likelihood ratio statistic.

   

   

   Sergei L. Kosakovsky Pond and Spencer V. Muse 

   December 1999. 

*/



/* 1. Read in the data and store the result in a DataSet variable.*/



DataSet 		nucleotideSequences = ReadDataFile ("data/3.seq");

   

/* 2. Filter the data, specifying that all of the data is to be used

	  and that it is to be treated as nucleotides. */

	  

DataSetFilter	filteredData = CreateFilter (nucleotideSequences,1);



/* 3. Collect observed nucleotide frequencies from the filtered data. observedFreqs will

	  store the vector of frequencies. */



HarvestFrequencies (observedFreqs, filteredData, 1, 1, 1);



/* 4. Define the HKY substitution matrix. '*' is defined to be -(sum of off-diag row elements) */



HKY85RateMatrix  = 

		{{*,trvs,trst,trvs}

		 {trvs,*,trvs,trst}

		 {trst,trvs,*,trvs}

		 {trvs,trst,trvs,*}};

		 

/*5.  Define the HKY85 model, by combining the substitution matrix with the vector of observed (equilibrium)

	  frequencies. */

	  

Model HKY85	 = (HKY85RateMatrix, observedFreqs);



/*6.  Now we can define the simple three taxa tree. */

	  

Tree	threeTaxaTree = (a,b,og);



/*7.  Since all the likelihood function ingredients (data, tree, equilibrium frequencies) have been defined we are ready to construct the likelihood function. */

	  

LikelihoodFunction  theLnLik = (filteredData, threeTaxaTree);



/*8.  Maximize the likelihood function, storing parameter values in the matrix paramValues. We also store the resulting ln-lik. */



Optimize (paramValues, theLnLik);

unconstrainedLnLik = paramValues[1][0];



fprintf  (stdout, "\n----ORIGINAL DATA----");

		 

fprintf  (stdout, "\n 0).UNCONSTRAINED MODEL:", theLnLik);



/*10. We now constrain the rate of evolution to be equal along the branches leading to a and b and repeat the optimization. We will impose the constraint: both rates are equal.

*/

	  

threeTaxaTree.b.trst := threeTaxaTree.a.trst;

threeTaxaTree.b.trvs := threeTaxaTree.a.trvs;

Optimize (paramValues, theLnLik);

obslnlikDelta = 2 (unconstrainedLnLik-paramValues[1][0]);

/* 2df test since we constrain ts and tv rates.... */

obsPval = 1-CChi2 (obslnlikDelta, 2); 



fprintf (stdout, "\n\t 1). Both rates test. LR Statistic = ", obslnlikDelta,"\n", theLnLik,"\n  p-val (Chi-2) = ",obsPval,"\n\n");







/*11. Now we set up the simulation loop.

      First, we create another copy of the tree which will

	serve as the tree for simulated data sets. Since we will also use 	observed frequencies from the simulated data sets in our 	substitution model, we create a new Model. We will create a 	vector simFreqs to store the frequencies (the values will be 	saved in simFreqs inside the sim loop. We will count the number 	of significant LR tests using sigtests.*/

	

simFreqs = {{0.25,0.25,0.25,0.25}}; /* Just needed to create simFreqs*/

Model simHKY85	 = (HKY85RateMatrix, simFreqs);

Tree	simulatedTree = (a,b,og);

sigtests = 0;



/*12. This is a formatting stepm which sets print width for all numbers to 12 and prints the table header */



PRINT_DIGITS = 12;



fprintf (stdout, 

"\n|------------|------------|\n|  Simul. #  |LR Test Stat|\n|------------|------------|");



for (simCounter = 1; simCounter<=100; simCounter = simCounter+1) {

/*13. Simulate a data set of the same size as the original set using the constrained MLE (the current values are still attached to theLnLik)of all the parameters */



	DataSet	simulatedData = SimulateDataSet (theLnLik);



/*14. Repeat the same steps as for the original data to obtain simulated ln-likelihood ratios*/

		  

	DataSetFilter    filteredSimData = CreateFilter(simulatedData,1);



/*15. Collect observed nucleotide frequencies from the filtered data. observedFreqs will store the vector of frequencies. */



	HarvestFrequencies (simFreqs, filteredSimData, 1, 1, 1);

	LikelihoodFunction simLik = (filteredSimData, simulatedTree);

	Optimize (simParamValues, simLik);

	unconstrainedLnLik = simParamValues[1][0];

	fprintf (stdout, "\n|", simCounter);

	/* Rate test */

	simulatedTree.b.trst := simulatedTree.a.trst;

	simulatedTree.b.trvs := simulatedTree.a.trvs;

	Optimize (paramValues, simLik);

	lnlikDelta = 2 (unconstrainedLnLik-paramValues[1][0]);

    if (lnlikDelta > obslnlikDelta) {
		sigtests = sigtests + 1;
	}

	fprintf (stdout, "|", lnlikDelta,"|");

	ClearConstraints (simulatedTree);



}



fprintf (stdout, "\n|------------|------------|");

fprintf (stdout, "\n|Chi2 P-val= |",obsPval,"|");

fprintf (stdout, "\n| PBS P-val= |",sigtests/100,"|");

fprintf (stdout, "\n|------------|------------|");