1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*BHEADER**********************************************************************
* Copyright (c) 2008, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
* This file is part of HYPRE. See file COPYRIGHT for details.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License (as published by the Free
* Software Foundation) version 2.1 dated February 1999.
*
* $Revision: 2.7 $
***********************************************************************EHEADER*/
/*
* distributed_qsort.c:
* Our own version of the system qsort routine which is faster by an average
* of 25%, with lows and highs of 10% and 50%.
* The THRESHold below is the insertion sort threshold, and has been adjusted
* for records of size 48 bytes.
* The MTHREShold is where we stop finding a better median.
*/
#include <stdlib.h> /* only for type declarations */
#include "_hypre_utilities.h"
#define THRESH 4 /* threshold for insertion */
#define MTHRESH 6 /* threshold for median */
static HYPRE_Int (*qcmp) (); /* the comparison routine */
static HYPRE_Int qsz; /* size of each record */
static void qst(char *, char *);
static HYPRE_Int thresh; /* THRESHold in chars */
static HYPRE_Int mthresh; /* MTHRESHold in chars */
/*
* hypre_tex_qsort:
* First, set up some global parameters for qst to share. Then, quicksort
* with qst(), and then a cleanup insertion sort ourselves. Sound simple?
* It's not...
*/
void
hypre_tex_qsort(base, n, size, compar)
char *base;
HYPRE_Int n;
HYPRE_Int size;
HYPRE_Int (*compar) ();
{
register char *i;
register char *j;
register char *lo;
register char *hi;
register char *min;
register char c;
char *max;
if (n <= 1)
return;
qsz = size;
qcmp = compar;
thresh = qsz * THRESH;
mthresh = qsz * MTHRESH;
max = base + n * qsz;
if (n >= THRESH)
{
qst(base, max);
hi = base + thresh;
}
else
{
hi = max;
}
/* First put smallest element, which must be in the first THRESH, in the
first position as a sentinel. This is done just by searching the
first THRESH elements (or the first n if n < THRESH), finding the min,
and swapping it into the first position. */
for (j = lo = base; (lo += qsz) < hi;)
{
if ((*qcmp) (j, lo) > 0)
j = lo;
}
if (j != base)
{ /* swap j into place */
for (i = base, hi = base + qsz; i < hi;)
{
c = *j;
*j++ = *i;
*i++ = c;
}
}
/* With our sentinel in place, we now run the following hyper-fast
insertion sort. For each remaining element, min, from [1] to [n-1],
set hi to the index of the element AFTER which this one goes. Then, do
the standard insertion sort shift on a character at a time basis for
each element in the frob. */
for (min = base; (hi = min += qsz) < max;)
{
while ((*qcmp) (hi -= qsz, min) > 0);
if ((hi += qsz) != min)
{
for (lo = min + qsz; --lo >= min;)
{
c = *lo;
for (i = j = lo; (j -= qsz) >= hi; i = j)
*i = *j;
*i = c;
}
}
}
}
/*
* qst:
* Do a quicksort
* First, find the median element, and put that one in the first place as the
* discriminator. (This "median" is just the median of the first, last and
* middle elements). (Using this median instead of the first element is a big
* win). Then, the usual partitioning/swapping, followed by moving the
* discriminator into the right place. Then, figure out the sizes of the two
* partions, do the smaller one recursively and the larger one via a repeat of
* this code. Stopping when there are less than THRESH elements in a partition
* and cleaning up with an insertion sort (in our caller) is a huge win.
* All data swaps are done in-line, which is space-losing but time-saving.
* (And there are only three places where this is done).
*/
static void qst(char *base, char *max)
{
register char *i;
register char *j;
register char *jj;
register char *mid;
register HYPRE_Int ii;
register char c;
char *tmp;
HYPRE_Int lo;
HYPRE_Int hi;
lo = max - base; /* number of elements as chars */
do
{
/* At the top here, lo is the number of characters of elements in the
current partition. (Which should be max - base). Find the median
of the first, last, and middle element and make that the middle
element. Set j to largest of first and middle. If max is larger
than that guy, then it's that guy, else compare max with loser of
first and take larger. Things are set up to prefer the middle,
then the first in case of ties. */
mid = i = base + qsz * ((unsigned) (lo / qsz) >> 1);
if (lo >= mthresh)
{
j = ((*qcmp) ((jj = base), i) > 0 ? jj : i);
if ((*qcmp) (j, (tmp = max - qsz)) > 0)
{
j = (j == jj ? i : jj); /* switch to first loser */
if ((*qcmp) (j, tmp) < 0)
j = tmp;
}
if (j != i)
{
ii = qsz;
do
{
c = *i;
*i++ = *j;
*j++ = c;
} while (--ii);
}
}
/* Semi-standard quicksort partitioning/swapping */
for (i = base, j = max - qsz;;)
{
while (i < mid && (*qcmp) (i, mid) <= 0)
i += qsz;
while (j > mid)
{
if ((*qcmp) (mid, j) <= 0)
{
j -= qsz;
continue;
}
tmp = i + qsz; /* value of i after swap */
if (i == mid)
{ /* j <-> mid, new mid is j */
mid = jj = j;
}
else
{ /* i <-> j */
jj = j;
j -= qsz;
}
goto swap;
}
if (i == mid)
{
break;
}
else
{ /* i <-> mid, new mid is i */
jj = mid;
tmp = mid = i; /* value of i after swap */
j -= qsz;
}
swap:
ii = qsz;
do
{
c = *i;
*i++ = *jj;
*jj++ = c;
} while (--ii);
i = tmp;
}
/* Look at sizes of the two partitions, do the smaller one first by
recursion, then do the larger one by making sure lo is its size,
base and max are update correctly, and branching back. But only
repeat (recursively or by branching) if the partition is of at
least size THRESH. */
i = (j = mid) + qsz;
if ((lo = j - base) <= (hi = max - i))
{
if (lo >= thresh)
qst(base, j);
base = i;
lo = hi;
}
else
{
if (hi >= thresh)
qst(i, max);
max = j;
}
} while (lo >= thresh);
}
|